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ON (m,n)-ARY P -Hv-MODULES AND THEIR ISOMORPHISM
THEOREMS

M. Al-Tahan and B. Davvaz∗

Abstract. After introducing the definition of hypergroups by Marty, the study
of hyperstructures and its generalization to (m,n)-ary hyperstructures has been of
great importance. In this paper, we construct (m,n)-ary Hv-modules over (m,n)-
ary Hv-rings by using P -hyperoperations. We study their properties and prove their
isomorphism theorems.

1. Introduction
Hyperstructure theory was introduced for the first time in 1934 at the eighth

Congress of Scandinavian Mathematicians, by Marty [22], as an extension of
algebraic structures. Marty generalized the notion of groups by defining
hypergroups. The class of algebraic hyperstructures is larger than that of
algebraic structures where the operation on two elements in the latter is
again an element whereas the hyperoperation of two elements in the first
class is a non-void set. Since then, several articles and books were published
on hyperstructure theory and its applications [1, 4, 8]. A special type of
hyperoperations, known as P -hyperoperation was defined by Vougiouklis [32,
29, 30] and studied by several authors [27, 8, 25, 26, 34]. In 1991, Vougioklis
[33] in the Fourth AHA Congress generalized hyperstuctures by introducing
a larger class known as Hv-structures. A lot of work on some Hv-structures
like Hv-groups, Hv-rings, Hv-modules, etc. was published [3, 2, 10, 15, 28].

On the other hand, the notion of n-group is another generalization of group.
It seems that the first idea of investigations of n-ary algebras goes back to
Kasner’s lecture at the 53rd annual meeting of the American Association of
the Advancement of Science in 1904. But the first article concerning the
theory of n-groups was written (under inspiration of Emmy Noether) by
Dörnte [13] in 1928. In [11], Davvaz and Vougiouklis introduced the concept
of n-hypergroups as a generalization of both hypergroups in Marty’s sense
and n-groups. Then this concept was studied by many authors, see, for
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example Ghadiri and Waphare [16], Leoreanu-Fotea and Davvaz [21, 19, 20],
Davvaz et al. [6, 7, 9], Mirvakili and Davvaz [23].

New generalizations for algebraic structures were defined where the no-
tion of n-ary algebraic structure was extended to the notion of n-ary Hv-
structures. A link between P -hyperoperations and (m,n)-ary Hv-modules
was established in [12], where Davvaz and Vougiouklis defined three kinds of
external n-ary P -hyperoperations, and they used them to construct several
(m,n)-ary Hv-modules. On the other hand, Al-Tahan and Davvaz [27] de-
fined a new P -Hv-module over P -Hv -rings and studied several properties of it
starting from the isomorphism theorem to the fundamental relation. In [12],
Davvaz and Vougioklis defined (m,n)-ary P -Hv-modules over (m,n)-ary P -
rings. In our paper, we generalize the definition in [12] by constructing a new
(m,n)-ary P -Hv-module over (m,n)-ary P -Hv-ring, and study its properties.
The remaining part is organized as follows: In Section 2, we present some
definitions and results related to hyperstructures, (m,n)-ary hyperstructures
and to P -hyperstructures. In Section 3, we construct (m,n)-ary Hv-modules
over (m,n)-ary Hv-rings using P -hyperoperations, study their properties and
present some examples. Finally, in Section 4, we prove the isomorphism
theorems for (m,n)-ary P -Hv-modules.

2. Preliminaries
In this section, we gather all definitions we require for hyperstructures.

We shall use the notation xji to denote the sequence xi, xi+1, . . . , xj. Also, the

sequence
i︷ ︸︸ ︷

a, . . . , a will be denoted by a(i). Let H be a non-empty set and let
P∗(H) be the family of all non-empty subsets of H. In general, for a positive
integer n an n-hyperoperation on H is a mapping f : Hn → P∗(H) where Hn

denotes the set of n-tuples over H. If for all (x1, . . . , xn) ∈ Hn, the set f(xn1)
is a singleton, then f is called an n-operation.

If A1, . . . , An are non-empty subsets of H, then we denote

f(A1, . . . , An) =
⋃
{f(x1, . . . , xn) | xi ∈ Ai, 1 ≤ i ≤ n}.

An n-hyperoperation f on H is called associative if

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j )
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for all 1 ≤ i, j ≤ n and x2n−1
1 ∈ H. We use the notation f(k)(x

k(n−1)+1
1 ) to

denote f(f(. . . f(f︸ ︷︷ ︸
k

(xn1), x
2n−1
n+1 ), . . .), x

k(n−1)+1
(k−1)(n−1)+2), where k ≥ 1 and

x
k(n−1)+1
1 ∈ H.
Hv-structures were introduced by T. Vougiouklis [32, 33] as a generaliza-

tion of the well-known algebraic hyperstructures. Some axioms of classical
algebraic hyperstructures are replaced by their corresponding weak axioms in
Hv-structures. Most of Hv-structures are used in the representation theory.
A hypergroupoid (H, ◦) is called anHv-semigroup if (x◦(y◦z))∩((x◦y)◦z) ̸= ∅
for all x, y, z ∈ H. A hypergroupoid (H, ◦) is called a Hv-group if it is a
quasi-hypergroup and a Hv-semigroup. A multivalued system (R,+, ·) is an
Hv-ring if (1) (R,+) is a Hv-group; (2) (R, ·) is a Hv-semigroup; (3) “·” is
weak distributive with respect to “+”.

Definition 2.1. A non-empty set M is a Hv-module over a Hv-ring
R, if (M,+) is a commutative Hv-group and there exists a map
⋆ : R×M → P∗(M), (r, x) → r ⋆ x such that

(1) (r ⋆ (x+ y)) ∩ (r ⋆ x+ r ⋆ y) ̸= ∅;
(2) ((r + s) ⋆ x) ∩ (r ⋆ x+ s ⋆ x) ̸= ∅;
(3) ((rs) ⋆ x) ∩ (r ⋆ (s ⋆ x)) ̸= ∅.

