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ON WEAK EXTENDED ORDER ALGEBRAS WITH ADJOINT PAIRS
AND GALOIS PAIRS

M. Kondo

ABSTRACT. In this paper, we consider properties of weak extended order algebras
with adjoint pairs and Galois pairs, and prove some new results. Moreover, we clarify
the relation between these algebras and BCK-algebras, that is, the class of all normal
weak extended order algebras with adjoint pair satisfying the condition T — x = x
is identical with the class of all BCK-algebras with the condition (S).

1. INTRODUCTION

An algebraic treatment is very useful to consider properties of various log-
ics. In this case, every formula in the logic is interpreted and evaluated
in the algebra. For example, a formula A — A is provable in the classi-
cal propositional logic (CPL) by use of axioms and inference rules of the
logic. However, this method is not easy for the complicated formulas such as
(A— (B—C)) - (B—= (A— (C)) on one hand. It needs much effort to
get that the formula is provable using axioms and inference rules of CPL. On
the other hand, if we use an algebraic method for CPL, then such formulas
are interpreted and evaluated in the class of Boolean algebras and proved to
be true, that is, the values of the formulas equal to 1 in the Boolean algebras.

A uniform algebraic treatment of various logics requires the choice of suit-
able algebras and every logical symbol is interpreted in such algebras. Espe-
cially, the "implication” logical symbol — is important, because it plays an
essential role to get other provable formulas by axioms and inference rules
of the logic. This explains the importance of interpretation of implication
symbol as the basic algebraic tool. In [8], an implication logic is introduced
and implicative algebra is considered as an algebraic semantics of the impli-
cation logic. Since then, many interesting logics such as BCK-logic ([5]) are

introduced and studied using algebraic method such as filters [10]. After that
many algebras corresponding interesting logics are considered from the view
point of algebraic interest ([1, 2, 4, 6, 7, 9]).
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A binary relation R from a set X to a set Y is a subset R C X x Y and a
binary L-relation from X to Y isa map R: X XY — L, where L is usually
assumed to be some kind of algebra. For a distinguished element d € L, every
L-relation R from X to Y can be considered as a map X XY — L such that
(x,y) € R if and only if R(z,y) = d for all (z,y) € X x Y. Especially, a
partial order R on a set X can be represented as a map X x X — L such
that for all z,y,z € X

R(z,x) = d (reflexivity);
R(z,y) = R(y,z) =d = z =y (antisymmetry);
R(z,y) = R(y,2) =d = R(z,z) = d (transitivity).

This means that any (L—) relation on a set X can be considered as a map
from X x X to L with the distinguished element d € L. Considering the
cardinality of 2%*% and L**¥, a notion of maps from X x X to L is more
general than that of relations. Roughly speaking, the class of all maps from
X X X to L covers the class of all relations on X.

In this paper, we consider properties of weak extended order algebras. The
notion of weak extended order algebras is introduced in [1] and its basic re-
sults are proved in [I, 2, 1]. The algebra (X,—, T) of type (2,0) has — as
a primitive operator and can be considered as another representation of par-
tially ordered set with a greatest element T, which are also called implicative
algebras [8]. The binary operation — represents an extension of the order
relation < of a partially ordered set X with a greatest element T. Therefore,
the class wEQO of all weak extended order algebras is a wide algebraic class
which contains the class BCK of BCK-algebras, the class of Hilbert algebras,
and so on, as subclasses. Since weak extended order algebras are embed-
ded into complete such algebras by the MacNeille completion method, a new
operator ® can be defined under the condition of infinite distributivity as
follows:

x@y:/\{ﬂyéx—nf}.

From the definition, it is clear that the operator ® is a left adjoint to the
operator —,

rOy<z & y<r—z,

that is, (®,—) is an adjoint pair. On the other hand, for the primitive
operator —, the new operators ® and ~» are axiomatically introduced as
an adjoint pair (®,—) and (—, ~>) as a Galois pair to weak extended order
algebras [0, 7], in which the completeness and the infinite distributivity are
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not assumed. A new notion of adjoint triple (—, ®,~) is also introduced
rOY<z & yY<zr—z & rx<y~z

and its basic properties are considered in [0, 7]. As proved below, since the
notion of adjoint triple (—,®,~-) is equivalent to the fact that (®,—) is
the adjoint pair and (—,~-) is the Galois pair, essentially new results are
not deduced from the notion of adjoint triple. In addition, a definition of

symmetrical in [0, 7] is not sufficient. Because, a given symmetrical alge-
bra and its induced algebra are not isomorphic. This looses the meaning of
symmetric.

