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A NOTE ON NONLINEAR MIXED *JORDAN TYPE DERIVATIONS ON
*~ALGEBRAS

M. A. Siddeeque*, R. A. Bhat and A. H. Shikeh

ABSTRACT. Let S be a x-algebra containing the unity and a nontrivial projection.
In the present paper, we show that under certain restrictions if a map ¥ : S — S
satisfies U(LoNeD) = U(L)oNeD+LoU(N)eD+LoNeU(D) forall L,N,D € S,
then W is an additive *-derivation.

1. INTRODUCTION

Let § be a x-algebra with unity over the field C of complex numbers. For
LNeS les LoN=LN+NL LeN=LN+NL* LayN=LN+ANL*
and L o N = L*N 4+ N*L denote Jordan product, Jordan x-product, skew
A-Jordan product and bi-skew Jordan product of L and N respectively, where
A € C. An additive map ¥ : § — § is said to be an additive derivation if
VU(LN) = W(L)N + LY(N) for all L, N € §. Moreover, if W(L*) = U(L)*
holds for all L € S, then WV is called an additive *-derivation. Let ¥ : § — S
be a mapping (not necessarily additive). Then W is called a nonlinear Jordan
x-derivation if

V(LeN)=V(L)e N+ LeV(N)

holds for all L, N € §. A map (not necessarily additive) ¥ : § — § is said
to be a nonlinear Jordan triple *-derivation if

V(LeNeD)=VU(L)eNeD+ LeVU(N)eD+ LeNeW(D)

holds for all L, N, D € §. Also a map (not necessarily additive) ¥ : § — S
is said to be a nonlinear mixed Jordan triple derivation if

V(EoKeD)=V(F)oKeD+ FoV(K)eD+ FEoKeWVU(D)
holds for all £, K, D € S, (for more details see [13]).
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Throughout the text, a map (not necessarily additive) ¥ : & — § is called
a nonlinear mixed (¢, ®)-Jordan triple derivation if

UV(LoNeD)=VU(L)oNeD+LoW(N)eD+ LoNeW(D)

holds for all L, N, D € S.

From the past few years, the evaluation of Jordan product, Jordan -
product, skew Jordan product, bi-skew Jordan product, mixed Lie and Jordan
triple products have attracted the attention of many algebraists (see refer-
ences [1, 2], [4]-[11], [15]-[19]). Recently, Darvish et al. [3] showed that if S
is a prime x-algebra and ¥ : § — S is a map such that

V(LoNoD)=V(L)oNoD+LoV(N)oD+ LoNoW(D)

holds for all L, N, D € S, then ¥ is an additive %-derivation. Taghavi et al.
[14] showed that if S is a prime *-algebra and ¥ : § — S is a map satisfying

\I/(L<l/\N<1/\D):\I/(L)QANQ/\D—FLQ/\\IJ(N)<1)\D—|—L<1)\N<1/\\IJ(D)

for all L, N, D € S, where || # 0,1, then V¥ is additive. Moreover, if W(7) is
self-adjoint, then U is an additive x-derivation. Liang et al. [12] studied the
structure of nonlinear mixed Lie triple derivable mappings on factor von Neu-
mann algebras and proved that every nonlinear mixed Lie triple derivation
on factor von Neumann algebra is an additive x-derivation. This result was
extended by Zhou et al. [20] to prime *-algebras and they obtained the same
conclusion. Very recently, Rehman et al. [I13] showed that every nonlinear
mixed Jordan triple derivation on x-algebra is an additive x-derivation.

Inspired by the results mentioned above, in this paper we characterize the
form of nonlinear mixed (¢, e)-Jordan triple derivations on x-algebras. Pre-
cisely, we show that under certain conditions every nonlinear mixed (¢, e)-
Jordan triple derivation on x-algebras is an additive %-derivation.

2. MAIN RESULT

The following is our main result.
Theorem 2.1. Let S be an unital *-algebra with a non trivial projection Py

satisfying

NSP, =0 implies N =0 (2.1)
and
NS(I — Py) =0 implies N =0, (2.2)
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where N € §. Suppose that a map V : S — S satisfies the condition
V(ILoNeD)=VU(L)oNeD+LoV(N)eD+ LoNeW(D)
for all LN, D € §. Then V is additive. Moreover, if V(Py) is self-adjoint,

then ¥ 1s a x-derivation.