Definition 2.2. An m-ary Hv-semigroup is an algebraic structure (H, f)
where ⋂

1≤i≤m

f(xi−1
1 , f(xm+i−1

i ), x2m−1
m+i ) ̸= ∅

and it is called an m-ary Hv-group if it is m-ary Hv-semigroup and
f(xi−1

1 , H, xmi+1) = H.

Definition 2.3. An (m,n)-ary Hv-ring is an algebraic structure (R, f, g)
which satisfies the following axioms:

(1) (R, f) is an m-ary Hv-group,
(2) (R, g) is an n-ary Hv-semigroup,
(3) The n-ary hyperoperation g is weak distributive with respect to the hy-

peroperation f , i.e., for every sequence ai−1
1 , ani+1, x

m
1 in R and

1 ≤ i ≤ n.

g(ai−1
1 , (xm1 ), a

n
i+1) ∩ f(g(ai−1

1 , x1, a
n
i+1), . . . , g(a

i−1
1 , xm, a

n
i+1)) ̸= ∅.
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Definition 2.4. Let M be a non-empty set. Then (M,h,R, k) is an (m,n)-
ary Hv-module over an (m,n)-ary Hv-ring (R, f, g), if (M,h) is a (commuta-
tive) m-ary Hv-group and the map

k : Rn−1 ×M → P∗(M)

satisfies the following conditions:
(1) k(rn−1

1 , h(xm1 )) ∩ h(k(rn−1
1 , x1), . . . , k(r

n−1
1 , xm)) ̸= ∅,

(2)

k(ri−1
1 , f(sm1 ), r

n−1
i+1 , x) ∩ h(k(ri−1

1 , s1, r
n−1
i+1 , x), . . . , k(r

i−1
1 , sm, r

n−1
i+1 , x)) ̸= ∅,

(3) k(ri−1
1 , g(ri+n−1

i ), r2n−2
i+n , x) ∩ k(rn−1

1 , k(r2n−2
n , x)) ̸= ∅.

Definition 2.5. Let (M,h1, R, k1) and (N, h2, R, k2) be (m,n)-ary Hv-
modules over an (m,n)-ary Hv-ring (R, f, g). A strong homomorphism from
M to N is a mapping ϕ : M → N such that for all a1, . . . , am, a ∈ M and
r1, . . . , rn−1 ∈ R, the following conditions are satisfied:

(1) ϕ(h1(a1, . . . , am)) = h2(ϕ(a1), . . . , ϕ(am)),
(2) ϕ(k(r1, . . . , rn−1, a)) = k(r1, . . . , rn−1, ϕ(a)).

ϕ is called an isomorphism if it is a bijective strong homomorphism and we
write M ∼= N , and it is called weak homomorphism if in (1) and (2) we have
non-empty intersection instead of equality.

The notion of P -hyperoperations was introduced for hypergroups (see
[29]) and then generalized for Hv-rings (see [8]) and then for Hv-modules
(see [12]).

Theorem 2.6. Let (H, ·) be a semigroup, Z(H) be the center of H, P ⊆ H,
P ∩ Z(H) ̸= ∅. Then (H,P ⋆) is an n-ary Hv-semigroup; and (H,P ⋆) is an
n-ary Hv-group if and only if (H, ·) is a group. Where the hyperoperation P ⋆

is defined as follows: For all xi ∈ H, i = 1, . . . ,m, P ⋆(xm1 ) = x1 . . . xmP.

3. (m,n)-ary Hv-modules endowed with P -hyperoperations
In this section, we construct (m,n)-ary Hv-modules over (m,n)-ary Hv-

rings using P -hyperoperations, study their properties and present some ex-
amples.

Let (R,+, ·) be a ring, (M,+, R, ⋆) be an R-module, P1, P2 ⊆ R and
P ⊆M . We define P ⋆

1 , P
⋆
2 , P

⋆, P⋆ as follows:
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For ri ∈ R, xj ∈M i ∈ {1, . . . , n}, and j ∈ {1, . . . ,m},
P ⋆
1 (r

m
1 ) = r1 + . . .+ rm + P1,

P ⋆
2 (r

n
1 ) = r1 . . . rnP2,

P ⋆(xm1 ) = x1 + . . .+ xm + P,
P⋆(r

n−1
1 , x) = r1 . . . rn−1P2 ⋆ x+ P.

In what follows, let 0R ∈ P1, P2 ∩ Z(R) ̸= ∅ and 0M ∈ P .
Theorem 3.1. Let R be a ring then (R,P ⋆

1 , P
⋆
2 ) is an (m,n)-ary Hv-ring.

Proof. Since (R,+) is a group and 0R ∈ P1 ⊆ R, it follows, by Theorem 2.6,
that (R,P ⋆

1 ) is an m-ary Hv-group. Moreover, having (R, ·) a semigroup and
the existence of an element a ∈ P2∩Z(R) implies, by using Theorem 2.6, that
(R,P ⋆

2 ) is an n-ary Hv-semigroup. We now show that the weak distributivity
is satisfied.

We have
P ⋆
2 (a

i−1
1 , P ⋆

1 (x
m
1 ), a

n
i+1) = a1 · · · ai−1(x1 + . . .+ xm + P1)ai+1 . . . anP2

and
P ⋆
1 (P

⋆
2 (a

i−1
1 , x1, a

n
i+1), . . . , P

⋆
2 (a

i−1
1 , xm, a

n
i+1))

= a1 · · · ai−1x1ai+1 . . . anP2 + . . .+ a1 · · · ai−1xmai+1 . . . anP2 + P1.