In this paper, we consider in detail properties of weak extended algebras
with adjoint pairs (AP) and Galois pairs (GP). We provide essentially new
results and simple proofs of the results obtained so far. Moreover, we clarify
the relation between these algebras and BCK-algebras [5, 11].

2. (WEAK) EXTENDED ORDER ALGEBRAS

We recall a definition of (weak) extended order algebras [1, 2, 4, 6, 7]. An
algebraic structure (X, —, T) is called a weak extended order algebra (simply
w-eo algebra) if

(El) x - T =T for all x € X

(E2) 2 - 2 =T for all z € X

(E3)r wy=Tandy »x=T = x=yforal z,y € X;

(Ed) x y=Tandy—2z=T =x—2z=T forall x,y,z € X.
An extended order algebra (eo-algebra) is a w-eo algebra satisfying the

conditions

(EOD)z—y=T = z—=2)—=>(z—>y)=T;

(EO2)z »y=T = (y—=z2) = (x—>2z)=T.

In addition, a w-eo algebra X is called normal if it satisfies

(N (z=y) = ((z=2)=(z=y)=T;

(N2) (x—=y) = (y—2) = (r—2) =T,

It is clear that every normal w-eo algebra is an eo-algebra.

Example 1. Let X = {a,b,c¢,d, T} and the operation — be defined by the
following table:
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ooy o |2
o~ o - | o
SINCS R =2l
2 42 o
—H = -

a0 >=oll

b b b
The algebra is an eo-algebra. But this is not normal, because

(c—=>d)=(b=c)>b—=d)=T—=>b—a)=T—=>b=b#T,

that is, (N2) does not hold in the w-eo algebra.
We define a binary relation < on the w-eo algebra (X, —, T) by

1<y & r—>y=T7T,

then (X, <, T) satisfies
(E1) 2 < T;
(E2") x < ;
E3) <y, y<z = z=y;
(E4)z <y, y<z = z<z
in other words, X is a partially ordered set (poset) with a top (greatest)
element T.

Now we define adjoint pairs , Galois pairs and adjoint triples, which play
important roles in the paper.

A w-eo algebra (X, —, T) has an adjoint pair (AP) (—,®) if there exists
a binary operation ® on X such that for all z,y,z € X,

rQy—z=T & y—=>(x—2)=T,
that is,
rOyY<z & y<z— =z

Example 2. Let X = ([0, 1], —,1). We define operators ® and — as follows:

1 (z<y)

rOy=min{r,y}, T—y= { y (otherwise)

It is easy to show that X is an eo-algebra and has an adjoint pair (AP)
(=, 0):
rOyY<z & y<zr— 2.
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A w-eo algebra (X, —, T) has a Galois pair (GP) (—,~») if there exists a
binary operation ~» on X such that for all x,y, z € X,

r—=y—2)=T @ y—=>(r~2)=T,
or equivalently,
r<y—z & y<r~2z.

Example 3. Let X be a partially ordered set {0,a,b,c,1}, where
0 <a<bc<1andb,c are incomparable. Consider the operations —, ~
defined by the following tables:

—10 a b c 1 ~10 a b c 1
0[1 1111 0/1 1111
alc 1 111 alb 1 111
blc cl cl bl101 ¢ c1
c|0 b b 11 clb b bl
110 a b cl 110 a b c1

It is a routine work to show that X is an eo-algebra and has a Galois pair
(GP) (—,~):
r<y—2z & y<zr~ 2.

A w-eo algebra (X, —, T) is said to be symmetrical if it has a Galois pair
(—,~) and (X, ~>, T) is a w-eo algebra, moreover, the partial orders induced
by the operations — and ~- are identical. We note that the algebra in the
Example 2 is the symmetric eo-algebra.

Remark 2.1. In [0, 7], the notion of symmetrical is defined as follows:

A w-eo algebra X is called symmetrical if it has a Galois pair

(—,~) and (X, ~», T) is a w-eo algebra.
This definition is different from the original one in [4]. In addition, the
definition in [0, 7] is not sufficient, because the two orders < and =< induced
by — and ~- respectively, are not identical in general, that is, v — y =T
is not equivalent to x ~» y = T. This means that for a symmetrical w-eo
algebra (X, —, T), its symmetric induced algebra (X, ~», T) is not isomorphic
to (X, —, T) in general. This looses the meaning of symmetric and expected
results. Therefore we adopt the original definition provided in [1].

