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ZERO FORCING NUMBER AND MAXIMUM NULLITY OF GENERAL
POWER GRAPHS

F. Kheyridoost and E. Vatandoost*

ABSTRACT. Let G = (V, E) be a simple and undirected graph. General power graph
of G, shown by Z,(QG), is a graph with the vertex set Z(V(G))\ ¢. Also two distinct
vertices B and C' are adjacent if and only if every b € B is adjacent to every ¢ € C'\{b}
in G. In this paper, we show that zero forcing number is equal to maximum nullity,
for general power graphs of complete bipartite graphs.

1. INTRODUCTION

In this paper, all graphs are assumed to be finite, simple and undirected.
We will often use the notation G = (V, E) to denote the graph with non-
empty vertex set V = V(G) and edge set E = E(G). An edge of G with
end vertices u and v is denoted by u ~ v. The openneighbourhood of a vertex
denoted Ng(v), is {u € V(G) : u ~ v € E(G)} and the close neighbourhood
of vertex v € V(G), Nglv], is Ng[v] = Ng(v) U {v}. For a set T C V(G),
the open neighbourhood of T is Ng(T) = UzerNg(x) and the closed neigh-
bourhood of T is Ng[T] = Ng(T) UT. The degree of a vertex z € V(G) is
degg(z) = |Ng(z)|. The minimum degree and mazimum degree of a graph
G denoted by §(G) and A(G), respectively. For a set S C V(G), the induced
subgraph by S is denoted by G[S]. The length of the shortest cycle in a graph
G is called girth of G and denoted by girth(G). The notations P,, C,,, K,
and K, are used for path, cycle, complete graph, and complete bipartite
graph, respectively.

The set of symmetric matrices of graph G is defined by

5(G) ={A c 5i(R) [ G(A) = G}

The maximum nullity of G is
M(G) = max{null(A) | A € S(G)}
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and the minimum rank of G is
mr(G) = min{rank(A) | A € S(G)}.

Let each vertex of a graph G be given one of two colors “black” and “white”.
If a white vertex b is the only white neighbour of a black vertex a, then a
changes the color of b to black. It is called (color-change rule.) Furthermore
we say a forces b or b is forced by a.

Let B be the initial black vertices. Then B is said a zero forcing set of
G if all of the vertices of G will be turned black after finitely many appli-
cations of the color-change rule. The zero forcing number of G, Z(G), is
the minimum cardinality among all zero forcing sets. The notation of a zero
forcing set, as well as the associated zero forcing number, of a simple graph
was introduced by the “AIM Minimum Rank-Special Graphs Work Group” in
(2008) [3]. They used the technique of zero forcing parameter of graph G and
found an upper bound for the maximum nullity of G related to zero forcing
sets. It is shown that for any graph G, M(G) < Z(G). Also the following
question has been raised in [3]. What is the class of graphs G for which
M(G) = Z(G)? As a simple example, the complete graph K,, on n vertices
has Z(K,) = M(K,) = n—1.In [8], Davila and Kenter conjectured the lower
bound Z(G) > (girth(G) — 2)(d(G) — 2) + 2, for every graph G such that
girth(G) > 3 and 6(G) > 2. This conjecture was considered by Gentner [16],
for ¢ = 4 and for triangle free graphs. For more results, see [1], [8], [9], [7],
1], [120,13], [14], [15),017), 18], [21],[23).

Melody and Renson [19] in 2019, introduced the concept of power set graph
of a simple graph. M. Eshaghi et al. [20] introduced the concept six types
of power graphs related to a graph (or directed graph), with the help of set
theory. They discussed the relation between Eulerian being the base graph
and these six power graph types.

In this paper we rename one of six types of power graphs to General Power
Graph. Also we show that, zero forcing number is equal to maximum nullity,
for general power graphs of complete bipartite graphs.

2. GENERAL POWER GRAPH

In this section, we introduce the general power graph. Then we will present
some preliminary results for general power graphs.

Definition 2.1. Let G be a graph. General power graph of GG, shown by
Z,(G), is a graph with the vertex set Z(V (G))\ ¢. Also two distinct vertices
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B and C are adjacent if and only if every b € B is adjacent to every ¢ € C'\{b}
in G.