Proof. Let P, =1 — Py and §;; = PSP, for 7,j = 1,2. By Peirce decomposi-
tion of §, we have § = 11 @ S12 ® S21 @ Sa2. Note that any L € S can be
written as L = Lyy + L12 + Loy + Log, where L;; € S5 for 4,5 = 1,2. Now to
show the additivity of ¥ on S, we use the above partition on S and establish
some claims that will show that ¥ is additive on each §;; for 7,7 = 1,2. Also
the following multiplicative relations are satisfied:

() SijSi € Sy (4,7,1 = 1,2).
(ii) SyiSu=0if j #k. (k=1,2).
]

We begin with the following lemmas, which may be used in the proof of
the above theorem.

Lemma 2.2. ¥(0) = 0.
Proof. It is clear that
VU(0)=PY(0c0e0)=TV(0)c0e0+0cP(0)e0+0c0eW(0)=0. H
Lemma 2.3. Let L1y € S1o and Loy € Sy1. Then

U(Lia+ Loy) = VU(Lig) + ¥(La).

P?“OOf. Let K = \P(ng -+ Lgl) — \I/(ng) — \P(Lgl) Since L12 <>P2 ® P1 = 0 and
invoking Lemma 2.2, we have

U((Lig+ Loy)oPye P) =W (LisoPye P)+ V(Lo Pye P)
=U(Lp)oPre P+ LisoV(P)eP
+Lipo PyeU(P)+ V(Lo ) o Pre Py
+Log oW (Py) @ P+ Loy o Pye U(P).
On the other hand, we have
U((Lig+ Loy) o Pye P) =V(Lig+ Loyj) o Pre P
+(Lig+ Loy) oV (P) e P
+(Lig + Loy) o Py e W(Py).

From the last two relations, we infer that K ¢ P, ¢ P, = 0. It follows that
P,KP, + PLK*P, = 0. Multiplying the previous relation by P; from right,
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we get PobK P, = 0. Analogously, we can show that PLK P, = 0.
Now, again (P, — P») © I @ Ly; = 0 and invoking Lemma 2.2, we have

V(P —P)ole(Lig+ Lo)) =V(PL— P2)oleL)
+U (P, — P)oleLy)
=VU(PL—P)olel
+(Pr— P)oV(l)e Lo
+(Pr— P) ol eW(Lo)
+U (P, — P)ol ey
+(P,— P)oWV(l)e Ly
+(P,— P) ol eV (Ly).
On the other hand, we have
V(P —P)ole(Lig+ Lo)) =V(P— Py)ole(Lis+ Loy)
+(P,— P)oU(I)e (Lig+ Lop)
+(P,— P) ol eV (Lis+ Lop).
From the last two relations, we find that (P, — P») o[ ¢ K = 0, ie,
2PLK — 2P, K + 2KP, — 2KP, = 0. Multiplying the previous relation by
P, from both left and right, we get P, K P, = 0. Analogously, multiplying the

previous relation by P, from both left and right, we get P, K P, = 0. Hence,
K = 0, i.e., ‘11(L12 + L21) = \IJ(ng) + \P(Lgl) L]

Lemma 2.4. For every L1y € S11, L1o € Si9, Lo1 € So1 and Loy € Soo, we
have

(4) W(L11 + Lig + La1) = W(Ly) + ¥(L1a) + W(La).
(ZZ) \D(ng + Loy + LQQ) = \P(ng) + \I/(Lgl) + \II(LQQ)

