ON THE NILPOTENT DOT PRODUCT GRAPH OF A COMMUTATIVE RING | ||
Journal of Algebraic Systems | ||
دوره 13، شماره 2، مهر 2025، صفحه 169-177 اصل مقاله (144.5 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22044/jas.2023.13207.1726 | ||
نویسندگان | ||
Asma Ali* ؛ Bakhtiyar Ahmad | ||
Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India. | ||
چکیده | ||
Let $\mathscr{B}$ be a commutative ring with $1\neq 0$, $1\leq m<\infty$ be an integer and $\mathcal{R}=\mathscr{B}\times \mathscr{B}\times \cdot \cdot \cdot \times \mathscr{B}$ ($m$ times). In this paper, we introduce two types of (undirected) graphs, total nilpotent dot product graph denoted by $\mathcal{T_{N}D(\mathcal{R})}$ and nilpotent dot product graph denoted by $\mathcal{Z_ND(\mathcal{R})}$, in which vertices are from $\mathcal{R}^\ast = \mathcal{R}\setminus \{(0,0,...,0)\}$ and $\mathcal{Z_{N}(\mathcal{R})}^*$ respectively, where $\mathcal{Z_{N}(\mathcal{R})}^{*}=\{w\in \mathcal{R}^*| wz\in \mathcal{N(R)}, \mbox{for some }z\in \mathcal{R}^*\} $. Two distinct vertices $w=(w_1,w_2,...,w_m)$ and $z=(z_1,z_2,...,z_m)$ are said to be adjacent if and only if $w\cdot z\in \mathcal{N}(\mathscr{B})$ (where $w\cdot z=w_1z_1+\cdots+w_mz_m$, denotes the normal dot product and $\mathcal{N}(\mathscr{B})$ is the set of nilpotent elements of $\mathscr{B}$). We study about connectedness, diameter and girth of the graphs $\mathcal{T_ND(R)}$ and $\mathcal{Z_ND(R)}$. Finally, we establish the relationship between $\mathcal{T_ND(R)}$, $\mathcal{Z_ND(R)}$, $\mathcal{TD(R)}$ and $\mathcal{ZD(R)}$. | ||
کلیدواژهها | ||
Dot product graph؛ Nilpotent graph؛ Reduced ring | ||
مراجع | ||
Algebra, 274(2) (2004), 847-855.
gebra, 296(2) (2006), 462-479.
ed., Springer Nature Switzerland AG, 2021.
(2008), 2706–2719.
and Boolean algebras, J. Pure Appl. Algebra, 180(3) (2003), 221–241.
Algebra, 217 (1999), 434–447.
(1993), 500–514.
Publishing Company, Massachusetts, London, Ontario, 1969.
(2015), 43–50.
semigroup, Semigroup Fourm, 65 (2002), 206–214.
torics, 4(2) (2015), 37–44.
6 (2014), Article ID: 1450037.
(2007), 600–611.
| ||
آمار تعداد مشاهده مقاله: 215 تعداد دریافت فایل اصل مقاله: 198 |