Example 2.2. The following is an example of a general power graph.

{1} 1,2}

{1,2,3} »W-{l,?)}

{2,3} {3}
FIGURE 1. Z,(Ps)

Theorem 2.3. Let G be a graph, X = {x1,...,x;} < V(G). If
induced subgraph on X n G does not have wuniversal wverter and
Ng(z1) N...N Ng(x) =0, then X is an isolated vertex in Py(G).

Proof. Let Y € Ng (q)(X). Then every y € Y is adjacent to z; in G for every
1 <i<t.SoY C Ng(xy)N...N Ng(xp) or induced subgraph G[X] has at
least a universal vertex. However it is not true. Therefore X is an isolated
vertex in Z,(G). O]

Corollary 2.4. Let G be a graph of order n. Then P,(G) is a connected
graph if and only if A(G) =n — 1.

Proof. Let u be a universal vertex of G. By Definition 2.1, the vertex {u} is
a universal vertex of &, (G) and so Z,((G) is a connected graph.

Let G does not have any universal vertex and X = V(G) = {v1,...,v,}.
Then since Ng(v1) N...N Ng(v,) = 0, by Theorem 2.3, the vertex X is an
isolated vertex in &,(G). Therefore Z,(G) is not a connected graph. [

Theorem 2.5. Let G be a graph, X = A{x1,....,z} C V(G),
Neg(z) N ...N Ng(zy) =0 and

B =A{zr; € X | z; is a universal vertex in G[X]}.
[f@ 75 @, then N@g(g)(X) = QZ(%) \ {@,X}
Proof. Clearly, 2(%) \ {0,X} C Np ) (X). Let Y € Ny )(X). Then
Y # X and every y € Y is adjacent to every vertex x; € X \ {y}. Since

Ng(z1) N ... N Ng(zy) = 0, so y is a universal vertex of G[X]. Hence
Y € (%) \ {0, X}. Therefore Ny c)(X) € P(%)\ {0, X}. O
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Definition 2.6. Let X and Y be two disjoint sets. For every
Be 2(Y)\ 0, we define BV Z(X)={BUA| Ae Z(X)}.

Theorem 2.7. Let G be a graph, X = {x1,...,z:} C V(G), and
Ng(xl) N...N Ng(xt) = X"
i) Ift =1, then
N, {21}) = (Z(No(21)) \ 0) U ({21} v Z(Na(21)) \ ).
i) If t > 2 and C' = {z; € X | z; is a universal vertex in G[X|}, then
N, 6)(X) = Upegopg(B YV Z(X) U(Z(X)\0).
Proof. i) Let X = {z1}. By Definition 2.1, we have

(Z(Ne(z1)) \ D) U ({21} vV Z(Ne(21)) \ ) € Ny, o) ({71})-

Let Y € Ng c)({z1}). Then every vertex y € Y is adjacent to vertex z; in
graph G. Hence Y € (Z(Ng(z1)) \ 0) U ({x1} V L (Ng(x1)) \ 0). Therefore,

N, ({z1}) = (Z(Na(21)) \ ) U ({21} V Z(Na(21)) \ 0).
ii) Let Y € N (q)(X). Then every vertex y € Y is adjacent to vertex z; in
G, forevery 1 <i<t.Soy e Corye Ng(x1)N...N Ng(xy) = X*. Hence
Y € Upewopg(B YV Z(X7) U (L2(X7)\ 0). Therefore,

Noyoy(X) S | BV2X))U(2(X)\0).
Be2(C)\D
It is easy to see that every Y € Upcpcpp(B YV Z(X7)) U (L(X*)\ D) is
adjacent to vertex X in general power graph &2,(G). Therefore

No(X)= |J Bv2(X)u(2(X)\0).
Be2(C)\0
L]

Corollary 2.8. The general power graph Z4(G) is a complete graph if and
only if G is a complete graph.