Proof. Let K = V(L1 + Lig+ Loy) —W(L11) —W(Lis) — ¥(Lsy). On one hand,
we have

U((Lyy+ Lo+ Lop) o PLe Py) =W (Lyy+ Lig+ Loy) o Pre Py
+(Lii + L+ La) oV (P) @ Py
+(L11 + Lia+ Loy) o P 0 U(P).
On the other hand, invoking Lemma 2.3 and since Li; o P, @ P, = 0, we have
V(L + Ligs+ Lop) o PLe Py) =U(Lj1oPrePy)+V(Lipo Prel)
+WU(Loy o P e Py)
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= \D(Lll) < P1 o PQ + L11 < \If(Pl) ] P2
+Li10 P e \I/(PQ) + \I/(ng) oPle P,
—|—L12<>\IJ(P1)OP2—|—L12<>P1.\I/(PQ)
+\IJ(L21) < P1 ] P2 + L21 <& \I/(Pl) o P2
—|—L21 < Pl ® \I](PQ)
From the last two relations, we find that K ¢ P, ¢ P, = 0. This gives us
P KP,+ P,K*P, = 0. Multiplying the last relation by P, from right, we find

that PLK P, = 0. Analogously, we can show that P, K P, = 0.
Since

1 I
§O(P1 —P2)0L12 = §O(P1 —P2>0L21 = 0.
Now invoking Lemma 2.2, we get

I
V(=0 (P, — P;) e (L1 + Lo+ La))

2
I 1 1
= \If(§<> (P1 — PQ) [ ) LH) + \IJ(EO (Pl — Pg) [ L12) + \11(5 <o (P1 — PQ) ° L21)
I 1
= \If(§) o (Pl — Pg) o L1+ E O \If(Pl — PQ) o L
1 I
—|—§ <& (P1 — PQ) ° \IJ(LH) + \IJ(§) O (Pl — PQ) o ng

I I
+§<>\II(P1—P2).L12+§<>(P1_PQ).\I](L12)

I 1
+\II(§) < (P1 — PQ) ° L21 + 5 < \If(Pl — P2) ° L21

+£ o (P1 — PQ) ° \I/<L21>

2
On the other hand, we have
1
\11(5 o (P — P) e (L + Lig+ Lap))
1
= (§)O(P1_PQ).(L11+L12+L21)

I
+5oU(P — Py) e (Lu + Liz + Lan)

I
+§ < (Pl — PQ) ° \IJ(LH + L12 + LQl).
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From the last two relations, we obtain % o (P, — P») ¢ K =0, which yields
Plel = PQKPQ =0. Hence, K=0 i.e.,

W(Ly + L+ Lo1) = V(L11) + (L) + V(La).
Analogously, we can show

W(Lyg + Loy + Log) = V(L) + VU (Loy) + W(Lao).

]
Lemma 2.5. For any L;; € S;;,1 <1,j <2, we have
2 2
(Y Li) =) W(Ly)
1,5=1 1,7=1

PT’OOf. Let K = \IJ(L11—|—L12+L21 —|‘L22) — \I/(Lll) —\P(ng) —\IJ(L21) — \I/(LQQ)

On one hand, we have

U(loPe(Lyy+ Lig+ Loy + Lag)) =V(I)o Py e (Lyy + Lia + Loy + Loo)
+1¢ \I/(Pl) ° (L11 + Lo+ Loy + ng)
+1 o P1 ® \If(Lll + L12 + L21 + LQQ).

On the other hand, since I © P; ® Loy = 0 and invoking Lemmas 2.2 and 2.4,
we have

U(lo P e(Liy+ Lig+ Loy + La))

=VU({oP eLy)+V(IoP el
+U(IoPreLy)+W(lIoP e Ly)

=VU()oP,eLyy+1oV(P)e Ly
+IoP,eV(Ly)+V(I)o P el
+1¢ \I/(Pl) elin+IoP e \IJ(ng)
+U(I)oPeLyy+10oW(P)e Loy
+I1oP,eV(Ly)+ V()0 P e Ly
+IoW(P) e Log+ 1o P eW(Ly).