Since 0R ∈ P1, it follows that there exists a ∈ P2 such that
a1 · · · ai−1x1ai+1 . . . ana+ . . . xa1 · · · ai−1xmai+1 . . . ana
∈ P ⋆

2 (a
i−1
1 , P ⋆

1 (x
m
1 ), a

n
i+1) ∩ P ⋆

1 (P
⋆
2 (a

i−1
1 , x1, a

n
i+1), . . . , P

⋆
2 (a

i−1
1 , xm, a

n
i+1)).

Therefore, (R,P ⋆
1 , P

⋆
2 ) is an (m,n)-ary Hv-ring. □

Notation 3.2. (R,P ⋆
1 , P

⋆
2 ) is called an (m,n)-ary P - Hv-ring.

Remark 3.3. For m = n, (R,P ⋆
1 , P

⋆
2 ) is called an n-ary P - Hv-ring. Some

examples on n-ary P - Hv-rings are found in [17].
Remark 3.4. For m = n = 2, (R,P ⋆

1 , P
⋆
2 ) is called P - Hv-ring.

Theorem 3.5. Let M be an R- module over a ring R such that there exists
a ∈ P2∩Z(R) with a2 ∈ P2. Then (M,P ⋆, R, P⋆) is an (m,n)-ary Hv-module
over (R,P ⋆

1 , P
⋆
2 ).

Proof. Since (M,+) is a group and 0M ∈ P , it follows, by Theorem 2.6, that
(M,P ⋆) is an m-ary Hv-group. We prove that the conditions in Definition
2.4 are satisfied.

(1) We have P⋆(r
n−1
1 , P ⋆(xm1 )) = r1 . . . rn−1P2 ⋆ (x1 + . . .+ xm +P ) +P and

P ⋆(P⋆(r
n−1
1 , x1), . . . , P⋆(r

n−1
1 , xm))
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= (r1 . . . rn−1P2 ⋆ x1 + P ) + . . . (r1 . . . rn−1P2 ⋆ xm + P ) + P.

Since 0M ∈ P , it follows that there exists a ∈ P2 such that
r1 . . . rn−1a ⋆ (x1 + . . .+ xm)
∈ P⋆(r

n−1
1 , P ⋆(xm1 )) ∩ P ⋆(P⋆(r

n−1
1 , x1), . . . , P⋆(r

n−1
1 , xm)).

(2) We have that
P⋆(r

i−1
1 , P ⋆

1 (s
m
1 ), r

n−1
i+1 , x)

= r1 . . . ri−1(s1 + . . .+ sm + P1)ri+1 . . . rn−1P2 ⋆ x+ P

and
P ⋆(P⋆(r

i−1
1 , s1, r

n−1
i+1 , x), . . . , P⋆(r

i−1
1 , sm, r

n−1
i+1 , x))

= (r1 . . . ri−1s1ri+1 . . . rn−1P2 ⋆ x+ P ) + . . .
+(r1 . . . ri−1smri+1 . . . rn−1P2 ⋆ x+ P ) + P.

Since 0M ∈ P and 0R ∈ P1, it follows that there exists a ∈ P2 such that
r1 . . . ri−1(s1 + . . .+ sm)ri+1 . . . rn−1a ⋆ x

∈ P⋆(r
i−1
1 , P ⋆

1 (s
m
1 ), r

n−1
i+1 , x) ∩ P ⋆(P⋆(r

i−1
1 , s1, r

n−1
i+1 , x), . . . ,

P⋆(r
i−1
1 , sm, r

n−1
i+1 , x)).

(3) We have that
P⋆(r

i−1
1 , P ⋆

2 (r
i+n−1
i ), r2n−2

i+n , x)
= r1 . . . ri−1(ri . . . ri+n−1P2)ri+n . . . r2n−2P2 ⋆ x+ P,
P⋆(r

n−1
1 , P⋆(r

2n−2
n , x))

= r1 . . . rn−1P2 ⋆ (rn . . . r2n−2P2 ⋆ x+ P ) + P.

Since 0M ∈ P and there exists a ∈ P ∩Z(R) such that a2 ∈ P , it follows that
r1 . . . r2n−2a

2 ⋆ x ∈ P⋆(r
i−1
1 , P ⋆

2 (r
i+n−1
1 ), r2n−2

i+n , x) ∩ P⋆(r
n−1
1 , P⋆(r

2n−2
n , x)).

Therefore, (M,P ⋆, R, P⋆) is an (m,n)-ary Hv-module. □
Notation 3.6. (M,P ⋆, R, P⋆) is called an (m,n)-ary P - Hv-module over
(R,P ⋆

1 , P
⋆
2 ).

Remark 3.7. For m = n, (M,P ⋆, R, P⋆) is called an n-ary P - Hv-module
over the P -Hv-ring (R,P ⋆

1 , P
⋆
2 ) and for m = n = 2, it is called P - Hv-module

over R.

We present some examples of (m,n)-ary P -Hv-modules.

Example 3.8. Let M be an R-module and define the following operations:
f : Rm → R, g : Rn → R as f(rm1 ) = r1 + . . .+ rm and

g(rn1 ) = r1 . . . rn, h :Mm →M,k : Rn−1 ×M →M
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as h(xm1 ) = x1 + . . . + xm and k(rn−1
1 , x) = (r1 . . . rn−1)x. Then (M,h,R, k)

is an (m,n)-ary module over R. If R is a ring with unity “1”, we get
that (M,h,R, k) is an (m,n)-ary Hv module over R by setting P = {0M},
P1 = {0R} and P2 = {1}.
Example 3.9. Let M be any R-module and P1 = {0R}, P2 = Z(R) and
P = {0M}. Then (M,P ⋆, R, P⋆) is an (m,n)-ary Hv-module (as for every
a ∈ Z(R), a2 ∈ Z(R)).
Example 3.10. Let I = {ar : r ∈ R} be an ideal of a ring R,
P1 = {0, a} ⊆ R,P2 = {0} ∪ {ak : k ∈ N} ⊆ R and P = {0, a2}. Then
(I, P ⋆, R, P⋆) is an (m,n)-ary Hv-module over (R,P ⋆

