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ON THE COMINIMAXNESS OF LOCAL COHOMOLOGY MODULES

G. Ghasemi∗ and J. A’zami

Abstract. Let I be an ideal of a commutative Noetherian ring R. It is shown that
the R-modules Hi

I(M) are I-cominimax, for all finitely generated R-modules M and
all i ∈ N0, if the R-modules Hi

I(R) are I-cominimax with dimension not exceeding 1,
for all integers i ≥ 2. This is an analogue result of Bahmanpour in [6].

1. Introduction
Throughout this paper, R denotes a commutative Noetherian ring (with

non-zero identity) and I will denote an ideal of R. The symbol Z denotes
the set of integers; in addition, N (respectively N0) will denote the set of
positive (respectively non-negative) integers. For each R-module L, the set of
minimal elements of AssR L with respect to inclusion is denoted by mAssR L;
also, AsshR L denotes the set {p ∈ AssR L : dimR/ p = dimL}. We denote
SuppR/I = {p ∈ SpecR : p ⊇ I} by V (I).

For an R-module M , the ith local cohomology module of M with support
in V (I) is defined as:

H i
I(M) = lim−→

n≥1

ExtiR(R/In,M).

We refer the reader to [11] or [19] for more details about local cohomology.
Recall that for an R-module M , the notion cd(I,M), the cohomological

dimension of M with respect to I, is defined as:

cd(I,M) = sup{i ∈ N0 : H i
I(M) ̸= 0}

and the notion q(I,M), which for the first time was introduced by Hartshorne,
is defined as:

q(I,M) = sup{i ∈ N0 : H i
I(M) is not Artinian},
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with the usual convention that the supremum of the empty set of integers is
interpreted as −∞. These two notions have been studied by several authors
(see [4, 7, 14, 15, 17, 18, 20]).

In the sequel the symbol C (R, I)com denotes the category of all I-cominimax
R-modules and C 1(R, I)com denotes the category of all R-modules
M ∈ C (R, I)com such that dimM ≤ 1. An R-module M is called a-
cominimax if the support of M is contained in V (a) and ExtiR(R/a,M) is
minimax for all i ≥ 0. The concept of the a-cominimax modules is intro-
duced in [2]. Also, throughout this paper, let I ′(R) denote the class of
all ideals I of R such that H i

I(M) ∈ C (R, I)com, for all finitely generated
R-modules M and all i ∈ N0.

Recall that the I-transform functor, denoted by DI(−) is defined as:

DI(−) = lim−→
n≥1

HomR(I
n,−).

In general, the R-module DI(R) has an R-algebra structure (see [11, Exercise
2.2.3]). In fact, with this structure DI(R) is a commutative ring with identity.
Also, it is well known that if DI(−) is an exact functor then DI(R) is a finitely
generated R-algebra. But, in general we don’t know when the ring DI(R) is
Noetherian.

Throughout this paper, for each pair of the sets X and Y , the expression
X ⊆ Y means that X is a subset of Y and the expression X ⊂ Y means
that X ⊆ Y and X ̸= Y . For an Artinian R-module A, the set of attached
prime ideals of A is denoted by AttRA. Also, for any non-nilpotent element
x of R and any R-module M , the localization of M at the multiplicatively
closed subset S = {1

R
, x, x2, x3, . . . } of R is shown by Mx. For each ideal

I of a Noetherian ring R and each R-module M , we denote the submodule∪∞
n=1(0 :M In) of M by ΓI(M). Furthermore, for any ideal I of a commutative

ring T , we denote the set of minimal prime ideals over I by Min I. Also,
we show set of all maximal ideals of a ring T by Max(T ). Finally, for any
ideal J of T , the radical of J , denoted by Rad(J), is defined to be the set
{x ∈ T : xn ∈ J for some n ∈ N}. For any unexplained notation and
terminology we refer the reader to [11, 12, 21].

2. preliminaries
In this section we establish some technical results which will be used later.

We start this section with some auxiliary lemmas.

Lemma 2.1. For an ideal I of a ring R, the following statements hold:
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(1) C 1(R, I)cof is an Abelian category.
(2) Suppose that M is an R-module with SuppM ⊆ Max(R) ∩ V (I). If

the R-module (0 :M I) is finitely generated then the R-module M is
Artinian and I-cofinite.

