A SUBCLASS OF BAER IDEALS AND ITS APPLICATIONS | ||
Journal of Algebraic Systems | ||
مقاله 4، دوره 13، شماره 2، مهر 2025، صفحه 53-76 اصل مقاله (209.08 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22044/jas.2023.13233.1729 | ||
نویسندگان | ||
Zainab Gharabagi* ؛ Ali Taherifar* | ||
Department of Mathematics, Yasouj University, Yasouj, Iran. | ||
چکیده | ||
An ideal $I$ of a ring $R$ is called a right strongly Baer ideal if $r(I)=r(e)$, where $e$ is an idempotent, and there are right semicentral idempotents $e_{i}$ ($1\leq i\leq n$) with $ReR=Re_{1}R\cap Re_{2}R\cap...\cap Re_{n}R$ and each ideal $Re_{i}R$ is maximal or equals $R$. In this paper, we provide a topological characterization of this class of ideals in semiprime (resp., semiprimitive) rings. By using these results, we prove that every ideal of a ring $R$ is a right strongly Baer ideal \textit{if and only if} $R$ is a semisimple ring. Next, we give a characterization of right strongly Baer-ideals in 2-by-2 generalized triangular matrix rings, full and upper triangular matrix rings, and semiprime rings. For a semiprimitive commutative ring $R$, it is shown that $\Soc(R)$ is a right strongly Baer ideal \textit{if and only if} the set of isolated points of $\Max(R)$ is dense in it \textit{if and only if} $\Soc_{m}(R)$ is a right strongly Baer ideal. Finally, we characterize strongly Baer ideals in $C(X)$ (resp., $C(X)_{F}$). | ||
کلیدواژهها | ||
Traingular matrix ring؛ idempotent element؛ socle of a ring؛ ring of continuous function؛ Zariski topology | ||
مراجع | ||
33 (2010), 1–8.
via C(X), Quaest. Math., 39(3) (2016), 401–419.
(1997), 2149–2154.
(1983), 567–580.
annihilator ideal?, Comm. Algebra, 43 (2015), 2690–2702.
sentations, J. Algebra, 230 (2000), 558–595.
fully invariant extending property, Rocky Mountain J. Math., 32(4) (2002), 1299–1319.
Comm. Algebra, 49(6) (2021), 2444–2456.
tinuous on a finite set, Houston J. Math., 44(2) (2018), 721–739.
C(X), Topology Appl., 167 (2014), 62–68.
83(1) (2000), 5–13.
Math. Soc. Transactions, (1973), 43–60.
Stat., 45(1) (2016), 95–105.
Carol., 55(1) (2014), 121–130.
| ||
آمار تعداد مشاهده مقاله: 247 تعداد دریافت فایل اصل مقاله: 196 |