A w-eo algebra (X, —,T) has an adjoint triple (AT) (—,®,~) if there
exist binary operations ® and ~-» such that for all z,y,z € X,

rOyY<z & y<r—z & <y~ 2.
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Example 4. Let X = {0,a,b,¢,1}, where 0 < a < b,c < 1 and b, ¢ are
incomparable. Consider the operations ©®,—,~» defined by the following
tables:

@10 a b c 1 —10 a b c 1 ~10 a b c 1
0/0 00OO0O 0/1 1111 0/1 1111
al0 0 0 a a alc 1111 alb 1 111
b|l10 a b a b blc c1l cl bl101 ¢ c1
cl|l0 00 ¢ c cl0b b 11 clb b bl1l1
110 a b c 1 110 a b c1 110 a b c1
It is easy to show that the algebra X is an eo-algebra with adjoint triple (AT)

(=, ®,~):
rOyY<z & y<r—z & <y~ 2.

We note that a w-eo algebra (X, —, T) has another name implicative algebra

5]
An algebra (X, —, T) of type (2,0) is called a BCK-algebra [5] if

(B1) ($—>y)—>((y—>2)—>(fﬁ—>Z))=T;
(B2) z = ((x = y) = y) =T,
(B3) x -2 =T;

(Bd)z — T =T,
(B5)a:—>y——|_andy—>x——l_$x—y

It is obvious that every BCK-algebra is a w-eo algebra but the converse does
not hold in general.

Proposition 2.2. Let (X,—,T) be a w-eo algebra. If it has a Galois pair
(GP) (—,~) then (EO2) condition holds:

(FO2) <y = y—z<zx—>z (Vr,y,z€eX).
Proof. For all t € X, since
t<y—=z&y<twz=r<ys<twz=r<it~wz=1t<1r— 2,
we have y — z <z — 2. ]

Proposition 2.3. Let (X, —,T) be a w-eo algebra. If it has a Galois pair
(GP) (—,~>) then T~z =z forallz € X.

Proof. Since T < z — z and (—, ~) is the Galois pair, we have x < T ~» x.
Moreover, it follows from T ~» x < T ~» x that T < (T ~ x) — x and so
(T ~x) — x =T, that is, T ~» z < z. Therefore, T ~» x = z. O
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Lemma 2.4. Let (X,—,T) be a w-eo algebra with (GP) (—,~»). If
T —=>ax=ux forallx € X, thenx — y =T if and only if x ~ y =T
forall x,y € X.

Proof. (=) Suppose that x — y = T. Since y = T — y, we get
T=x—-y=ax—=>(T =2y =T=(r~~y =x~1y.
(<) Conversely, let x ~» y = T. We have
T=T=>T=To@wy=2—(T =y =x—uy.
[

The next result is a characterization of symmetrical w-eo algebras.

Theorem 2.5. Let (X, —, T) be a w-eo algebra with (GP) (—,~>). Then we
have T — x =z for all x € X if and only if (X, —,T) is symmetrical.

Proof. (=) Let T — o = x for all z € X. It is sufficient to show that
(X,~-, T) is a w-eo algebra and satisfies

rT—=y=1 & v~y=1T.
This is obvious from Lemma 2.4.

(<) Conversely, suppose that (X, —, T) is a symmetrical w-eo algebra with
(GP) (—,~). Since (X,~», T) is the w-eo algebra and T = x ~» x, we have
x < T — x. On the other hand, forallu € X,ifu < T = 2z then T <wu~>2x
and thus u ~» x = T. Since the partial orders induced by — and ~- are the
same, we get u — x = T, that is,

Vu(u <T =2 = u<lzx).
Therefore, T — x <z and thus T — x =z for all x € X. ]
A w-eo algebra (X, —, T) is called commutative if it satisfies
r—=(y—=2)=T ©y—=(r—2)=T (Vr,y,z € X).

If a w-eo algebra has (GP), then the commutativity relates — and ~ as
follows.

Proposition 2.6. For any w-eo algebra (X,—, T) with (GP), it is commu-
tative if and only if vt - y=x ~y forall z,y € X.