Proof. See [10, Theorem 2.7] and [22, Lemma 2.1]. □
Let R be a Noetherian ring and I be an ideal of R. Recall that a subcate-

gory M of the category of all R-modules is said to be a Serre category if in
any short exact sequence of R-modules and R-homomorphisms, the middle
module is in M if and only if the two other modules are in M . Let C 1(R, I)
be the Serre category of all I-torsion R-modules M with dimM ≤ 1. We
want to emphasize at the outset, that two categories C 1(R, I) and C 1(R, I)cof
are different. In fact always C 1(R, I)com is a proper subcategory of C 1(R, I).
Now, for any R-module N , we define the notation c1(I,N) as the greatest
integer i such that H i

I(N) is not in C 1(R, I) if there exist such i’s and −∞
otherwise. Finally, we recall that in [4] the notion q̃(I,N) is defined as the
greatest integer i such that H i

I(N) is not an Artinian I-cofinite module if
there exist such i’s and −∞ otherwise.
Lemma 2.2. Let I be an ideal of a ring R. Assume that M and N are
two finitely generated R-modules such that SuppM ⊆ SuppN. Then the
following statements hold:

(1) c1(I,M) ≤ c1(I,N).
(2) q(I,M) ≤ q(I,N).
(3) q̃(I,M) ≤ q̃(I,N).
(4) cd(I,M) ≤ cd(I,N).

Proof. (1) Considering the fact that C 1(R, I) is a Serre category, the as-
sertion follows immediately from [4, Theorem 2.3].

(2) See [14, Theorem 3.2].
(3) See [4, Theorem 2.6].
(4) See [15, Theorem 2.2].

□
The following result is needed in the proof of Theorem 3.10.

Lemma 2.3. Let I, J be two ideals of a ring R and M be an R-module with
JM = 0 and SuppM ⊆ V (I). Then M is I-cominimax (as an R-module) if
and only if M is (I + J)/J-cominimax (as an R/J-module).
Proof. The assertion follows by applying a method similar to the proof of [13,
Proposition 2]. □
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Lemma 2.4. (See [4, Theorem 4.10]) Let I be an ideal of a ring R with
q(I, R) ≤ 1. Then, I ∈ I (R).

3. results
The main goal of this section is to prove Theorem 3.10. But, first we need

some useful lemmas.

Lemma 3.1. Let I be an ideal of a ring R such that C (R, I)com is Abelian.
Then the following statements hold:

(1) Suppose that

X• : · · · −→ X i f i

−→ X i+1 f i+1

−→ X i+2 −→ · · · ,
is a complex such that X i ∈ C (R, I)com for all i ∈ Z. Then for each
i ∈ Z the ith cohomology module H i(X•) is in C (R, I)com.

(2) Assume that M ∈ C (R, I)com and N is a finitely generated R-module.
Then for each i ∈ N0, the R-modules TorRi (N,M) and ExtiR(N,M) are
in C (R, I)com.

Proof. (1) The assertion follows easily from the definition.
(2) Since N is finitely generated it follows that N has a free resolution with

finitely generated free R-modules. Now the assertion follows from applying
part (i) and computing the R-modules TorRi (N,M) and ExtiR(N,M) by this
free resolution. □
Lemma 3.2. (See [1, Lemma 2.3]) Let I be an ideal of a ring R and M be
a Serre subcategory of the category of R-modules. Let n ∈ N0 and M be
an R-module such that ExtjR(R/I,H i

I(M)) ∈ M , for all 0 ≤ i < n and all
j ∈ N0. If the R-modules ExtnR(R/I,M) and Extn+1

R (R/I,M) are in M , then
the R-modules HomR(R/I,Hn

I (M)) and Ext1R(R/I,Hn
I (M)) are in M .

Lemma 3.3. (See [10, Proposition 2.6]) Let I be an ideal of a Noetherian
ring R and M be an R-module such that dimM ≤ 1 and SuppM ⊆ V (I).
Then the following statements are equivalent:

(1) M is I-cominimax.
(2) The R-modules HomR(R/I,M) and Ext1R(R/I,M) are cominimax.

Lemma 3.4. (See [3, Corollary 2.10]) Let I be an ideal of a ring R with
q(I, R) ≤ 1. Then C (R, I)cof is Abelian.

Lemma 3.5. (See [5, Theorem 3.11]) Let I be an ideal of a ring R such that
the I-transform functor DI(−) is exact. Then DI(R) is a flat R-algebra.
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The following lemma is needed in the proof of Proposition 3.9.