Proof. Let V(G) = {v1,...,v,}. If Z4(G) is a complete graph, then for every
i, 1 <i<mn,{v;} is a universal vertex of &,(G). Thus for every i, 1 < i < n,
{v;} is adjacent to {vi,...,v,} \ {vi} in Z,(G). By Definition 2.1, v; is a
universal vertex of G. Hence GG is a complete graph.

Now suppose that G is a complete graph. For every vertex
X ={x1,..., 2} in Z4(G), we have

X* = Ng(a1) N ...N Ne(x) = V(G) \ X.
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Since every vertex of X is a universal vertex in graph G, so

(P(X)\O) UpeixyoBV 2(X1) = 2(V(G))\ {0, X}.

By Theorem 2.7, Ny )(X) = Z(V(G)) \ {0, X}. Therefore &;(G) is a
complete graph. ]

3. ZERO FORCING NUMBER AND MAXIMUM NULLITY OF THE GENERAL
POWER GRAPHS

In this Section, we show that zero forcing number is equal to maximum
nullity, for general power graph of some graphs.

Theorem 3.1. [I1] Let G be a connected graph of order n > 2. Then
Z(G) = n—1 if and only if G is isomorphic to a complete graph of
order n.

Theorem 3.2. [3] Let G = (V, E) be a graph and Z C'V a zero forcing set
for G. Then M(G) < Z(G).

The union of G; = (Vi, Ei), fori =1,... h, is
U?=1 Gi = (U?:1 Vi, U?:1 E;).
Theorem 3.3. [3] If G = U, Gy, then mr(G) < 32" mr(G).

Theorem 3.4. Let G be a graph of order n with V(G) = {v1,...,v,}. If for
every i, 1 < i <t < mn, dega(v;) = n —1t and for every j, t +1 < j < n,
dega(vj) =n—1, then Z(Z,(G)) =2" —t — 3.

Proof. Let X = {vy,...,v} and Y = {vp41,...,v,}. Then

2t—1

V(2,(@) = BV 2(Y)u(2(Y)\0),

i=1
where B; € Z(X)\ 0 and By = {v1},..., By = {v;}. By Definition 2.1, every
vertex of Z,(G) in Z(Y) \ 0 is a universal vertex of &2,(G). For every 1,
1 <4 < t induced subgraphs on B; V Z(Y) are isomorphic to Kgn-:. For
every i, t +1 < i < 2' — 1, induced subgraphs on B; V £ (Y') are isomorphic
to Koyn:. Also every vertex of B; V Z(Y) is not adjacent to the vertices of
BjV Z(Y), where i # j and 1 <1i,j < 2! — 1. (See Fig. 2)

Let Z be a Zero forcing set of &,(G) with minimum cardinality. If there

are at least two white vertices in Z(Y') \ (), then every black vertex has at

least two white vertices in its neighbourhood and so the forcing process is
stopped. It is a contradiction. So |Z N Z(Y)\ 0] > 2" — 2.
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If |ZN(B;vV2(Y))| <2 —2 for every i, 1 < i < ¢, then every black
vertex in (B; V Z(Y)) U (Z(Y) \ 0) has at least two white vertices in its
neighbourhood, which is not true. So |[ZN(B;V 2(Y))| > 2" —1, for every
i1<i<t

If there are at least two white vertices in LJ?;_IH(BZ VvV Z(Y)), then they
can forced only by the black vertices of &(Y) \ (). But every black vertex
of 2(Y) \ 0 has at least two white vertices in its neighbourhood. Which

is false. So ‘U?;L(Bz VZ2Y)NZ > 272" —t — 1) — 1. Therefore
Z|>2"—-1)—(t+2)=2"—-t—3.

Now let # = {{vz}ll <i<t+ 1} U {{01,’02}} and .Z =V (Z,(G)) \ #
be the set of initial black vertices of Z,(G). Since {vi11} € Z(Y) is the only
white neighbour of {vy,ve,v41} € {v1,v2} V 2(Y), so {vy,vq,v441} forces

{Ut+1}'

For every 1 < i < t, {v;} is the only white neighbour of
{vi,ve1} € BV 2(Y), so {v;} is forced by {v;,v411}. Finally, {vy, v} is
forced by {vi11}. Thus Z is a zero forcing set of Z,(G). Hence

2(2(G) < | L] =(2"=1) = |#B]=(2"=1) = (1 +2) = (2" =t = 3).

