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ON THE COMINIMAXNESS OF LOCAL COHOMOLOGY MODULES

G. Ghasemi* and J. A’zami

ABSTRACT. Let I be an ideal of a commutative Noetherian ring R. It is shown that
the R-modules Hi(M) are I-cominimax, for all finitely generated R-modules M and
all i € Ny, if the R-modules Hi(R) are I-cominimax with dimension not exceeding 1,
for all integers ¢ > 2. This is an analogue result of Bahmanpour in [6].

1. INTRODUCTION

Throughout this paper, R denotes a commutative Noetherian ring (with
non-zero identity) and I will denote an ideal of R. The symbol Z denotes
the set of integers; in addition, N (respectively Ny) will denote the set of
positive (respectively non-negative) integers. For each R-module L, the set of
minimal elements of Assp L with respect to inclusion is denoted by mAssp L;
also, Asshp L denotes the set {p € Assp L : dim R/p = dim L}. We denote
Supp R/I ={p € SpecR: p D I} by V(I).

For an R-module M, the ith local cohomology module of M with support
in V(I) is defined as:

Hj(M) = lim Exths(R/I", M).
I ﬁ R
We refer the reader to [11] or [19] for more details about local cohomology.

Recall that for an R-module M, the notion cd(I, M), the cohomological
dimension of M with respect to I, is defined as:

cd(I, M) =sup{i € Ny : Hiy(M) # 0}

and the notion ¢(I, M), which for the first time was introduced by Hartshorne,
is defined as:

q(I, M) =sup{i € Ny : Hy(M) is not Artinian},
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164 GHASEMI AND A’ZAMI

with the usual convention that the supremum of the empty set of integers is
interpreted as —oo. These two notions have been studied by several authors
(see [4, 7, 14, : ).

In the sequel the symbol E (R, I)com denotes the category of all /-cominimax
R-modules and €Y(R,I).m denotes the category of all R-modules
M € € (R,[)eom such that dimM < 1. An R-module M is called a-
cominimax if the support of M is contained in V(a) and Ext’%(R/a, M) is
minimax for all ¢+ > 0. The concept of the a-cominimax modules is intro-
duced in [2]. Also, throughout this paper, let .#’(R) denote the class of
all ideals I of R such that Hi(M) € G (R, I)com, for all finitely generated
R-modules M and all 7 € Nj.

Recall that the I-transform functor, denoted by Dj(—) is defined as:

D;(—) = lim Hompg(I", —).
(=) g R( )
In general, the R-module D;(R) has an R-algebra structure (see |11, Exercise
2.2.3]). In fact, with this structure D;(R) is a commutative ring with identity.
Also, it is well known that if D;(—) is an exact functor then D;(R) is a finitely
generated R-algebra. But, in general we don’t know when the ring D;(R) is
Noetherian.

Throughout this paper, for each pair of the sets X and Y, the expression
X C Y means that X is a subset of Y and the expression X C Y means
that X C Y and X # Y. For an Artinian R-module A, the set of attached
prime ideals of A is denoted by Attz A. Also, for any non-nilpotent element
x of R and any R-module M the localization of M at the multiplicatively
closed subset S = {1, 2? :z:3 .} of R is shown by M,. For each ideal
I of a Noetherian ring R and each R-module M, we denote the submodule
U, 21 (0 :as I™) of M by T'y(M). Furthermore, for any ideal I of a commutative
ring T, we denote the set of minimal prime ideals over I by Min I. Also,
we show set of all maximal ideals of a ring 7" by Max(7T"). Finally, for any
ideal J of T, the radical of J, denoted by Rad(J), is defined to be the set
{r € T : 2" € J for some n € N}. For any unexplained notation and
terminology we refer the reader to [11, 12, 21].

2. PRELIMINARIES

In this section we establish some technical results which will be used later.
We start this section with some auxiliary lemmas.

Lemma 2.1. For an ideal I of a ring R, the following statements hold:
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(1) €1 (R, I)cof is an Abelian category.

(2) Suppose that M is an R-module with Supp M C Max(R) NV (I). If
the R-module (0 :p; I) is finitely generated then the R-module M is
Artinian and /-cofinite.