Lemma 3.6. (See [6, Lemma 4.6]) Suppose that I is an ideal of a ring
R such that ΓI(R) = 0 and q(I, R) ≤ 1. Let N be a finitely generated R-
module. Then the R-modules TorRi (N,DI(R)) are Artinian and I-cofinite, for
all i ∈ N, and the R-modules ExtjR(R/I,N ⊗R DI(R)) are finitely generated,
for all j ∈ N0.

Lemma 3.7. (See [8, Lemma 2.4]) Let (R,m) be a local ring and A be an
Artinian R-module. Suppose that x is an element in m such that
V (xR) ∩ AttRA ⊆ {m}. Then the R-module A/xA has finite length.

Lemma 3.8. (See [8, Lemma 2.5]) Let (R,m) be a local ring and A be an
Artinian R-module. Suppose that I is an ideal of R such that the R-module
HomR(R/I,A) is finitely generated. Then V (I) ∩ AttRA ⊆ V (m).

In [25] H. Zöschinger introduced the interesting class of minimax modules,
and in [25, 26] he has given many equivalent conditions for a module to be
minimax. The R-module N is said to be a minimax module, if there is a
finitely generated submodule L of N , such that N/L is Artinian. Hence,
the class of minimax modules includes all finitely generated and all Artinian
modules. Also, from [9, Lemma 2.1] we know that the category of minimax
modules is a Serre category. It was shown by T. Zink [24] and by E. Enochs
[16] that a module over a complete local ring is minimax if and only if it is
Matlis reflexive. Finally, we recall that the arithmetic rank of an ideal J in
a commutative Noetherian ring R, denoted by ara(J), is the least number of
elements of J required to generate an ideal which has the same radical as J ,
i.e.,

ara(J) = min{n ∈ N0 : ∃x1, . . . , xn ∈ J with
Rad((x1, · · · , xn)R) = Rad(J)}.

The following proposition plays an important role in the proof of Theorem
3.10.

Proposition 3.9. Let I be an ideal of a ring R such that ΓI(R) = 0 and
H i

I(R) ∈ C 1(R, I)com, for all integers i ≥ 2. Then, for each finitely generated
R-module N and each integer i ∈ N, the R-module TorRi (N,DI(R)) is I-
cominimax and the R-modules ExtjR(R/I,N ⊗R DI(R)) are minimax, for all
j ∈ N0.
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Proof. If q(I, R) ≤ 1 then the assertion follows from Lemma 3.6. So, we
may assume that q(I, R) ≥ 2. Then by applying Lemma 2.1, from the hy-
pothesis H

q(I,R)
I (R) ∈ C 1(R, I)com we can deduce that dimH

q(I,R)
I (R) = 1.(If

dimH
q(I,R)
I (R) = 0, then SuppH

q(I,R)
I (R) ⊆ Max(R) and since 0 :

H
q(I,R)
I (R)

I

is minimax, it follows that 0 :
H

q(I,R)
I (R)

I is Artinian and so H
q(I,R)
I (R) is

Artinian which is a contradiction).
Suppose that N is a finitely generated R-module. In order to prove the

assertion, we use induction on t = ara(I + AnnRN/AnnRN). If t = 0, then
it follows from the definition that SuppN ⊆ V (I). By the hypothesis the R-
module H i

I(R) is I-cominimax, for all integers i ≥ 2. Also, by the assumption
we have H0

I (R) ≃ ΓI(R) = 0. Therefore, for each i ̸= 1 the R-module H i
I(R)

is I-cominimax. Hence, by [23, Proposition 3.11] the R-module H1
I (R) is

I-cominimax too. Therefore, by [23, Corollary 2.5], for each i ∈ N0 the R-
module TorRi (N,H1

I (R)) is minimax. On the other hand, the short exact
sequence

0 −→ R −→ DI(R) −→ H1
I (R) −→ 0,

induces the long exact sequence
. . . −→ TorR1 (N,R) −→ TorR1 (N,DI(R)) −→ TorR1 (N,H1

I (R))

−→ N ⊗R R −→ N ⊗R DI(R) −→ N ⊗R H1
I (R) −→ 0.

As TorRi (N,R) = 0, for each i ∈ N, it follows the R-module TorRi (N,DI(R))
is minimax, for all i ∈ N0 and

SuppTorRi (N,DI(R)) ⊆ SuppTorRi (N,H1
I (R)) ⊆ V (I), for all i ∈ N.