From the last two relations, we infer that [ ¢ P, ¢« K = (0. Hence

P KP,=PKP = PPKP, =0. Analogously, we can show that P,K P, = 0.
Thus K =0, i.e.,

W(Lyy 4 Lo+ Loy + Log) = V(L11) + VU (Ly2) + U (Lay) + W(Lag).
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Lemma 2.6. For any Lija NZJ c SZJ with 1 75 7, \I/(Lw—i—NZ]) = \II(LZJ)—F\IJ(NU)
Proof. Let N = W(L;; 4+ N;;) — W(L;;) — U(N;;). Since P;oL e2P; = 0, we get

WP o é e« (2P, + Li; + Nyj)) = U(P,o g «2P) + U(Po g o (Li+ i)
= W(P)o 58 2P; + PioW(3) e 2P,
+F ¢ é o U(2P)) + ¥(P) o é e (Lij + Nij)
PP W(5) o (L + Ny)
+P; o g o U(L;; + Nij).
Also by Lemma 2.4, we have
U(P,0 5o (2P, + Ly + Ny)) = W(P) o 5 o (2P, + Lij + Ny
+P; o ‘I’(é)  (2P; + Lij + Nij)
+Po é e U(2P, + Ly + Ni;)
_W(P)o g o« (2P, + Li; + Ni))
+Po xp(é) o« (2P, + Li; + Ny))
+P; o é o (V(P;+ Lij) + V(P; + Nyj))
—W(P)o g o« (2P, + Li; + Ni))
4P \If(é) o (2P; + L;; + N;;)
+Po é o (U(2P)) + U(Lyj) + (V).

From the last two relations, we infer that P; ¢ % e N = 0. Hence
PNP, = PNP; =0. Thus N = 0. ]
Lemma 2.7. For any L;;, N; € S;;, 1 <1 <2, we have

U(Li; + Nij) = U(Li;) + Y(Ny).



184 SIDDEEQUE, BHAT AND SHIKEH
PT’OOf. Let Q = \I/(L“—FN“) — \I/(L“) — \I/(N”) Since IOP] oL, =0for: 7é 7]
Invoking Lemma 2.2, we have
On the other hand, we have
+1 o Pj ° \I/<Lu + Nu)

From the last two relations, we infer that / ¢ P; e Q = 0. It follows that
PiQP; = PiQP; = PQP; = 0.
Next, for any X;; € §;; with 7 # j, we have
On the other hand, using Lemma 2.6, we have
X* Lii + LmX i)+ W(XE Ny + N Xij)

m) + \IJ(L“XU) + \I’(X;;Nm) + \I’(N”Xm)
X* Lii + Lii Xij) + V(X N + N Xij)
U(P; 0 X5 e Li) + V(P o Xi; e Njj)
= \IJ(PZ) OXij ° L” + PZ < \IJ(XZ]) ° L“

U
W (X
(
W

From the last two relations, we infer that P; ¢ X;; @ () = 0. It follows that
PioX;jeQ; = 0. Now solving this, we get X75Q;; + Qi X = 0. Now multiply
both sides on right by P;, we get Q;;X;; = 0 and it follows from (2.1) and

Lemma 2.8. VU is additive.
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Proof. For any LN € S, we write L = L11 + Lis + Loy + Loy and
N = Ni1 + N1 + Nog + Noo. Invoking Lemmas 2.5 - 2.7, we get
U(L+ N) =V(Lyy + Lio + Loy + Lo + Ni1 + Nig + Nojp + Noo)
= V(L1 + Nut) + Y(Lia + Nia) + W(Lar + Nat) + W(Las + Noo)
= W(L11) + VU (Nu) + V(L) + W(Ni2) + ¥(Lar)
+W(Nap) + W(Lay) + W (Noo)
= W (L1 + Lig + Loy + Lag) + W (N1g + Ny + Nog + Noo)
= W(L)+ V(N).
Hence the additivity of W follows from the above lemmas. ]

Now in the rest of the paper, we show that ¥ is a x-derivation.
Lemma 2.9. (’l) Pl\If(Pl)PQ = —Pllp(Pg)Pg.

(17) Py, W(P )P, = —PV(P)P;.

(1i1) PLV(P) P, = PV (P)P, = 0.

Proof. (i) Tt follows from P, ¢ P, @ P, = 0 and Lemma 2.2 that
0 =U(PoPeh)

=VU(P)oP,eP,+PoVU(P)eP,+ P oP eV(P)

=2P\V(P) P, + 2P,V (P)" Py + 2PV (P) + 2V (P,) P
Multiplying the previous relation by P; from the left and by P, from the
right, we get

PV (P)P, = —PV(P)Ps.
(#7) Since P, o P, @ Py = 0, applying Lemma 2.2, we get
0 =VU(PoPeP)

=U(P)oP,e P+ PoV(P)eP +PoP,eV(P)

— 2P U(P,) P, + 2P U(R,)* Py + 2P U(Py) + 2U(P)) .
Multiplying the previous relation by P from left and by P; from right, we
get BV (Py) P = —PV(P)P.