Proof. See [10, Theorem 2.7] and [22, Lemma 2.1]. O

Let R be a Noetherian ring and I be an ideal of R. Recall that a subcate-
gory .# of the category of all R-modules is said to be a Serre category if in
any short exact sequence of R-modules and R-homomorphisms, the middle
module is in .# if and only if the two other modules are in .#. Let €1(R, I)
be the Serre category of all I-torsion R-modules M with dimM < 1. We
want to emphasize at the outset, that two categories €*(R, I) and € (R, I )cof
are different. In fact always €' (R, I).om is a proper subcategory of €*(R, I).
Now, for any R-module N, we define the notation c!(I, N) as the greatest
integer 7 such that HY(N) is not in €(R, I) if there exist such i’s and —oco
otherwise. Finally, we recall that in [1] the notion ¢(/, N) is defined as the
greatest integer i such that H:(N) is not an Artinian [-cofinite module if
there exist such ¢’s and —oo otherwise.

Lemma 2.2. Let I be an ideal of a ring R. Assume that M and N are
two finitely generated R-modules such that Supp M C Supp N. Then the
following statements hold:

(1) (I, M) < cl(I,N).

2) q(I, M) < q(I, N).

(3) g1, M) < U N).

(4) ed(I, M) < cd(I,N).

Proof. (1) Considering the fact that €1(R,I) is a Serre category, the as-
sertion follows immediately from [/, Theorem 2.3].
(2) See [14, Theorem 3.2].
(3) See [1, Theorem 2.6].
(4) See [15, Theorem 2.2].
[

The following result is needed in the proof of Theorem 3.10.

Lemma 2.3. Let I, J be two ideals of a ring R and M be an R-module with
JM =0 and Supp M C V(I). Then M is I-cominimax (as an R-module) if
and only if M is (I + J)/J-cominimax (as an R/J-module).

Proof. The assertion follows by applying a method similar to the proof of [13,
Proposition 2. O
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Lemma 2.4. (See [!, Theorem 4.10]) Let I be an ideal of a ring R with
q(I,R) < 1. Then, I € (R).

3. RESULTS

The main goal of this section is to prove Theorem 3.10. But, first we need
some useful lemmas.

Lemma 3.1. Let I be an ideal of a ring R such that € (R, I)cm is Abelian.
Then the following statements hold:

(1) Suppose that
X x L i I i
is a complex such that X’ € C (R, I)com for all i € Z. Then for each
i € Z the i™™ cohomology module H'(X*®) is in € (R, I)com.-
(2) Assume that M € (R, I).om and N is a finitely generated R-module.

Then for each i € Ny, the R-modules Tor? (N, M) and Ext’(N, M) are
in € (R, I)com-

Proof. (1) The assertion follows easily from the definition.

(2) Since N is finitely generated it follows that NV has a free resolution with
finitely generated free R-modules. Now the assertion follows from applying
part (i) and computing the R-modules Tor®(N, M) and Ext’% (N, M) by this
free resolution. ]

Lemma 3.2. (See [I, Lemma 2.3]) Let I be an ideal of a ring R and .# be
a Serre subcategory of the category of R-modules. Let n € Ny and M be
an R-module such that Exth(R/I, Hj(M)) € 4, for all 0 < i < n and all
j € Np. If the R-modules Ext,(R/I, M) and Ext%"(R/I, M) are in .4, then
the R-modules Hompg(R/I, H}(M)) and Exth(R/I, H}(M)) are in . .

Lemma 3.3. (See [10, Proposition 2.6]) Let I be an ideal of a Noetherian

ring R and M be an R-module such that dim M < 1 and Supp M C V().
Then the following statements are equivalent:

(1) M is I-cominimax.
(2) The R-modules Homp(R/I, M) and ExtL(R/I, M) are cominimax.

Lemma 3.4. (See [3, Corollary 2.10]) Let I be an ideal of a ring R with
q(I,R) < 1. Then € (R, I)qy is Abelian.

Lemma 3.5. (See [, Theorem 3.11]) Let I be an ideal of a ring R such that
the I-transform functor D;(—) is exact. Then D;(R) is a flat R-algebra.
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The following lemma is needed in the proof of Proposition 3.9.

Lemma 3.6. (See [0, Lemma 4.6]) Suppose that I is an ideal of a ring
R such that I';(R) = 0 and ¢(I,R) < 1. Let N be a finitely generated R-
module. Then the R-modules Torf(N , Dr(R)) are Artinian and [-cofinite, for
all i € N, and the R-modules Ext},(R/I, N @ D;(R)) are finitely generated,
for all j € Nj.