1 , P
⋆
2 ). Moreover,

for some particular values, we have P ⋆(am) = {ma,ma + ma2},
P⋆(a

n−1, a) = {a, a2, an+k−1 : k ∈ N}.
Example 3.11. Let M = Z4 be the group of addition modulo four and R = Z
be the ring of integers with the standard addition and multiplication (M is
an R-module). Take P = {0, 2} ⊂ M , P1, P2 ⊂ R the set of even integers
and the set of odd integers respectively. Theorem 3.1 asserts that (R,P ⋆

1 , P
⋆
2 )

is an (m,n)-ary P -Hv-ring and Theorem 3.5 asserts that (M,P ⋆, R, P⋆) is an
(m,n)-ary P -Hv-module over R. By setting m = n = 3, we get that M is a
3-ary P -Hv-module over R. The P -hyperoperations in this example are given
as follows: For all r, s, t ∈ R, (R,P ⋆

1 , P
⋆
2 ) is defined as follows:

P ⋆
1 (r, s, t) = {r + s+ t+ 2k : k ∈ Z}

=

{
2Z, if r + s+ t is an even integer ;
2Z+ 1, otherwise.

P ⋆
2 (r, s, t) = {rst(2k + 1) : k ∈ Z}.

The 3-ary Hv-group (M,P ⋆) is defined by means of the following tables:
(0,−,−) 0 1 2 3

0 {0, 2} {1, 3} {0, 2} {1, 3}
1 {1, 3} {0, 2} {1, 3} {0, 2}
2 {0, 2} {1, 3} {0, 2} {1, 3}
3 {1, 3} {0, 2} {1, 3} {0, 2}

(1,−,−) 0 1 2 3
0 {1, 3} {0, 2} {1, 3} {0, 2}
1 {0, 2} {1, 3} {0, 2} {1, 3}
2 {1, 3} {0, 2} {1, 3} {0, 2}
3 {0, 2} {1, 3} {0, 2} {1, 3}
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(2,−,−) 0 1 2 3
0 {0, 2} {1, 3} {0, 2} {1, 3}
1 {1, 3} {0, 2} {1, 3} {0, 2}
2 {0, 2} {1, 3} {0, 2} {1, 3}
3 {1, 3} {0, 2} {1, 3} {0, 2}

(3,−,−) 0 1 2 3
0 {1, 3} {0, 2} {1, 3} {0, 2}
1 {0, 2} {1, 3} {0, 2} {1, 3}
2 {1, 3} {0, 2} {1, 3} {0, 2}
3 {0, 2} {1, 3} {0, 2} {1, 3}

and P⋆ is defined as follows:
P⋆(r, s, x) = {rs(2k + 1)x+ {0, 2} mod 4 : k ∈ Z}

=


{0, 2}, if x ≡ 0 mod 4;
{rs(2k + 1), 2rs(2k + 1) : k ∈ Z} if x ≡ 1 mod 4;
{2rs, 2rs+ 2}, if x ≡ 2 mod 4;
{2rsk + 3rs, 2rsk + 3rs+ 2 : k ∈ Z}, if x ≡ 3 mod 4.

.

For some particular values, P⋆(1, 3, 2) = {0, 2}, P ⋆
1 (0, 1, 2) = P2 and

P ⋆
2 (1, 3, 1) = {6k + 3 : k ∈ Z}.

Proposition 3.12. Let (M,P ⋆, R, P⋆), (N,K
⋆, R,K⋆) be (m,n)-ary P - Hv-

modules over R. Then M ×N is an (m,n)-ary P - Hv-module over R.

Proof. Let L = P×K ⊆M×N . Since 0M×N ∈ L and M×N is an R-module,
it follows that (M ×N,L⋆, R, L⋆) is an (m,n)-ary P - Hv-module over R. □
Proposition 3.13. Let (M,P ⋆, R, P⋆), (N,L

⋆, R, L⋆) be (m,n)-ary P - Hv-
modules over R and Φ : M → N an R-module isomorphism. Then ϕ is
an isomorphism from the (m,n)-ary P - Hv-module M to the (m,n)-ary P -
Hv-module N if and only if Φ(P ) = L.

Proof. Let ϕ(P ) = L.
(1) We have that
ϕ(P ⋆(am1 )) = ϕ(a1 + . . .+ am + P ) = ϕ(a1) +

′ . . .+′ ϕ(am) +
′ ϕ(P ).

Since ϕ(P ) = L, it follows that ϕ(P ⋆(am1 )) = L⋆(ϕ(a1)
m).

(2) ϕ(P⋆(r
n−1
1 , x)) = ϕ(r1 . . . rn−1P2 ⋆ x+ P ) = r1 . . . rn−1P2 ⋆

′ ϕ(x) +′ ϕ(P ).
Since ϕ(P ) = L, it follows that ϕ(P⋆(r

n−1
1 , x)) = L⋆(r

n−1
1 , ϕ(x)).

Let Φ :M → N be an isomorphism between the (m,n)-ary Hv-modules M



ON (m,n)-ARY P -Hv-MODULES AND THEIR ISOMORPHISM THEOREMS 71

and N . We have that ϕ(0M) = 0N as ϕ is an R-module isomorphism. Then
ϕ(P ) = ϕ(P ⋆(0M , . . . , 0M)) = L⋆(0N , . . . , 0N) = 0N + L = L. □
Proposition 3.14. Let ϕ : (M,P ⋆, R, P⋆) → (N,L⋆, R, L⋆). Then ϕ is an
isomorphism if and only if ϕ−1 : (N,L⋆, R, L⋆) → (M,P ⋆, R, P⋆) is an iso-
morphism.