Proof. (=) For all u € X, since

u<r—y < u—@—oy) =T
T

&S = (u—vy) (by commutativity)
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s r<u—y & ulz~y (by (GP)),

we obtain x — y = x ~ .
(<) Conversely, since

r—=(y—z2)=T © a<y—>z=y~2
S y<z—z
S y—=>(r—2)=T,

X is commutative.

3. W-EO ALGEBRAS WITH (AP) (®,—)

In this section we consider properties of w-eo algebras with (AP) (®, —) in
detail and provide new results. Let (X,— T) be a w-eo algebra with (AP)
(®,—), that is,

roy<z < y<z—z (Vr,y,zeX).
The following is a basic result for w-eo algebras with (AP) (®,—).

Proposition 3.1. For a w-eo algebra X with (AP) (®,—),
(1) (EO1): 2 <y =z—=10<z—>y;
2z<y =20x<z0y.

Proof. Let x < y. (1) Since, for all u € X,
u<z—=x = zOu<s<zrz<y = z0u<ly = u<lz—=y,

we get 2 =5 <z — .
(2) Similarly, for all u € X, we have

zOy<u= y<z—-u= r<y<z—-u= r<z—u = z20r < u.
This implies z ®x < z © y. [
A half of the next proposition is proved in [0].

Proposition 3.2. For a w-eo algebra (X, — T) with (AP) (®,—), we have
T —=x=ux forallz e X if and only if T ©x =x for all x € X.

Proof. (=) Theorem 2.7(2) [0].
(<) Let Tz =z for all x € X. For any u € X, since

u<TorzeToufresulr (YueX),
we have T — ¢ = z for all x € X. ]
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It has previously been proven that

Proposition 3.3 (Theorem 3.5 [(]). For any w-eo algebra (X,—,T) with
(AP) (®,—), it is commutative if and only if the operator ® is commutative,
that is, r @y =y ®x for all x,y, € X.

Proposition 3.4. For any w-eo algebra (X, —, T), if it is commutative, then
it satisfies T —x =x forallz € X.

Proof. Since T — (z — x) = T and commutativity, we have
r— (T —ax)=T.

We also have (T - z) = (T = 2) =T and thus T — ((T - z) > 2)=T
and (T — z) — o =T. This means T — z = x. O

Regarding the condition T — x = z, we have the following characterization
theorem about BCK-algebras.

Theorem 3.5. Let X be a normal w-eo algebra. X satisfies the condition
T —=x=ux forall v € X if and only if X is a BCK-algebra.

Proof. (=) Let X be a normal w-eo algebra. To show that X is a BCK-
algebra, it is sufficient to prove (B2) x — ((z — y) — y) = T, that is,
r < (x = y) — y. Since X is normal, we have T — = < (z — y) = (T = y)
by (N2). The assumption T — x = z for all x € X implies z < (z — y) — v.
Thus, X is a BCK-algebra.

(<) Conversely, we assume that X is a BCK-algebra. It is sufficient to
prove T — x = x for all x € X. Since X is the BCK-algebra, we get
T < (T = x) — z and thus (T — x) — = = T. Moreover, since
r < (xr = 2x) =2 =T = x by (B2), we have z — (T — z) = T.
Therefore, we obtain T — x =« for all x € X. [

For a BCK-algebra X, it is called a BCK-algebra with condition (S) [5] if
for all x,y € X, there exists a smallest element in {t € X |y < x — t}.
Such element is denoted by z o y. Now, we have the following result which
clarifies the relation between eo-algebras with (AP) and BCK-algebras with
the condition (S).

Theorem 3.6. Let X be a normal w-eo algebra satisfying T — x = x for all
r € X. X satisfies (AP) if and only if X is a BCK-algebra with condition

(5).
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Proof. (=) Let X be a normal w-eo algebra satisfying T — x = z for all
r € X. Suppose that X satisfies the condition (AP). Since X is a BCK-
algebra, it suffices to show that the condition (S) holds. It follows from (AP)
that y < x> rxOyandy <x — 2z = 2Oy < 2. This means that a set
{z € X |y < x — z has the smallest element = ® y and hence X satisfies the
condition (S).