Therefore Z(Z,(G)) =2" —t — 3.

K2n7t Kant K2n7t KQn*t

FIGURE 2.
Every vertex of Z2(Y) \ 0 is adjacent to every vertex of the other sets.

Corollary 3.5. If n > 2 and G ~ K, 5, then
Z(Z4(G)) = 26 — s — 3 = M(Z4(G)).
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Proof. Let V(G) = {a,x1,--- ,xs}, degg(a) = s and X = {x1,--- ,z5}. Then
V(#,(©) = { o) faadl <i < sfula)
U {Bg,Bg U {a}|Bg € e@(X), |Bg| > 2}.

Let A be the adjacency matrix of &, (G) and R;(A) be the i — th row of A
such that for 1 < i < s, R;(A) be a row corresponding to vertex of {z;}.
For 1 < j <'s, Ry j(A) is the row corresponding to vertex {a,x;}. Also for
25 +1 < ¢ < 2571 — 2 let Ry(A) is the row corresponding to vertex By or
By U {a}, where B, € &(X) and |By| > 2. The row Rys+1_; is corresponding
to universal vertex {a}. (See the matrix A(Z,(K13)).

00010000O0O0O0O0O0QO 1\
0000100O0O0OO0OO0O0O0®O01
000001O0O0O0OO0OO0O0O0®O0T1
100000O0OO0OO0OO0O0OO0OO0O0T1
01 00000O0O0OO0O0O0O0O01
001000O0O0O0OO0OO0O0O0®O01
000000O0O0O0O0OO0OOO0O0T1
AP,(Ki3)=[000000000000001
00000O0OO0OO0O0OO0OO0O0OO®O01
00000O0OO0OO0O0OO0OO0OO0OO®O01
00000O0OO0OO0O0OO0OO0O0OO®O01
00000O0OO0OO0O0OO0OO0OO0OO0O®O0T1
00000O0OO0OO0O0OO0OO0O0OO0®O01
00000O0OO0OO0OO0OO0OO0OO0OO®O0T1
11111111111 111 O/
Now let C' be a matrix (2571 — 1) x (27! — 1) such that

o 1 1<i=g<os
Y A” o.w .

Let R;(C) be the i — th row of C. Then we have,
Ri(C) = Rea(C)
Ry(C) = Rs12(C)
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Also for every i, 2s +1 < i < 2571 — 2, we have, Ry,,1(C) = R;(C). Thus
rank(C) < s+2. So null(C) > (2571 —1) — (s +2) = 2571 — s — 3. (See matrix
C for A(@Q(K1’3)>.

100100000O0O0O0O0O0T1
01 001000O0O0O0O0O0GO0T1
00100100O0O0O0O0O0GO0TI1
100100000O0OO0O0OO0O0T1
01 001000O0O0O0O0O0O0T1
00100100O0O0O0O0O0O0T1
00000O0O0OO0O0O0OO0O0OO0®O0T1
C=10000000000O0O0O0O0T1
00000O0O0O0OO0O0OO0O0OO0®O0T1
00000O0O0O0O0O0O0O0O0®OTI1
000000O0O0O0O0OO0OOO0GO0T1
00000O0O0O0O0O0OO0O0O0®OTI1
000000O0OO0O0O0OO0OO0OO0OO0T1
00000O0O0O0O0O0OO0O0O0®O0TI1
\111111111111110)

Hence M (2,(G)) > 25t — s — 3. By Theorem 3.2,
2(2,(G) 2 M(& (G)) > 27 =5 =3
By Theorem 3.4, Z(2,(G)) = 25T — s — 3. Therefore

2(24(G)) = M(%(G)) =2 —5-3.

FIGURE 3. 2, (K1)
Vertex {a} is adjacent to every vertex of the other sets.
In Z(X)\ 0 and {a} vV Z(X)\ 0, only and only the vertex {z;}
is adjacent to {a,z;}, for 1 <i < s.