Proof. We prove one direction, the other is done in a similar manner.
Let ϕ be isomorphism function. Then ϕ(P ⋆(xm1 )) = L⋆(ϕ(x1)

m) and
ϕ(P⋆(r

n−1
1 , x)) = L⋆(r

n−1
1 , ϕ(x)) for all xi, x ∈ M and ri ∈ R. We get now

that ϕ(x1 + . . .+ xm + P ) = ϕ(x1) + . . .+ ϕ(xm) + L and that
ϕ(r1 . . . rn−1P2 ⋆ x+ P ) = r1 . . . rn−1P2 ⋆

′ ϕ(x) +′ L.
The first implies that ϕ−1(ϕ(x1) + . . .+ ϕ(xm) + L) = x1 + . . .+ xm + P and
that ϕ−1(r1 . . . rn−1P2 ⋆

′ ϕ(x) +′ L) = r1 . . . rn−1P2 ⋆ x + P . For all yi, y ∈ N ,
there exist xi, x ∈ M such that ϕ(xi) = yi, ϕ(x) = y. We get now that
ϕ−1(L⋆(ym1 )) = ϕ−1(y1+ . . .+ ym+L) and P ⋆(ϕ−1(y1)

m) = x1+ . . .+xm+P .
Moreover,

ϕ−1(L⋆(r
n−1
1 , y)) = ϕ−1(r1 . . . rn−1P2 ⋆

′ y + L)

= r1 . . . rn−1P2 ⋆ x+ P

= P⋆(r
n−1
1 , ϕ−1(y)).

□
Proposition 3.15. Let ϕ, ψ : (M,P ⋆, R, P⋆) → (N,L⋆, R, L⋆) be strong ho-
momorphisms and L+ L = L. Then ϕ+ ψ : (M,P ⋆, R, P⋆) → (N,L⋆, R, L⋆)
is a strong homomorphism.

Proof. Let λ = ϕ+ ψ. We have that
λ(P ⋆(xm1 )) = ϕ(P ⋆(xm1 )) + ψ(P ⋆(xm1 ))

= L⋆(ϕ(x1)
m) + L⋆(ψ(x1)

m)

= ϕ(x1) + . . .+ ϕ(xm) + L+ ψ(x1) + . . .+ ψ(xm) + L

= L⋆(λ(x1)
m)

as L+ L = L. Moreover,
λ(P⋆(r

n−1
1 , x)) = ϕ(P⋆(r

n−1
1 , x)) + ψ(P⋆(r

n−1
1 , x))

= L⋆(r
n−1
1 , ϕ(x)) + L⋆(r

n−1
1 , ψ(x))

= L⋆(r
n−1
1 , λ(x)).

□
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Proposition 3.16. Let ϕ : (M,P ⋆, R, P⋆) → (N,L⋆, R, L⋆) be strong homo-
morphisms such that α ∈ R. If α ⋆ L = L, then

α ⋆ ϕ : (M,P ⋆, R, P⋆) → (N,L⋆, R, L⋆)

is a strong homomorphism.

Proof. Let λ = α ⋆ ϕ. (1) We have that
λ(P ⋆(xm1 )) = α ⋆ ϕ(P ⋆(xm1 ))

= α ⋆ L⋆(ϕ(x1)
m)

= α ⋆ (ϕ(x1) + . . .+ ϕ(xm) + L)

= λ(x1) + . . . λ(xm) + α ⋆ L.

Having α ⋆ L = L, implies that λ(P ⋆(xm1 )) = L⋆(λ(x1)
m).

(2)
λ(P⋆(r

n−1
1 , x)) = α ⋆ (L⋆(r

n−1
1 , ϕ(x))

= αr1 . . . rn−1P2 ⋆ ϕ(x) + α ⋆ L

= r1 . . . rn−1P2 ⋆ (α ⋆ ϕ(x)) + L

= L⋆(r
n−1
1 , λ(x)).

□
Proposition 3.17. Let ϕ : (M,P ⋆, R, P⋆) → (N,K⋆, R,K⋆) and

ψ : (N,K⋆, R,K⋆) → (S, L⋆, R, L⋆)

be strong homomorphisms. Then ψ ◦ ϕ : (M,P ⋆, R, P⋆) → (S, L⋆, R, L⋆) is a
strong homomorphism.

Proof. The proof is straightforward. □
Proposition 3.18. Let (M,P ⋆, R, P⋆) be an (m,n)-ary P - Hv-module over
R, α ∈ Z(R) and ϕα : (M,P ⋆, R, P⋆) → (M, (αP )⋆, R, (αP )⋆) such that
ϕα(x) = α⋆x for all x ∈M . Then ϕα is a strong homomorphism. Moreover,
if R is a ring with unity and α is a unit in R then (M, (αP )⋆, R, (αP )⋆) and
(M,P ⋆, R, P⋆) are isomorphic (m,n)-ary P - Hv-modules over R.

Proof. It is clear that ϕα is well defined.
(1) ϕα(P ⋆(xm1 )) = ϕα(x1 + . . . xm + P ) = α ⋆ (x1 + . . . xm + P ).
On the other hand,

(αP )⋆(ϕα(x1), . . . , ϕα(xm)) = α ⋆ x1 + . . .+ α ⋆ xm + α ⋆ P.

Thus, ϕα(P ⋆(xm1 )) = (αP )⋆(ϕα(x1), . . . , ϕα(xm)). (2) We have that
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ϕα(P⋆(r
n−1
1 , x)) = ϕα(r1 . . . rn−1P2 ⋆ x+ P ) = αr1 . . . rn−1P2 ⋆ x+ αP .

On the other hand, (αP )⋆(rn−1
1 , ϕα(x)) = r1 . . . rn−1αP2 ⋆ x + α ⋆ P . Since

α ∈ Z(R), it follows that ϕα(P⋆(r
n−1
1 , x)) = (αP )⋆(r

n−1
1 , ϕα(x)). Therefore,

ϕα is strong homomorphism.
If α is a unit in R then α−1 ∈ R. The latter implies that ϕα is a bijective
function. □

Here after, 1 ∈ P2 and R is a commutative ring.