(<) Conversely, assume that X is a BCK-algebra with condition (S). It is
sufficient to show that the condition (AP) 2 ©y < z < y < x — z holds for
all z,y,z € X. If we define an operator ® by x ® y = x o y then it is trivial
that the operator satisfies (AP). O

A w-eo algebra (X, —, T) with (AP) (®,—) is called associative [1, 2, 1,
, 7] if it satisfies the condition

r—=(y—z)=y0z—zforalzy ze X.

Proposition 3.7. Let (X, —,T) be a w-eo algebra with (AP). Then, it is
associative if and only if the operator © is associative, that 1s,
(x20yY)0z=20(y®z) foralz,y,z e X.

Proof. (=) For all u € X, we have
(z0y)oz<u & z<(z0y) 2u=y — (x = u)
S y0z<zr—u
& 120 ((Yoz) <u

Therefore, (zOy) @ z=20 (y © 2).
(<) For all u € X, from

u<zr—(y—z) < rz0uly—z
S yo(rou) <z
S (yoxr)ou<z
s u<l(yox) = 2,

we get © — (y — 2) =y ©® x — z, that is, X is associative.

4. ADJOINT TRIPLE (AT)

In this section we consider properties of w-eo algebras with (AT) (—, ®, ~).
We here prove new results which are essential for w-eo algebras with (AT).
Let (X,—, T) be a w-eo algebra with (AT) (—,®,~»). Since

rOyY<z e y<zr—z & x<y~z (Vr,y zeX),
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we see that (®,—) is an adjoint pair (AP) from the first equivalence and
(—,~») is a Galois pair (GP) from the second one. It also holds the converse.
Therefore, a w-eo algebra having (AT) (—,®,~>) is identical with a w-eo
algebra with (AP) (—,®) and (GP) (—,~).

It is easily proved from the definition of (AT).

Proposition 4.1. Let (X,—,T) be a w-eo algebra with (AT) (—,®,~).
Then it satisfies the following conditions: For all x,y,z € X,
Dex<y = zozr<z2>y,z2w~rx<2wy 20r<20Y;
2)zx<y =>y—z<r—oz,y~wz<r~wz,r02<y0:z2.

By Proposition 3.1, every w-eo algebra with (AP) satisfies (EO1) and every
w-eo algebra with (AT) also satisfies (EO2). Consequently, every w-eo algebra
with (AT) is an eo-algebra.

Proposition 4.2. For a w-eo algebra having (AT), it is associative if and only
if it satisfies the condition x — (y ~ z) =y ~ (x — 2) for all z,y,z € X.

Proof. (=) Suppose that a w-eo algebra (X, —, T) having (AT) is associative.
Since, for all u € X,

u<zr—=>(y~z) & rx0usy~z & (z0u)Oy<z
S 0oy <z S uy<zr—z
S u<y~(r—2),
we get © — (y ~ 2) =y~ (v — 2).

(<) It is sufficient to show that the operator ® is associative, that is,
(x0y)©z=20(y©®z) for all z,y,z € X. For all u € X, it follows from

(xQy)Oz<u & 20y<z~u
S y<z—(z~u) =z~ (r—u)
S yoz<zr—=u
S 20yoz) <u

that (2 Qy) @ z=20 (y © 2).
L]

Similarly, we have a next result.

Corollary 4.3. For a w-eo algebra (X, —,T) having (AT), it is associative
if and only if x ~~ (y ~ 2) =x Oy~ z forall x,y,z € X.

From the above, we have the following result.
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Theorem 4.4. For a w-eo algebra (X, —, T) with (AT), the following condi-
tions are equivalent:

(1) X is associative;

(2) the operator ® is associative;

B)x~(y~z)=20y~z foralzxyzeX;
4)z—(y~z)=y~(r—z2) foralz,y,ze X;

Remark 4.5. For a w-eo algebra (X, —, T) with (AT) (—, ®, ~), if it is com-
mutative and associative, then (X,®, T) is a commutative monoid with a
unit T and satisfies the residuation

rOyY<z & r<y—z & y<zr—z

However, we note that the algebra (X,®,T) is not a residuated lattice,
because it is not a lattice in general.

A partially ordered set X is called a join semilattice if there exists a smallest
upper bound of {z,y} for all z,y € X. We consider a problem under what
condition a w-eo algebra becomes a lattice.