]

It is clear that mr(K, ;) = 2. So M(K,s) = r + s — 2. In the following
theorem, we show that Z (% (K,;)) = (33 (Krs))-
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Theorem 3.6. Let r,s > 2 and G = K, 5. Then

Z(Z,(G)) =2 —2r — 25 — 3 = M(2,(QG)).
Proof. Let X = {z;|]1 <i<r}and Y = {y;|]1 <i < s} be two partitions of
K, IfT = {{xi}|1 <i< 7’}, B, € 2(Y) and |Bi| > 2, then

UZ(XH)\(TU{dHuTu(L2Y)\0).

By Definition 2.1, for any two indices ¢ and j, (1 < ¢ < s,
1 <j<2%—s—1), induced subgraphs on

Z(X)\ (Tu{0}),T,(2(Y)\0),
{yz‘}il\/ (Z(X)\0) and B; vV (Z(X)\ 0) are empty graph, respectively. Also

o ({rih) = Uiy {Lmsas} P UZS (B U ) U (200)\ 0),

for every 1 < <.
N, c)(BiU{z;}) = {{xj}},
forevery1<z<25 s—1landevery 1 <j<r.

@i, ,}) {{a:j} {y;} }, for every 4,7, where 1 < ¢ < s and
1 < j <r.
X

No,@{wi}) = (Z(X)\ D) U ({yi} v (Z(X)\ D)), for every 1 <i <'s.
N@ G(A) (Z(Y)\0)), for every A € Z(X)\ (T'U{0}).

4(G)

N, ) ({yi} UA) = {{yz}}, for every A € Z(X), |A| > 2.
Ng,c)(B) = 2(X)\ 0, for every B € Z(Y),|B| > 2.

4(G)

N@ o (BiUA) =10, for every A € Z(X),|A| > 2. (See Fig. 4)
It is easy to see that,

By Theorem 3.3, mr(Z%,(G)) < 2s + 2r + 2. Hence,
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M(2,G)) > 2" —2s —2r — 3.

By Theorem 3.2, Z(Z,(G)) > M(Z,(G)) > 2"+* — 2s — 2r — 3. Now let

B = {{a:i}, {y1,y3, 231 < < 7“}
O {{u} fonpHL < i < s
U {{xl,m},{yhy?,}}

and Z = V(Z,(G)) \ % be the set of initial black vertices of Z,(G). For
every i, 1 <i <r, {x;} is the only white neighbour of {x;,y1,vy2}. So {z;} is
forced by {x;,y1,y2}. Since

N, ({y1,v2}) = Z2(X)\ 0, so {z1, 2}

is the only white neighbour of {y1,y2}. Thus {y1,y2} forces {z1,x2}.

For every i, 1 < i < s, we have Noy,(q)({yi,22}) = {{y:}, {22} }. So {i}
is the only white neighbour of {y;, x2}. Hence for every i, 1 <i <'s, {y;} is
forced by {y;, z2}. Since {y1,y3} is the only white neighbour of {x,z2}, so

{y1,ys} is forced by {z1, 22}
For every i, 1 < i <'s, {y;,z1} is the only white neighbour of {y;}. So for

every i, 1 <1i <s, {y;} forces {y;, z1}. Finally, for every 1 <i <, {z;,y1,y3}
is the only white neighbour of {x;}. So {x;,y1,ys} is forced by {x;}. Hence Z
is a zero forcing set of #2,(G). Thus

Z(2,(Q)) < |Z| =2""" —2s — 2r — 3.
Therefore,
270 — 25 —2r =3 < M(2,(Q)) < Z(2,(Q)) <27 — 25 — 2r — 3.

Hence, Z(Z,(G)) = M(Z,(G)) = 2" — 25 — 2r — 3.
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r >

FIGURE 4. 2, (K,.,)
Every vertex of 2(Y) \ 0 is adjacent to every vertex of 2(X)\ (T U{0}) UT. For every 1 <i < s the
vertex {y;} in Z(Y) \ 0 is adjacent to every vertex of {y;} V (Z(X) \ 0). For every 1 <i < r the vertex
{x;} in T is adjacent to the vertex B; V {x;}, where 1 < j < 2% — 1.

L]
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