Lemma 3.7. (See [3, Lemma 2.4]) Let (R, m) be a local ring and A be an
Artinian R-module.  Suppose that z is an element in m such that
V(zR) N Attg A C {m}. Then the R-module A/xA has finite length.

Lemma 3.8. (See [8, Lemma 2.5]) Let (R, m) be a local ring and A be an
Artinian R-module. Suppose that [ is an ideal of R such that the R-module
Hompg(R/I, A) is finitely generated. Then V(1) N Attg A C V(m).

In [25] H. Zoéschinger introduced the interesting class of minimax modules,
and in [25, 26] he has given many equivalent conditions for a module to be
minimax. The R-module N is said to be a minimazx module, if there is a
finitely generated submodule L of N, such that N/L is Artinian. Hence,
the class of minimax modules includes all finitely generated and all Artinian
modules. Also, from [9, Lemma 2.1] we know that the category of minimax
modules is a Serre category. It was shown by T. Zink [24] and by E. Enochs
[16] that a module over a complete local ring is minimax if and only if it is
Matlis reflexive. Finally, we recall that the arithmetic rank of an ideal J in
a commutative Noetherian ring R, denoted by ara(.J), is the least number of
elements of J required to generate an ideal which has the same radical as J,
ie.,

ara(J) =min{n € Ny : 3z1,...,2, € J with
Rad((xy,--- ,x,)R) = Rad(J)}.

The following proposition plays an important role in the proof of Theorem
3.10.

Proposition 3.9. Let [ be an ideal of a ring R such that I';(R) = 0 and
HYR) € €' (R, I)com, for all integers i > 2. Then, for each finitely generated
R-module N and each integer i € N, the R-module Tor®(N, D;(R)) is I-
cominimax and the R-modules Ext}(R/I, N @ D;(R)) are minimax, for all
j € Np.
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Proof. If q(I, R) < 1 then the assertion follows from Lemma 3.6. So, we
may assume that ¢(I, R) > 2. Then by applying Lemma 2.1, from the hy-

pothesis H}](I’R)(R) € €Y(R,I).om we can deduce that dim H}](I’R)(R) = 1.(If

dim H?(I’R)(R) = 0, then Supp H}I(I’R)(R) C Max(R) and since 0 gt gy A
I

is minimax, it follows that 0 : . p [ is Artinian and so H}J(I’R) (R) is
I

R
Artinian which is a contradiction). .

Suppose that N is a finitely generated R-module. In order to prove the
assertion, we use induction on t = ara(/ + Anng N/ Anngp N). If t = 0, then
it follows from the definition that Supp N C V(I). By the hypothesis the R-
module H:(R) is I-cominimax, for all integers i > 2. Also, by the assumption
we have HY(R) ~ T';(R) = 0. Therefore, for each i # 1 the R-module H:(R)
is [-cominimax. Hence, by [23, Proposition 3.11] the R-module H}(R) is
I-cominimax too. Therefore, by [23, Corollary 2.5], for each i € Ny the R-
module Tor?(N, H}(R)) is minimax. On the other hand, the short exact
sequence

0 — R — D;(R) — H}(R) — 0,
induces the long exact sequence
. — Torf(N, R) — Torf(N, D;(R)) — Torl(N, H}(R))
—+ N®r R — N®p D;(R) — N ®g H{(R) — 0.

As Torf(N, R) = 0, for each i € N, it follows the R-module Tor?(N, D;(R))

is minimax, for all 7 € Ny and
Supp Tor?(N, D;(R)) C Supp Tor®(N, H}(R)) C V(I), for all i € N.

Since N ®p Dy(R) is minimax, it follows that Extl,(R/I, N ®x Dr(R)) is
minimax for all 5 € Ny.Thus the assertion holds for ¢ = 0.

Suppose, inductively, that ¢ > 0 and the result has been proved for all
smaller values of ¢. Since Anng N C Anng N/T';(N), it follows that

ara(l + Anng N/T';(N)/ Anng N/T';(N)) < ara(l + Anng N/ Anng N).
On the other hand, the short exact sequence
0— Ty (N)— N— N/T/(N)—0,
induces the long exact sequence
. — Torf(I';(N), D;(R)) — Tori(N, D;(R))
— Torf(N/T;(N), D;(R)) — I't(N) ® Di(R) — N ®p D;(R)
— (N/T'1(N)) ®g Di(R) — 0.
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Consequently, applying the inductive assumption for the I-torsion finitely
generated R-module I';(N) and replacing N by N/I';(N), we can make the
additional assumption that I';(N) = 0. Then, by [I 1, Lemma 2.1.1] we have
I' & Upepssy v b Next, let v € N and

Q, = Uf;rll Supp Tor®(N, D;(R)).