Since N ⊗R DI(R) is minimax, it follows that ExtjR(R/I,N ⊗R DI(R)) is
minimax for all j ∈ N0.Thus the assertion holds for t = 0.

Suppose, inductively, that t > 0 and the result has been proved for all
smaller values of t. Since AnnRN ⊆ AnnRN/ΓI(N), it follows that

ara(I +AnnRN/ΓI(N)/AnnRN/ΓI(N)) ≤ ara(I +AnnRN/AnnRN).

On the other hand, the short exact sequence
0 −→ ΓI(N) −→ N −→ N/ΓI(N) −→ 0,

induces the long exact sequence
· · · −→ TorR1 (ΓI(N), DI(R)) −→ TorR1 (N,DI(R))

−→ TorR1 (N/ΓI(N), DI(R)) −→ ΓI(N)⊗R DI(R) −→ N ⊗R DI(R)

−→ (N/ΓI(N))⊗R DI(R) −→ 0.
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Consequently, applying the inductive assumption for the I-torsion finitely
generated R-module ΓI(N) and replacing N by N/ΓI(N), we can make the
additional assumption that ΓI(N) = 0. Then, by [11, Lemma 2.1.1] we have
I ⊈

∪
p∈AssR N p. Next, let v ∈ N and

Ωv :=
∪v+1

i=1 SuppTor
R
i (N,DI(R)).

We claim that Ωv ⊆ Supp
⊕∞

i=2H
i
I(R). Assume that the opposite holds.

Then there is an integer 1 ≤ l ≤ v + 1 such that
SuppTorRl (N,DI(R)) ̸⊆ Supp

⊕∞
i=2H

i
I(R).

Choose an element p ∈ SuppTorRl (N,DI(R)) such that p ̸∈ Supp
⊕∞

i=2H
i
I(R).

Then, H i
IRp

(Rp) ≃ (H i
I(R))p = 0, for all integers i ≥ 2. Thus, by [11,

Lemma 6.3.1] the IRp-transform functor DIRp
(−) is exact and by Lemma

3.5, DIRp
(Rp) is a flat Rp-algebra. Hence

(TorRl (N,DI(R)))p ≃ Tor
Rp

l (Np, DIRp
(Rp)) = 0,

which is a contradiction.
By [11, Corollary 3.3.3], we know that cd(I, R) ≤ ara(I) < ∞. Since by

the assumption H i
I(R) ∈ C 1(R, I)com, for each integer i ≥ 2, it follows that

the set

Ψ :=
∞∪
i=2

AssRH i
I(R),

is finite, because for all i > ara(I), H i
I(R) = 0 and also for all i ≥ 2, H i

I(R)
is I-cominimax and therefore AssRH i

I(R) is finite. Set
∆ := {p ∈ Ωv : dimR/p = 1}.

Then it is clear that ∆ ⊆ AsshR
⊕∞

i=2H
i
I(R) ⊆ Ψ and ∆ is a finite set.

Furthermore, by using the assumption H i
I(R) ∈ C 1(R, I)com, for each integer

i ≥ 2, and applying Lemma 2.1, it is easy to see that q(IRp, Rp) ≤ 1, for all
p ∈ ∆ (for this we show that for all i ≥ 2, and p ∈ ∆ the Rp−module (H i

I(R))p
is Artinian. Let H := H i

I(R) for all i ≥ 2 and E := HomR(R/I,H) . Since
H is I-cominimax, it follows that there exists a finitely generated submodule
T of E such that E/T is Artinian. Now from the fact that dimR/p = 1,
we conclude Tp ≃ Ep and so the Rp-module Ep is of finite length and Hp is
Artinian for all i ≥ 2. This shows that q(IRp, Rp) ≤ 1). Thus by Lemma 3.6,
the Rp-module Tor

Rp

i (Np, DIRp
(Rp)) = (TorRi (N,DI(R)))p, is Artinian and

IRp-cofinite, for all p ∈ ∆ and all i ∈ N. Assume that ∆ = {p1, . . . , pn} and
set
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Λ :=
∪v+1

i=1

∪n
j=1{q ∈ SpecR | qRpj ∈ AttRpj

(TorRi (N,DI(R)))pj}.

