ON Z-SYMMETRIC MODULES | ||
Journal of Algebraic Systems | ||
مقاله 8، دوره 13، شماره 2، مهر 2025، صفحه 119-131 اصل مقاله (153.27 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22044/jas.2023.13005.1711 | ||
نویسندگان | ||
Minh Phuoc Bui* ؛ Sanh Van Nguyen | ||
Department of Mathematics, Faculty of Science, Mahidol University, Bangkok, Thailand. | ||
چکیده | ||
A ring $R$ is called a left $\mathcal{Z}$-symmetric ring if $ab \in \mathcal{Z}_l(R)$ implies $ba \in \mathcal{Z}_l(R)$, where $\mathcal{Z}_l(R)$ is the set of left zero-divisors. A right $\mathcal{Z}$-symmetric ring is defined similarly, and a $\mathcal{Z}$-symmetric ring is one that is both left and right $\mathcal{Z}$-symmetric. In this paper, we introduce the concept of $\mathcal{Z}$-symmetric modules as a generalization of $\mathcal{Z}$-symmetric ring. Additionally, we introduce the concept of an eversible module as an analogy to eversible rings and prove that every eversible module is also a $\mathcal{Z}$-symmetric module, like in the case of rings. | ||
کلیدواژهها | ||
$\mathcal{Z}$-symmetric ring؛ $\mathcal{Z}$-symmetric module؛ eversible ring؛ eversible module | ||
مراجع | ||
| ||
آمار تعداد مشاهده مقاله: 333 تعداد دریافت فایل اصل مقاله: 195 |