A following formula

(sup) (@—=y)~wy=@E—-a)~wae
is called a sup condition.
Proposition 4.6. Let (X, —,T) be a w-eo algebra with (AT). If it satisfies
the (sup) condition (x — y) ~y = (y — x) ~> x, then
sup{z,y} = (z = y) ~ v,
that is, X 1s a join semilattice.
Proof. At first we show that (r — y) ~» y is an upper bound of {z,y}.

From 2z ® (z+ — y) < y we have x < (z — y) ~» y. Moreover, since
r—y<T=y—y, wealso have y ® (x = y) < y and thus

y<(z—=y)~y.
Therefore, (z — y) ~ y is the upper bound of {x,y}.
For any upper bound u of {x,y}, it follows from x < w and Proposition 4.1
that v — y <z — y and thus
=y ~wy<u—y~y=H—-u~u=Twu

From assumption of (AT), X has (GP) and thus 7" ~» u = u by Proposition
2.3. Therefore, we get (v — y) ~ y < u.

From the above, (r — y) ~~ y is the smallest upper bound of the set {z, y}.
[
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We put zVy = (x — y) ~ y. Let (X, —, T) be a bounded commutative
w-eo algebra with (AT) and (sup) condition, that is, there exists a smallest
element 1. € X with respect to the order <, or equivalently, it satisfies a
condition

(L) L—2=T forall z € X.

In this case, we note that + — 1 =z ~» L. Because, since X has (AT) and
is commutative, x — 1. = x ~» L for all x € X by Proposition 2.6.

Now we define 2’ =z — L = 2 ~ L. It follows from Proposition 4.1 that
if v <y theny <z forall x,y € X.

Proposition 4.7. Let (X, —, T) be a bounded commutative w-eo algebra with
(AT) and (sup) condition. Then it is a lattice, that is,

inf{z,y} = (2’ V).

Proof. Suppose that (X, —, T) is a bounded commutative w-eo algebra with
(AT) and (sup) condition. For all x € X, we have z” = x because

==L~ 1l=(L-oa)warx=T~wzr=Tozx=x

by Proposition 3.4.

Since ',y < 2'Vy and (2’ V') < 2" ==x,9y" =y, that is, (2/ V') is a
lower bound of {z,y}. For any lower bound z of {z,y}, since z < x,y, we
have 2/, 9y < 2/ and 2/ V ¢/ < 2/. This implies z = 2" < (2/ V ¢/)'. Therefore,
inf{z,y} = (' Vy').

[]

We put z Ay = (2 Vy'). It follows that every bounded commutative w-eo
algebra with (AT), (sup) and (L) is a lattice and hence that it becomes an
involutive residuated lattice.

A w-eo algebra (X, —, T) is called idempotent if it satisfies the condition

r—(r—y)=T & c—-y=T.

Proposition 4.8. Let (X,—, T) be an associative w-eo algebra with (AT).
Then it is idempotent if and only if the operator ® 1is idempotent, that is,
rOr=ux forallz € X.

Proof. (=) Since, for all u € X,
ror<us r<rous r—o(r—ou) =T r—ou=T<%E z<u,

we get Tt O x = .
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(=) Conversely, suppose x ® x = x. Then we have
r—=x—=y)=T © 20rx—-y=T & z—->y=T.

This says that X is idempotent.
O]

From these results, we have a characterization theorem of Boolean algebras
by w-eo algebras.

Theorem 4.9. Let (X, —, T) be a w-eo algebra. Then, (X,—, T) is bounded,
commutative, associative, idempotent with (sup) condition and has (AT) if
and only if it is a Boolean algebra.

Proof. (=) Let (X, —,T) be a w-eo algebra satisfying the conditions in the
theorem. In this case we note that (X,A,V,—,®, L, T) is an involutive
(commutative) residuated lattice. We also note that an involutive residuated
lattice becomes a Boolean algebra if x Ay = ® y for all z,y € X, because
it xt Ny = o ©y holds for all x,y € X in any residuated lattice, then X
is a Heyting algebra and satisfies "/ = x for all z € X ([3, 8]). Therefore
(X, A, V,—,®, L, T) is the Boolean algebra.

For all x,y € X, we have x ©y <z by y < T = x — x. Moreover, since
® is commutative, we get + ® y < y and hence x ® y < x A y. On the other
hand, we have

rAy=(xANy) @Ay <zOuy.

Therefore, z ANy =2 @y for all x,y € X.
(<) It is trivial.
O
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