By Lemma 3.8 we have V (IRpj)∩AttRpj
(TorRi (N,DI(R)))pj ⊆ V (pjRpj), for

all 1 ≤ i ≤ v + 1 and all 1 ≤ j ≤ n. Hence, Λ ∩ V (I) ⊆ ∆. Also, since
for each q ∈ Λ we have qRpj ∈ AttRpj

(TorRi (N,DI(R)))pj , for some integers
1 ≤ i ≤ v + 1 and 1 ≤ j ≤ n, it follows that

(AnnRN)Rpj ⊆ AnnRpj
(TorRi (N,DI(R)))pj ⊆ qRpj ,

which implies AnnRN ⊆ q. Therefore, Λ ⊆ SuppN .
On the other hand, by the definition there exist elements y1, ..., yt ∈ I, such

that

Rad(I +AnnRN/AnnRN) = Rad((y1, ..., yt)R +AnnRN/AnnRN).

By the Prime Avoidance Theorem,

I ̸⊆
(∪

q∈Λ\V (I) q
) ∪ (∪

p∈AssR N p
)
,

which shows that

(y1, ..., yt)R +AnnRN ̸⊆
(∪

q∈Λ\V (I) q
) ∪ (∪

p∈AssR N p
)
.

But, AnnRN ⊆
(∩

q∈Λ\V (I) q
) ∩ (∩

p∈AssR N p
)
, and consequently

(y1, ..., yt)R ̸⊆
(∪

q∈Λ\V (I) q
) ∪ (∪

p∈AssR N p
)
.

Therefore, by [21, Exercise 16.8] there is a ∈ (y2, . . . , yt)R such that

y1 + a ̸∈
(∪

q∈Λ\V (I) q
) ∪ (∪

p∈AssR N p
)
.

Let x := y1 + a. Then x ∈ I and

Rad(I +AnnRN/AnnRN) = Rad((x, y2, ..., yt)R +AnnRN/AnnRN).

Now it is easy to see that

Rad(I +AnnRN/xN/AnnRN/xN)

= Rad((y2, ..., yt)R +AnnRN/xN/AnnRN/xN),

and hence ara(I + AnnRN/xN/AnnRN/xN) ≤ t − 1. The short exact
sequence

0 −→ N
x−→ N −→ N/xN −→ 0,
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induces an exact sequence
TorRi+1(N,DI(R))

x−→ TorRi+1(N,DI(R)) −→ TorRi+1(N/xN,DI(R))

−→ TorRi (N,DI(R))
x−→ TorRi (N,DI(R)),

for all i ∈ N0. Consequently, for each 0 ≤ i ≤ v, we have the short exact
sequence,

0 −→ Ui+1 −→ TorRi+1(N/xN,DI(R)) −→ (0 :TorRi (N,DI(R)) x) −→ 0,

where Ui+1 := TorRi+1(N,DI(R))/xTorRi+1(N,DI(R)).
By the inductive assumption, the R-modules TorRi+1(N/xN,DI(R)) are I-

cominimax, for all i ∈ N0. Also, by Lemma 3.7, obviously the Rpj-module
(Ui+1)pj is of finite length, for all integers 1 ≤ j ≤ n and 0 ≤ i ≤ v, because
if qRp ∈ AttTorRi+1(N,DI(R))p ∩ V (xRp) then x ∈ q, q ∈ Λ and I ⊆ q. Also
the Rp-module Tor

Rp

i (Np, DIRp
(Rp)) = (TorRi (N,DI(R)))p, is Artinian and

IRp-cofinite. As I ⊆ q, so
TorRi+1(N,DI(R))p/qRpTor

R
i+1(N,DI(R))p

is of finite length which shows that qRp ∈ {pRp} and so there exists a
finitely generated submodule Ui+1,j of Ui+1 such that (Ui+1)pj = (Ui+1,j)pj . Set
U ′
i+1 := Ui+1,1 + · · ·+ Ui+1,n, for all 0 ≤ i ≤ v. Then for each 0 ≤ i ≤ v, U ′

i+1

is a finitely generated submodule of Ui+1 such that
SuppR Ui+1/U

′
i+1 ⊆ Ωv \ {p1, ..., pn} ⊆ MaxR.

For each 0 ≤ i ≤ v, set Wi+1 := TorRi+1(N/xN,DI(R)). Then, for each
0 ≤ i ≤ v, there is an exact sequence

0 −→ Ui+1/U
′
i+1 −→ Wi+1/W

′
i+1 −→ (0 :TorRi (N,DI(R)) x) −→ 0,

for some finitely generated submodule W ′
i+1 of Wi+1.