(#4¢) From (7), we have
0=2PV(P)P,+ 2PV (P) P+ 2PV (P,) + 2V(P)P;. (2.3)
Multiplying (2.3) by P from both right and left, we get P,V (P)P; = 0.
Analogously from (i7), we have
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Multiplying (2.4) by P, from both right and left, we get P,V (P)P, =0. O
Lemma 2.10. Pl\I/(Pl)Pl = PQ‘IJ(PQ)PQ =0.
Proof. For every L1y € 819, applying Lemma 2.8, we get
\Il(Pl < P1 ® ng) = 2\:[1([42)
On the other hand, we have
\I/(P1<>P10L12) = ‘lf(Pl)Opl.L12+P1<>\IJ(P1).L12+P1<>P1.\I/(L12)
— Q\I/(Pl)*[/m + 2P1\P(P1)L12 + 2L12\P(P1)*P1
+2PV(Ly9) + 2V (Ly9) Pr.
From the last two relations, we infer that
\II(P1>*L12 + Plllf(Pl)ng + ng\P(P1>*P1 + Pl\If(ng)
—f—\If(LlQ)Pl — \D(ng) = 0.
By the given hypothesis W(P,) is self-adjoint. Hence multiplying above rela-
tion by P, from the right and by P; from the left, we get
Pl\If(Pl)ng = 0, i.e., Pl\I](Pl)PlLPQ = 0 for all L € S. It follows
from (2.1) and (2.2) that P, U(P;)P; = 0. Analogously, we can prove that
PQ\IJ(PQ)PQ =0. ]
Lemma 2.11. (Z) \I/<P1) = Pl\I/<P1)P2 + PQ\IJ(Pl)Pl and
U(P) = PV (P) P+ BY(P)P.
(17) W(I) = 0.
Proof. (i) By Peirce decomposition, we have
U(P) =PV (P)P+ PY(P)P+ PV (P)P + PY(P)Ps.

In view of Lemmas 2.9 - 2.10, it follows that W(P,) = PV (P) P+ PV (P)P;.
Analogously, we can show that V(P,) = PV ()P, + P,V (P)P;.
(77) Invoking Lemmas 2.8 - 2.10, we have
V() =¥ (P + B)
=U(P)+ V(R)
= Pl\I/(Pl)PQ + PQ\IJ(Pl)Pl + Pl\II(PQ)PQ + PQ\II(PQ)Pl
=0.

Lemma 2.12. ¥ preserves *’ i.e., V(L*) = W(L)* forall L € S.
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Proof. By Lemma 2.8, we have
U(Lolel)=W(2L +2L") =2U(L)+ 2W(L").
On the other hand, using Lemma 2.11, we have
U(Lolel)=W(L)olel=2V(L)+2V(L)".

Comparing the above two relations, we arrive at
U(L*)=V(L)* forall L €8.

Lemma 2.13. (i) V(i) = 0.
(24) W(—l) = 0, where i is the imaginary unit.
Proof. (i) V(i) = 0.

Applying Lemmas 2.8 and 2.11, we have

(il il o) =WU(il)oil el +il oU(il)el.

Thus, 440 (il)* — 40V (il) = 0. Also, we have V(il o[ o) = VU(il)o[e].
Thus, 2W(il)* 4+ 2¥(il) = 0. Multiplying the previous relation by 2i, we get
49U (¢l )* + 490 (il ) = 0. From the above two relations, we obtain 8:W(il) = 0,
which implies that W(il) = 0.