We claim that Q, C Supp @;-, Hi(R). Assume that the opposite holds.
Then there is an integer 1 <[ < v + 1 such that

Supp Tor}*(N, Di(R)) Z Supp @:°, Hi(R).

Choose an element p € Supp Tor/'(N, D7(R)) such that p & Supp P52, Hi(R).
Then, H}RP(RP) ~ (Hi(R)), = 0, for all integers ¢ > 2. Thus, by [l1,
Lemma 6.3.1] the I Rj-transform functor Drp, (—) is exact and by Lemma
3.5, Dig,(Ry) is a flat Ry-algebra. Hence

(Tor{'(N, Di(R))), = Tor,”(Ny, Dig, (Ry)) = 0,

which is a contradiction.

By [I1, Corollary 3.3.3], we know that cd(/, R) < ara(l) < co. Since by
the assumption H:(R) € €1(R, I)com, for each integer ¢ > 2, it follows that
the set

U o= | JAssg Hi(R),
i=2
is finite, because for all ¢ > ara(l), Hi(R) = 0 and also for all i > 2, H.(R)
is I-cominimax and therefore Assg Hi(R) is finite. Set

A:={peQ, : dimR/p=1}

Then it is clear that A C Asshp @, Hi(R) C ¥ and A is a finite set.
Furthermore, by using the assumption HY(R) € € (R, I)com, for each integer
i > 2, and applying Lemma 2.1, it is easy to see that ¢(I Ry, Ry) < 1, for all
p € A (for this we show that for alli > 2, and p € A the Ry,—module (H}(R)),
is Artinian. Let H := HY(R) for all i > 2 and E := Homg(R/I, H) . Since
H is I-cominimax, it follows that there exists a finitely generated submodule
T of E such that E/T is Artinian. Now from the fact that dim R/p = 1,
we conclude T, ~ E, and so the Ry,-module £y, is of finite length and H,, is
Artinian for all ¢ > 2. This shows that ¢(/ Ry, R,) < 1). Thus by Lemma 3.6,
the Ry,-module Torf"(Np,D[Rp(Rp)) = (Tor;'(N, D(R)))p, is Artinian and
I Ry-cofinite, for all p € A and all i € N. Assume that A = {p;,...,p,} and
set
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= Uity Uj_1{a € Spec R | 4R, € Attp, (Tor{(N, Di(R)))y,}.

By Lemma 3.8 we have V(I Ry;) N Attg, (Tor{'(N, Dr(R)))p, C V(p;Ry,), for
alll <i<wv+landalll<j<n,. Hence ANV(I) C A. Also, since
for each q € A we have qR,, € AttRp (Tor™(N, D;(R )))p,, for some integers
1<i<v+land 1< 5 <n,it followsthat

(Anng N)Ry, C Anng, (Tor;'(N, Dr(R)))p, C qRy,,

which implies Anng N C q. Therefore, A C Supp N.
On the other hand, by the definition there exist elements v, ...,y € I, such
that

Rad(I + Anng N/ Anngp N) = Rad((y1, ..., yr) R + Anng N/ Anng N).
By the Prime Avoidance Theorem,

1 Z (quA\V )q) U (UpeAssRN p>>

which shows that
(1, y) R+ Annp N & (quA\V(I) q) U (UpeAssRNp) .