We will show that Ui+1 is a minimax R-module, for all 0 ≤ i ≤ v. To do
this, we notice that for each 0 ≤ i ≤ v, Wi+1/W

′
i+1 is I-cominimax and hence

HomR(R/I, Ui+1/U
′
i+1) is a minimax R-module. But

SuppUi+1/U
′
i+1 ⊆ MaxR

and Ui+1/U
′
i+1 is I-torsion, and therefore the R-module Ui+1/U

′
i+1 is Artinian.

That is Ui+1 is a minimax R-module. Consequently, for each 0 ≤ i ≤ v, the
R-module (0 :TorRi (N,DI(R)) x) is also I-cominimax. Moreover, from the exact
sequence

0 −→ (N ⊗R DI(R))/x(N ⊗R DI(R)) −→ (N/xN)⊗DI(R) −→ 0,
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and inductive assumption, it follows that the following R-module

ExtjR(R/I, (N ⊗R DI(R))/x(N ⊗R DI(R)))

is minimax, for all j ∈ N0. Now, since x ∈ I and the R-modules

(0 :TorRi (N,DI(R)) x), TorRi (N,DI(R))/xTorRi (N,DI(R))

are I-cominimax, for all 1 ≤ i ≤ v, from [23, Corollary 3.4] it follows that
TorRi (N,DI(R)) is I-cominimax, for all 1 ≤ i ≤ v. Furthermore, since the R-
module (0 :N⊗RDI(R) x) is I-cominimax and the R-module ExtjR(R/I, (N ⊗R

DI(R))/x(N ⊗R DI(R))) is minimax, for all j ∈ N0, by applying the method
which is used already in the proof of [23, Corollary 3.4], it can be seen that
the R-module ExtjR(R/I,N ⊗R DI(R)) is finitely generated, for all j ∈ N0.

Finally, as v ∈ N is an arbitrary integer, it is concluded that the R-module
TorRi (N,DI(R)) is I-cominimax, for all i ∈ N. This completes the inductive
step. □

Now, we are ready to establish the second main result of this paper.

Theorem 3.10. Let I be an ideal of a ring R such that H i
I(R) ∈ C 1(R, I)com

for each integer i ≥ 2. Then I ∈ I ′(R).

Proof. Let R := R/ΓI(R) and I = IR. We know that if I ∈ I ′(R), then
I ∈ I ′(R). Conversely, if I ∈ I ′(R) then for each finitely generated R-
module M we have JM ⊆ ΓI(M), where J := ΓI(R) and hence for each
i ∈ N we have H i

I(M) ≃ H i
I(M/JM) ≃ H i

I
(M/JM). Thus, from Lemma 2.3

we get I ∈ I ′(R). On the other hand, for each i ≥ 1 we have

H i
I(R) ≃ H i

I(R) ≃ H i
I
(R).

Hence, by using the Lemma 2.3 we can see that H i
I(R) ∈ C 1(R, I)com, for all

i ≥ 2, if and only if H i
R
(R) ∈ C 1(R, I)com, for all i ≥ 2. So, by passing to the

quotient ring R, we can make the additional assumption that ΓI(R) = 0.
Now, let N be a finitely generated R-module and set W := N ⊗R DI(R).

From the assumption, H i
I(R) ∈ C 1(R, I)com for all i ≥ 2, by Proposition 3.9

it follows that the R-module ExtjR(R/I,W ) is minimax, for all j ∈ N0.
By the assumption c1(I, R) ≤ 1 and Lemma 2.2, for each finitely generated

R-module U we have c1(I, U) ≤ c1(I, R) ≤ 1. Since by [11, Theorem 3.4.10],
for each i ∈ N0, the local cohomology functor H i

I(−) commutes with direct
limits, and W can be viewed as the direct limit of its finitely generated
submodules, we have c1(I,W ) ≤ 1 and dimH i

I(W ) ≤ 1, for all integers i ≥ 2.
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Let p be a prime ideal of R with dimR/ p ≥ 2. As by the assumption the
R-module H i

I(R) is in C 1(R, I), for all i ≥ 2, we see that
H i

IRp
(Rp) ≃ (H i

I(R))p = 0, for all i ≥ 2.

Thus, by [11, Lemma 6.3.1] the IRp-transform functor DIRp
(−) is exact.