Proposition 3.19. If N is an (m,n)-ary Hv-submodule of (M,P ⋆, R, P⋆),
then 0M ∈ N , P ⊆ N , and moreover −x ∈ N for all x ∈ N .

Proof. Since N is an (m,n)-ary Hv-submodule of (M,P ⋆, R, P⋆), it follows
that P ⋆(0R, . . . , 0R, x) ⊆ N for all x ∈ N . The latter implies that P ⊆ N and
hence, 0M ∈ N . Moreover, having 1 ∈ R implies that −1 ∈ R. For all x ∈ N ,
we have that −x = −1(1)⋆x+0 ∈ −1P2⋆x+P = P⋆(−1, 1, . . . , 1, x) ⊆ N . □
Theorem 3.20. Let (M,P ⋆, R, P⋆) be an (m,n)-ary P - Hv-module. Then
N is an (m,n)-ary Hv-submodule of M if and only if P ⊆ N and N is an
R-submodule of M .

Proof. Let N be an R-submodule of M . Then x+N = N and r ⋆ x ∈ N for
all x ∈ N and r ∈ R. We have that

P ⋆(xi−1
1 , N, xmi+1) = x1 + . . .+ xi−1 +N + xi+1 + · · ·+ xm + P ⊆ N .

Moreover, for every y ∈ N ,
y = x1 + . . .+ xi−1 + (y − x1 − . . .− xm) + xi+1 + · · ·+ xm + 0M

∈ P ⋆(xi−1
1 , N, xmi+1).

We have that P⋆(r
n−1, x) = r1 . . . rn−1P2 ⋆ x+ P ⊆ N . Thus, N is an (m,n)-

ary Hv-submodule of M .
Let N be an (m,n)-ary Hv-submodule of M . Proposition 3.19 asserts

that P ⊆ N . Since P⋆(0M , . . . , 0M , N, 0M , . . . , 0M) = N , it follows that
P +N = N . For all x ∈ N , r ∈ R,

x+N = x+N + P = P ⋆(0M , . . . , 0M , N, x) = N

and r ⋆ x ∈ P ⋆(r, 1, . . . , 1, x) ⊆ N . □
Corollary 3.21. Let (M,P ⋆, R, P⋆) be an (m,n)-ary P - Hv-module and N
be an (m,n)-ary Hv-submodule of M . Then |N | ≥ |P | is a divisor of |M |.

Proof. The proof follows from Theorem 3.20. □
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Example 3.22. The 3-ary Hv-module defined in Example 3.11 has only two
Hv-submodules: P and M .

Let N be an (m,n)-ary Hv-submodule of M . Then, by Theorem 3.20, N
is a submodule of M containing P . Thus, P +N = N . We can define M/N
as follows:

M/N = {x+N + P : x ∈M} = {x+N : x ∈M}.

We define
h⋆ :M/N × . . .×M/N︸ ︷︷ ︸

m times

→ P∗(M/N) , h⋆ : Rn−1 ×M/N → P∗(M/N)

as follows:
h⋆(x1 +N, . . . , xm +N) = {x1 + . . .+ xm +N}

and
h⋆(r

n−1
1 , x+N) = (r1 . . . rn−1)P2 ⋆ x+N .

Theorem 3.23. (M/N, h⋆, R, h⋆) is an (m,n)-ary Hv-module over R.

Proof. It is clear that (M/N, h⋆) is an (m,n)-ary Hv-group. (In particular, it
is an (m,n)-ary group.) We need to show that the conditions of Definition
2.4 are satisfied.

(1) We have that
h⋆(r

n−1
1 , h⋆(x1 +N, . . . , xm +N)) = r1 . . . rn−1P2 ⋆ (x1 + . . .+ xm) +N

and that
h⋆(h⋆(r

n−1
1 , x1 +N), . . . , h⋆(r

n−1
1 , xm +N))

= r1 . . . rn−1P2 ⋆ x1 + . . .+ r1 . . . rn−1P2 ⋆ xm +N.

It is clear that
h⋆(r

n−1
1 , h⋆(x1 +N, . . . , xm +N))

⊆ h⋆(h⋆(r
n−1
1 , x1 +N), . . . , h⋆(r

n−1
1 , xm +N)).

(2) We have that

h⋆(r
i−1
1 , f(sm1 ), r

n−1
i+1 , x+N) (3.1)

= r1 . . . ri−1(s1 + . . .+ sm)ri+1 . . . rn−1P2 ⋆ x+N (3.2)
and that
h⋆(h⋆(r

i−1
1 , s1, r

n−1
i+1 , x+N), . . . , h⋆(r

i−1
1 , sm, r

n−1
i+1 , x+N))

= r1 . . . ri−1s1ri+1 . . . rn−1P2 ⋆ x+ . . .+ r1 . . . ri−1smri+1 . . . rn−1P2 ⋆ x+N.
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It is clear that
h⋆(r

i−1
1 , f(sm1 ), r

n−1
i+1 , x+N)

⊆ h⋆(h⋆(r
i−1
1 , s1, r

n−1
i+1 , x+N), . . . , h⋆(r

i−1
1 , sm, r

n−1
i+1 , x+N)).

(3) We have that

h⋆(r
i−1
1 , g(ri+n−1

i ), r2n−2
i+n , x+N) = r1 . . . ri+n−1P2ri+n . . . r2n−2P2 ⋆ x+N

and that

h⋆(r
n−1
1 , h⋆(r

2n−2
n , x+N)) = r1 . . . rn−1P2rn . . . r2n−2P2 ⋆ x+N.

Since 1 ∈ P2, it follows that
r1 . . . rn . . . r2n−2 ⋆ x+N
∈ h⋆(r

i−1
1 , g(ri+n−1

i ), r2n−2
i+n , x+N) ∩ h⋆(rn−1

1 , h⋆(r
2n−2
n , x+N)).