But, Anng N C (ﬂqu\V(I) q) N (ﬂpeASSRNp) , and consequently

(Y1, y) R L (quA\V(I) Cl) U (UpeAssRNp)'

Therefore, by [21, Exercise 16.8] there is a € (y2, ..., y:) R such that

yita¢ (quA\V(I) Cl) U (UpeAssRNP) :
Let x :=y; +a. Then x € [ and
Rad(I + Anng N/ Annp N) = Rad((x, ya, ..., y¢) R + Anng N/ Anng N).
Now it is easy to see that

Rad(I + Annp N/xN/ Anng N/xN)
= Rad((y2, ..., y) R+ Anng N/xN/ Anng N/xN),

and hence ara(l + Anng N/xN/Anng N/xN) < t — 1. The short exact
sequence

0— N N— N/zN — 0,
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induces an exact sequence
Torf (N, D;(R)) == Torf (N, D;(R)) — Torf |(N/xN, Dr(R))
— Torf(N, D;(R)) - Torf(N, D;(R)),

for all + € Ny. Consequently, for each 0 < ¢ < v, we have the short exact
sequence,

0 — Usy1 — TorfL (N/aN, Dr(R)) — (0 o (n.py(ry) ©) — 0,

where U, := Tor® (N, Dr(R))/x Torf ; (N, D;(R)).

By the inductive assumption, the R-modules Tor?,(N/zN, D;(R)) are I-
cominimax, for all i« € Ny. Also, by Lemma 3.7, obviously the R, -module
(Uig1)p, is of finite length, for all integers 1 < j < n and 0 < i < v, because
if ¢R, € Att Tor’ (N, Dr(R)), NV (xR,) then x € ¢, ¢ € A and I C ¢. Also
the Rp,-module Torf"(Np,D[Rp(Rp)) = (Tor;'(N, D(R)))p, is Artinian and
I Ry-cofinite. As I C g, so

Torﬁl(N, D1(R))p/qR, Torfl—l(Nv Di(R))y

is of finite length which shows that qR, € {pR,} and so there exists a
finitely generated submodule U; 1 ; of Uy 1 such that (Uiy1)y, = (Uig1,5)p,- Set

1 =Ugi1+ -+ Ugjiy, forall 0 <i <wv. Then for each 0 < i <w, U/,
is a finitely generated submodule of U, 1 such that

Suppp Ui /Ui 11 € Qo \ {p1, ... pu} € Max R.
For each 0 < i < v, set W,y := Torf,(N/xN, Dr(R)). Then, for each
0 <1 < w, there is an exact sequence
0 —> Uit1 /Uiy — Wi/ Wiy — (0 “Tor(N,D;(R)) z) — 0,

for some finitely generated submodule W}, ; of W; .

We will show that U, 1 is a minimax R-module, for all 0 < ¢ < v. To do
this, we notice that for each 0 <14 < v, W1 /W/,, is I-cominimax and hence
Homp(R/I,U;+1/U}, ;) is a minimax R-module. But

Supp U;41/Uj,; € Max R

and Uj41/U] ., is I-torsion, and therefore the R-module U; 1 /U is Artinian.
That is U;41 is a minimax R-module. Consequently, for each 0 < < v, the
R-module (0 “Tor®(N,D;(R)) x) is also I-cominimax. Moreover, from the exact
sequence

0 — (N®g Dr(R))/x(N ®r Di(R)) — (N/xN)® D;(R) — 0,
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and inductive assumption, it follows that the following R-module
Extp(R/1, (N @ Di(R))/z(N ©r Di(R)))
is minimax, for all j € Ny. Now, since x € [ and the R-modules
(0 “Tor®(N,D;(R)) z), Torj*(N, Di(R))/x Tor; (N, Di(R))

are [-cominimax, for all 1 < i < v, from [23, Corollary 3.4] it follows that
Torf(N, D;(R)) is I-cominimax, for all 1 < i < v. Furthermore, since the R-
module (0 :yg,p,(r) *) is I-cominimax and the R-module Ext},(R/I, (N ®g
Di(R))/z(N ®g Dr(R))) is minimax, for all j € Ny, by applying the method
which is used already in the proof of [23, Corollary 3.4], it can be seen that
the R-module Ext},(R/I, N ®p D(R)) is finitely generated, for all j € N.

Finally, as v € N is an arbitrary integer, it is concluded that the R-module

Tor (N, D;(R)) is I-cominimax, for all i € N. This completes the inductive
step. [

Now, we are ready to establish the second main result of this paper.

Theorem 3.10. Let [ be an ideal of a ring R such that H{(R) € €Y(R, I)com
for each integer ¢ > 2. Then I € '(R).

Proof. Let R := R/T(R) and I = IR. We know that if I € .#’(R), then
I € J'(R). Conversely, if I € #'(R) then for each finitely generated R-
module M we have JM C I'j(M), where J := [';(R) and hence for each
i € Nwe have Hy(M) ~ Hy(M/JM) ~ H.(M/JM). Thus, from Lemma 2.3
we get I € #'(R). On the other hand, for each i > 1 we have

Hj(R) ~ H}(R) ~ Hi(R).