Hence, by applying [11, Exercise 6.1.8] we conclude that
Wp = (DI(R)⊗R N)p ≃ DIRp

(Rp)⊗Rp
Np ≃ DIRp

(Np).

Thus, by using [11, Corollary 2.2.8] we achieve the isomorphisms
(H i

I(W ))p ≃ H i
IRp

(Wp) ≃ H i
IRp

(DIRp
(Np)) = 0, for i = 0, 1.

Therefore, dimH i
I(W ) ≤ 1, for i = 0, 1. Consequently, for all i ∈ N0, we

have dimH i
I(W ) ≤ 1 and the R-module ExtiR(R/I,W ) is minimax. Now, by

induction on n we prove that the R-module Hn
I (W ) is I-cominimax for all

n ∈ N0.
For n = 0, by Lemma 3.2, the R-modules HomR(R/I,ΓI(W )) and

Ext1R(R/I,ΓI(W )) are minimax. Therefore, by Lemma 3.3, the R-module
ΓI(W ) is I-cominimax.

Suppose, inductively, that n > 0 and the result has been proved for smaller
values of n. Then by Lemma 3.2, the R-modules HomR(R/I,Hn

I (W )) and
Ext1R(R/I,Hn

I (W )) are minimax and so by Lemma 4.3 the R-module Hn
I (W )

is I-cominimax. This completes the inductive step.
According to [11, Remark 2.2.7], there is an exact sequence

0 −→ R −→ DI(R) −→ H1
I (R) −→ 0,

which induces the exact sequence

TorR1 (N,H1
I (R))

f−→ N
g−→ N ⊗R DI(R) −→ N ⊗R H1

I (R) −→ 0,

whence, we get the following exact sequence
0 −→ im g −→ N ⊗R DI(R) −→ N ⊗R H1

I (R) −→ 0. (4.10.1)

Since
Supp im f ⊆ SuppTorR1 (N,H1

I (R)) ⊆ SuppH1
I (R) ⊆ V (I),

it follows that ker g = im f ⊆ ΓI(N) and hence
im g/ΓI(im g) ≃

(
N/ker g

)
/ΓI(N/ker g)

=
(
N/ker g

)
/
(
ΓI(N)/ker g

)
≃ N/ΓI(N).
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Thus,

H i
I(im g) ≃ H i

I(im g/ΓI(im g)) ≃ H i
I(N/ΓI(N)) ≃ H i

I(N), for all i ∈ N.

Moreover, for each integer i ≥ 2, from the exact sequence (4.10.1) we get an
exact sequence

H i−1
I (N ⊗R H1

I (R)) −→ H i
I(im g) −→ H i

I(W ) −→ H i
I(N ⊗R H1

I (R)),

which yields the isomorphism H i
I(im g) ≃ H i

I(W ), for each i ≥ 2. (Note
that for each j ∈ N we have Hj

I (N ⊗R H1
I (R)) = 0, because the R-module

N ⊗R H1
I (R) is I-torsion). So, we have H i

I(W ) ≃ H i
I(im g) ≃ H i

I(N), for all
i ≥ 2. Now, we are in a position to deduce that for all i ≥ 2, the R-module
H i

I(N) is I-cominimax. Because the R-module H0
I (N) is finitely generated

with support in V (I), it follows that H0
I (N) is I-cominimax. Therefore, for

each integer i ̸= 1 the R-module H i
I(N) is I-cominimax. Hence, by [23,

Proposition 3.11] the R-module H1
I (N) is I-cominimax too. This means that

I ∈ I ′(R). □
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موضعی کوهمولوژی مدول های بودن هم مینی ماکس بررسی

اعظمی٢ جعفر و قاسمی١ قادر

ایران اردبیل، اردبیلی، محقق دانشگاه علوم، ١,٢دانشکده

-R که است شده داده نشان مقاله، این در باشد. R نوتری و جابجایی حلقه از ایده آلی I کنید فرض
هم مینی ماکس -I مدول i ≥ ٠ هر و M متناهی تولید با مدول -R هر برای H i

I(M) مدول های
یک مساوی یا کمتر بعد با I-هم مینی ماکس مدول i ≥ ٢ هر برای H i

I(R) R-مدول های اگر هستند
باشد. می ۶ منبع در پور بهمن از نتایجی مشابه موارد این باشند.

نوتری. حلقه موضعی، کوهمولوژی ایده آل، تبدیل کوهمولوژیکی، بعد هم متناهی، مدول کلیدی: کلمات
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