This completes the proof. □

Remark 3.24. Let M be an R-module and Ni a submodule of M for
i ∈ I = {1, . . . , k}. Then

⋂
i∈J Ni and

∑
i∈J Ni are submodules of M for

all J( ̸= ∅) ⊆ I.

Proposition 3.25. Let (M,P ⋆, R, P⋆) be an (m,n)-ary P - Hv-module and
Ni be an (m,n)-ary Hv-submodule of M for i ∈ I = {1, . . . , k} and J ⊆ I.
Then

(1)
⋂
i∈J

Ni is an (m,n)-ary Hv-submodule of M ;

(2)
∑
i∈J

Ni is an (m,n)-ary Hv-submodule of M .

Proof. Since Ni is an (m,n)-ary Hv-submodule of M , it follows, by Theorem
3.20, that P ⊆ Ni and that Ni is a submodule of M . The latter and Re-
mark 3.24 imply that both:

⋂
Ni and S are submodules of M containing P .

Applying Theorem 3.20, we get our result. □

Remark 3.26. The union of (m,n)-ary Hv-submodules of M is not necessary
an (m,n)-ary Hv-submodule of M . The latter follows from Theorem 3.20 and
the fact that the union of submodules of an R-module M is not necessary a
submodule of M .

4. Isomorphism theorems for (m,n)-ary P -Hv-modules
In this section, we consider (m,n)-ary P -Hv-modules and prove their

isomorphism theorems.
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Remark 4.1. Let (M,P⋆, R, P
⋆) be an (m,n)-ary P -Hv-module over an (m,n)-

ary P -Hv-ring (R,P ⋆
1 , P

⋆
2 ) and S,N are (m,n)-ary Hv-submodules of M . If

N ⊆ S then N is an (m,n)-ary Hv-submodule of S.

Theorem 4.2. First Isomorphism Theorem (Weak form). Let
(M,P⋆, R, P

⋆) and (N,L⋆, R, L
⋆) be two (m,n)-ary P -Hv-modules over an

(m,n)-ary P -Hv-ring (R,P ⋆
1 , P

⋆
2 ). If f : M → N is an R-module ho-

momorphism, P ⊆ Ker(f), L ⊆ Im(f) then (1) Ker(f) is an (m,n)-ary
Hv-submodule of M ; (2) Im(f) is an (m,n)-ary Hv-submodule of N ; (3)
There exists a bijective (m,n)-ary R-Hv-module homomorphism
ϕ :M/Ker(f) → Im(f).

Proof. The proofs of (1) and (2) follow from having Ker(f) (containing P )
and Im(f) (containing L) R-submodules of M and N respectively (Theo-
rem 3.20). (3) We have that M/ker(f) = {x + Ker(f) : x ∈ M} and
(M/Ker(f), h⋆, R, h⋆) an (m,n)-ary Hv-module over R. We define the bijec-
tive map ϕ : M/Ker(f) → Im(f) as ϕ(x +Ker(f)) = f(x). It is clear that
f is a well defined function. We have that

ϕ(h⋆(x1 +Ker(f), . . . , xm +Ker(f))) = ϕ(x1 + . . .+ xm +Ker(f))

= f(x1 + . . .+ xm).

Having f an R-module isomorphism implies that
ϕ(h⋆(x1 +Ker(f), . . . , xm +Ker(f))) = f(x1) + . . .+ f(xm).

On the other hand,
L⋆(ϕ(x1 +Ker(f)), . . . , ϕ(xm +Ker(f)) = f(x1) + . . .+ f(xm) + L.

Since 0N ∈ L, it follows that
ϕ(h⋆(x1 +Ker(f), . . . , xm +Ker(f)))

⊆ L⋆(ϕ(x1 +Ker(f)), . . . , ϕ(xm +Ker(f))).

Moreover,
ϕ(h⋆(r

n−1
1 , x+Ker(f))) = ϕ(r1 . . . rn−1P2 ⋆ x+Ker(f))

= f(r1 . . . rn−1P2 ⋆ x).

Having f an R-module isomorphism implies that
ϕ(h⋆(r

n−1
1 , x+Ker(f))) = r1 . . . rn−1P2 ⋆

′ f(x)

⊆ r1 . . . rn−1P2 ⋆
′ ϕ(x+Ker(f)) + L

= L⋆(rn−1
1 , ϕ(x+Ker(f)).
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□

Theorem 4.3. Second Isomorphism Theorem. Let (M,P⋆, R, P
⋆) be

an (m,n)-ary P -Hv-module over an (m,n)-ary P -Hv-ring (R,P ⋆
1 , P

⋆
2 ), S,N

are (m,n)-ary Hv-submodules of M . Then (S +N)/N ∼= S/(S ∩N).

Proof. Theorem 3.23 asserts ((S+N)/N, h⋆, R, h⋆) and (S/(S∩N), k⋆, R, k⋆)
are (m,n)-ary Hv-modules over R. We define ϕ : (S + N)/N → S/(S ∩ N)
as ϕ(s + N) = s + (S ∩ N). We need to prove that ϕ is an R-Hv-module
isomorphism. Let x, y ∈ S +N and r ∈ R.

• ϕ is well defined. Let x = y. Then there exist s, s′ ∈ S such that
x = s+N, y = s′+N . We get, using Proposition 3.19, that s− s′ ∈ N
and having s− s′ ∈ S implies that s− s′ ∈ S ∩N . Thus, ϕ(x) = ϕ(y).

• ϕ is one-to-one. Let ϕ(x) = ϕ(y). Then there exist s, s′ ∈ S such that
x = s+N = y = s′+N . We get that s−s′ ∈ S∩N ⊆ N which implies
that s− s′ ∈ N . Thus, x = y.