(74) Analogously, we can show that ¥(—il) = 0. ]
Lemma 2.14. (i) V(—iL) = —iV(L).
(17) W(iL) = (L), where i is the imaginary unit.
Proof. (i) W(—iL) = —W(L). Since (—iL)o I o1 = L o il e I, utilizing
Lemma 2.2, we have WU((—iL) o [ ¢ [) = V(L < il e I). Invoking Lemmas
2.11 and 2.13, we have U(—iL)* + W(—iL) = W (L)* — «W(L). Also, since
(—iL)o il @1 =(—1I)o L e[, utilizing Lemma 2.2, we have

VU((—iL)oilel)=U(—1cLel).
Now by Lemma 2.11 and 2.13, we have
iW(—il)" — U (—iL) = =V (L) — V(L)".
Multiply bothsides of the above relation by il, to get
—W(—iL)" + V(—iL) = =iV (L) — sV (L)".

By adding the above two relations, we get, W(—iL) = —i¥(L) for all L € S.

(77) Analogously, we can show that W(iL) = iV (L). O

Lemma 2.15. ¥ is a derivation.
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Proof. For every Ly, N € S, we have (L* o N @ [) = 2(LN + N*L*). Now,
applying Lemmas 2.11 and 2.12, we have
2U(LN + N*L*) =V(L*oNel)
=U(L)*oNel+ L oWU(N)e]l
=2U(L)N + 2N*U(L)* + 2LV (N) +2¥(N)*L*".
Therefore,
2U(LN + N*L*) = 2U(L)N 4+ 2N*VU(L)" +2LY(N) + 2U(N)*L*,
Also, we have (L* o iN e [) =2 i (LN — N*L*). So, invoking Lemmas 2.11,
2.13 and 2.14, we have
2U(i(LN — N*L*)) =V(L"oiN el)
=U(L)*oiNel+L*oU(iN)e ][
= 20U (L)N + 2iLVU(N) — 200(N)"L* — 2iN*W(L)*".
Therefore
200(LN — N*L*) = 20U (L)N + 2iLY(N) — 29U (N)*L* — 2iN*"U(L)*.
Multiply the above relation by il to get
2U(LN — N*L*) =2U(L)N + 2LU(N) —2U(N)*L* — 2N*U(L)*.

Adding the above two relations, we get W(LN) = W(L)N + LW(N). Hence
U is a derivation. This completes the proof of Theorem 2.1. ]

3. COROLLARIES

An algebra S is called prime if LSN = 0 for L, N € § implies either L =0
or N = 0. So, it is very simple to see that any prime x-algebra satisfies (2.1)
and (2.2). So we have the following corollary.

Corollary 3.1. Suppose S is a unital prime *-algebra with a non-trivial
projection Py. If W : S — S satisfies
UV(LoNeD)=VU(L)oNeD+LoW(N)eD+ LoN eW(D)

for all LN, D € §. Then V is additive. Moreover, if V(Py) is self-adjoint,
then U is a x-derivation.

Consider H as a complex Hilbert space. Assume B(H) and T(?) denote
the algebra of all bounded linear operators and the subalgebra of bounded
operators of finite rank respectively. It is well known that T(H) forms a
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«-closed ideal of B(#H). An algebra £LC B(H) is called a standard operator
algebra, if T(H) C L. As a result, we have the following immediate corollary.

Corollary 3.2. Let ‘H be an infinite dimensional complex Hilbert space and
S be a unital standard operator algebra on H such that S is closed under
adjoint operation. Suppose that ¥ : S — S is a map satisfying

U(LoNeD)=U(L)oNeD+LoU(N)eD+LoN eU(D)

for all L,N,D € § . Then ¥V is additive. Moreover, if V(Py) is self-adjoint
for some nontrivial projection Py, then ¥ is a x-derivation.

A von Neumann algebra Z is a weakly closed self-adjoint algebra of oper-
ators on a Hilbert space H containing the identity operator. Also it is well
known that if a von Neumann algebra has no central summands of type I,
then Z satisfies (2.1) and (2.2). As a result, we have the following immediate
corollary.

Corollary 3.3. Let Z be a von Neumann algebra with no central summands
of type I; and consider the map ¥V : Z — Z satisfying

UV(LoNeD)=VU(L)oNeD+LoW(N)eD+ LoNeW(D)

for all Ly, N,D € Z. Then V s additive. Moreover, if V(Py) is self-adjoint
for some nontrivial projection Py, then V is a x-derivation.
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