Hence, by using the Lemma 2.3 we can see that Hi(R) € €1(R, I)com, for all
i > 2, if and only if H5(R) € €' (R, I)com, for all i > 2. So, by passing to the
quotient ring R, we can make the additional assumption that I';(R) = 0.

Now, let NV be a finitely generated R-module and set W := N ®p D;(R).
From the assumption, H}(R) € € (R, I)om for all i > 2, by Proposition 3.9
it follows that the R-module Ext},(R/I, W) is minimax, for all j € No.

By the assumption c¢!(I, R) < 1 and Lemma 2.2, for each finitely generated
R-module U we have ¢}(I,U) < c!(I, R) < 1. Since by [11, Theorem 3.4.10],
for each i € Ny, the local cohomology functor H:(—) commutes with direct

limits, and W can be viewed as the direct limit of its finitely generated
submodules, we have ¢! (I, W) < 1 and dim H}(W) < 1, for all integers i > 2.
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Let p be a prime ideal of R with dim R/p > 2. As by the assumption the
R-module HY(R) is in €' (R, I), for all i > 2, we see that
Hip (Ry) =~ (H}(R)), = 0, for all i > 2.
Thus, by [I1, Lemma 6.3.1] the IR,-transform functor Drp (—) is exact.
Hence, by applying [1 1, Exercise 6.1.8] we conclude that
Wp = (D[(R) QR N)p ~ DIRP(RP) ®Rp Np ~ DIR;:(NP)'
Thus, by using [11, Corollary 2.2.8] we achieve the isomorphisms
(H}(W))p = H}RP(WP) = H}RP(DIRP(NP)) =0, fori=0,1.

Therefore, dim H{(W) < 1, for i = 0,1. Consequently, for all i € Ny, we
have dim Hi(W) < 1 and the R-module Ext’(R/I,W) is minimax. Now, by
induction on n we prove that the R-module H} (W) is I-cominimax for all
n € Np.

For n = 0, by Lemma 3.2, the R-modules Hompg(R/I,I';(W)) and
Exty(R/I,T7(W)) are minimax. Therefore, by Lemma 3.3, the R-module
I';(W) is I-cominimax.

Suppose, inductively, that n > 0 and the result has been proved for smaller
values of n. Then by Lemma 3.2, the R-modules Homg(R/I, H}(W)) and
Exty(R/I, HY(W)) are minimax and so by Lemma 4.3 the R-module H}(W)
is I-cominimax. This completes the inductive step.

According to [11, Remark 2.2.7], there is an exact sequence

0 — R — D;(R) — H;(R) — 0,
which induces the exact sequence
Torf(N, H}(R)) -5 N -4 N @5 Di(R) — N @5 H}(R) — 0,
whence, we get the following exact sequence
0 —img — N ®g Dr(R) — N ®p Hj(R) — 0. (4.10.1)
Since
Supp im f C Supp Torl (N, H} (R)) C Supp H; (R) C V(I),

it follows that ker g = im f C I';(N) and hence

img/T'7(img) ~ (N/ker g) /T';(N/ker g)

= (N/kerg)/(I'1(N)/ker g)
~ N/T;(N).
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Thus,
Hi(img) ~ Hi(im ¢g/T';(im g)) ~ HY{(N/T;(N)) ~ Hi(N), for all i € N.

Moreover, for each integer ¢ > 2, from the exact sequence (4.10.1) we get an
exact sequence

Hy '(N ®g H[(R)) — Hi(img) — Hj(W) — H(N ®r H[(R)),

which yields the isomorphism Hi(img) ~ HYW), for each i > 2. (Note
that for each j € N we have H}(N @z H}(R)) = 0, because the R-module
N ®g H}(R) is I-torsion). So, we have H{(W) ~ Hi(im g) ~ H(N), for all
1 > 2. Now, we are in a position to deduce that for all 7 > 2, the R-module
HY(N) is I-cominimax. Because the R-module HY(N) is finitely generated
with support in V(I), it follows that HY(N) is I-cominimax. Therefore, for
each integer i # 1 the R-module H}(N) is [-cominimax. Hence, by [23,

Proposition 3.11] the R-module H}(N) is I-cominimax too. This means that
I € J'(R). O
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