• ϕ is onto. This clear.
• ϕ is an (m,n)-ary R-Hv-module strong homomorphism. We have that
ϕ(h⋆(s1+N, . . . , sm+N)) = ϕ(s1+. . .+sm+N) = s1+. . .+sm+S∩N .
Thus, ϕ(h⋆(s1 + N, . . . , sm + N)) = k⋆(ϕ(s1 + N), . . . , ϕ(sm + N)).
Moreover, ϕ(h⋆(rn−1

1 , s+N)) = ϕ(r1 . . . rn−1P2 ⋆s+N) = r1 . . . rn−1P2 ⋆
s+ S ∩N = k⋆(r

n−1
1 , ϕ(s+N)).

Therefore, (S +N)/N ∼= S/(S ∩N). □

Theorem 4.4. Third Isomorphism Theorem. Let (M,P ⋆, R, P⋆) be an
(m,n)-ary P -Hv-module over an (m,n)-ary P -Hv-ring (R,P ⋆

1 , P
⋆
2 ), S,N are

(m,n)-ary Hv-submodules of M with N ⊆ S ⊆ M . Then (1) S/N is an
(m,n)-ary Hv-submodule of M/N ; (2) (M/N)/(S/N) ∼= M/S.

Proof. (1) We have (M/N, h⋆, R, h⋆) is an (m,n)-ary Hv-module over R. Let
y = s + N ∈ S/N . Having s ∈ S and S an (m,n)-ary Hv-submodule of M
implies that for every s′ ∈ S, s′ can be written as s′ = s+ (s′ − s). First, we
need to show that h⋆(s1+N, . . . , si−1+N,S/N, si+1+N, . . . , sm+N) = S/N .
It is clear that h⋆(s1 +N, . . . , si−1 +N,S/N, si+1 +N, sm +N) ⊆ S/N . Let
y = s′ +N ∈ S/N . Then

y ∈ h⋆(s1 +N, . . . , si−1 +N, s′ − (s1 + . . .+ sm), si+1 +N, . . . , sm +N)

⊆ h⋆(s1 +N, . . . , si−1 +N,S/N, si+1 +N, . . . , sm +N).
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We have that h⋆(rn−1
1 , s+N) = r1 . . . rn−1P2 ⋆ s+N ⊆ S/N .

(2) Since S and S/N are (m,n)-ary Hv-submodules of M and M/N re-
spectively, it follows that (M/S, k⋆, R, k⋆) and ((M/N)/(S/N), l⋆, R, l⋆) are
(m,n)-ary Hv-modules over R. We have

(M/N)/(S/N) = {x+N ⊕ S/N : x ∈M}

and M/S = {x + S : x ∈ M}. Let Φ : (M/N)/(S/N) → M/S with
Φ(x+N ⊕ S/N) = x+ S.

• Φ is well defined. Let w1 = x+N ⊕ S/N = w2 = y +N ⊕ S/N . Then
x − y + N ∈ S/N . We get that x − y ∈ S and hence, x + S = y + S.
Thus, Φ(x) = Φ(y).

• Φ is one-to-one. Let Φ(w1) = Φ(w2). Then x + S = y + S and hence,
x− y ∈ S. We get now that x− y+N ∈ S/N . The latter implies that
x+N ⊕ S/N = y +N ⊕ S/N . Thus, w1 = w2.

• Φ is onto. This clear.
• Φ is (m,n)-ary Hv-module strong homomorphism. We have that

Φ(l⋆(x1 +N ⊕ S/N, . . . , xm +N ⊕ S/N)) = Φ(x1 + . . .+ xm +N ⊕ S/N)

= x1 + . . .+ xm + S.

Thus,

Φ(l⋆(x1 +N ⊕ S/N, . . . , xm +N ⊕ S/N))

= k⋆(Φ(x1 +N ⊕ S/N), . . . ,Φ(xm +N ⊕ S/N))).

Moreover,

Φ(l⋆(r
n−1
1 , x+N ⊕ S/N)) = Φ(r1 . . . rn−1P2 ⋆

′ x+N ⊕ S/N)

= r1 . . . rn−1P2 ⋆
′ x+ S.

The latter expression is equal to k⋆(rn−1
1 ,Φ(x+N ⊕ S/N)).

Therefore, (M/N)/(S/N) ∼= M/S. □

5. Conclusion
This paper dealt with a special type of (m,n)-ary Hv-modules that is

known as (m,n)-ary P -Hv-modules. Several results related to (m,n)-ary
P -Hv-modules, their (m,n)-ary Hv-submodules and the quotient (m,n)-ary
Hv-modules were obtained. Also, the Isomorphism theorems for these (m,n)-
ary Hv-modules were proved.
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For future research, it will be interesting to find a link between (m,n)-
ary P -Hv-modules and (m,n)-ary modules by studying their fundamental
relation.
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ON (M,N)-ARY P-HV -MODULES AND THEIR ISOMORPHISM THEOREMS

M. AL TAHAN AND B. DAVVAZ

آن ها یکریختی قضایای و -تایی (m,n) های مدول -Hv-P بررسی

دواز٢ بی. و التحان١ ام.

عربی متحده امارات ابوظبی، دانشگاه آمار، و ریاضی ١گروه

ایران یزد، یزد، دانشگاه ریاضی، علوم ٢دانشکده

ابرساختارهای به آن ها تعمیم و ابرساختارها مطالعه مارتی، توسط ابرگروه ها تعریف ارائه از پس
را (m,n)-تایی Hv-مدول های مقاله، این در است. بوده برخوردار بالایی اهمیت از (m,n)-تایی

قضایای و کرده مطالعه را آن ها خواص می کنیم. بنا عمل ها ابر -P از استفاده با Hv-حلقه ها روی
می کنیم. اثبات را آن ها یکریختی

P-ابرعمل. (m,n)-تایی، Hv-مدول ابرعمل، کلیدی: کلمات
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