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ZERO FORCING NUMBER AND MAXIMUM NULLITY OF GENERAL
POWER GRAPHS

F. Kheyridoost and E. Vatandoost∗

Abstract. Let G = (V,E) be a simple and undirected graph. General power graph
of G, shown by Pg(G), is a graph with the vertex set P(V (G))\ϕ. Also two distinct
vertices B and C are adjacent if and only if every b ∈ B is adjacent to every c ∈ C\{b}
in G. In this paper, we show that zero forcing number is equal to maximum nullity,
for general power graphs of complete bipartite graphs.

1. Introduction
In this paper, all graphs are assumed to be finite, simple and undirected.

We will often use the notation G = (V,E) to denote the graph with non-
empty vertex set V = V (G) and edge set E = E(G). An edge of G with
end vertices u and v is denoted by u ∼ v. The openneighbourhood of a vertex
denoted NG(v), is {u ∈ V (G) : u ∼ v ∈ E(G)} and the close neighbourhood
of vertex v ∈ V (G), NG[v], is NG[v] = NG(v) ∪ {v}. For a set T ⊆ V (G),
the open neighbourhood of T is NG(T ) = ∪x∈TNG(x) and the closed neigh-
bourhood of T is NG[T ] = NG(T ) ∪ T. The degree of a vertex x ∈ V (G) is
degG(x) =

∣∣NG(x)
∣∣. The minimum degree and maximum degree of a graph

G denoted by δ(G) and ∆(G), respectively. For a set S ⊆ V (G), the induced
subgraph by S is denoted by G[S]. The length of the shortest cycle in a graph
G is called girth of G and denoted by girth(G). The notations Pn, Cn, Kn

and Kr,s are used for path, cycle, complete graph, and complete bipartite
graph, respectively.
The set of symmetric matrices of graph G is defined by

S(G) = {A ∈ Sn(R) | G(A) = G}.
The maximum nullity of G is

M(G) = max{null(A) | A ∈ S(G)}
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and the minimum rank of G is

mr(G) = min{rank(A) | A ∈ S(G)}.

Let each vertex of a graph G be given one of two colors “black” and “white”.
If a white vertex b is the only white neighbour of a black vertex a, then a
changes the color of b to black. It is called (color-change rule.) Furthermore
we say a forces b or b is forced by a.

Let B be the initial black vertices. Then B is said a zero forcing set of
G if all of the vertices of G will be turned black after finitely many appli-
cations of the color-change rule. The zero forcing number of G, Z(G), is
the minimum cardinality among all zero forcing sets. The notation of a zero
forcing set, as well as the associated zero forcing number, of a simple graph
was introduced by the “AIM Minimum Rank-Special Graphs Work Group” in
(2008) [3]. They used the technique of zero forcing parameter of graph G and
found an upper bound for the maximum nullity of G related to zero forcing
sets. It is shown that for any graph G, M(G) ≤ Z(G). Also the following
question has been raised in [3]. What is the class of graphs G for which
M(G) = Z(G)? As a simple example, the complete graph Kn on n vertices
has Z(Kn) = M(Kn) = n−1. In [8], Davila and Kenter conjectured the lower
bound Z(G) ≥ (girth(G) − 2)(δ(G) − 2) + 2, for every graph G such that
girth(G) ≥ 3 and δ(G) ≥ 2. This conjecture was considered by Gentner [16],
for g = 4 and for triangle free graphs. For more results, see [1], [8], [9], [7],
[11], [12],[13], [14], [15],[17], [18], [21],[23].

Melody and Renson [19] in 2019, introduced the concept of power set graph
of a simple graph. M. Eshaghi et al. [20] introduced the concept six types
of power graphs related to a graph (or directed graph), with the help of set
theory. They discussed the relation between Eulerian being the base graph
and these six power graph types.

In this paper we rename one of six types of power graphs to General Power
Graph. Also we show that, zero forcing number is equal to maximum nullity,
for general power graphs of complete bipartite graphs.

2. General Power Graph
In this section, we introduce the general power graph. Then we will present

some preliminary results for general power graphs.

Definition 2.1. Let G be a graph. General power graph of G, shown by
Pg(G), is a graph with the vertex set P(V (G))\ϕ. Also two distinct vertices
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B and C are adjacent if and only if every b ∈ B is adjacent to every c ∈ C\{b}
in G.

Example 2.2. The following is an example of a general power graph.

{1}

{2}

{3}

{1, 2}

{1, 3}

{2, 3}

{1, 2, 3}

Figure 1. Pg(P3)

Theorem 2.3. Let G be a graph, X = {x1, . . . , xt} ⊆ V (G). If
induced subgraph on X in G does not have universal vertex and
NG(x1) ∩ . . . ∩NG(xt) = ∅, then X is an isolated vertex in Pg(G).

Proof. Let Y ∈ NPg(G)(X). Then every y ∈ Y is adjacent to xi in G for every
1 ≤ i ≤ t. So Y ⊆ NG(x1) ∩ . . . ∩ NG(xt) or induced subgraph G[X] has at
least a universal vertex. However it is not true. Therefore X is an isolated
vertex in Pg(G). □
Corollary 2.4. Let G be a graph of order n. Then Pg(G) is a connected
graph if and only if ∆(G) = n− 1.

Proof. Let u be a universal vertex of G. By Definition 2.1, the vertex {u} is
a universal vertex of Pg(G) and so Pg(G) is a connected graph.
Let G does not have any universal vertex and X = V (G) = {v1, . . . , vn}.
Then since NG(v1) ∩ . . . ∩ NG(vn) = ∅, by Theorem 2.3, the vertex X is an
isolated vertex in Pg(G). Therefore Pg(G) is not a connected graph. □
Theorem 2.5. Let G be a graph, X = {x1, . . . , xt} ⊆ V (G),
NG(x1) ∩ . . . ∩NG(xt) = ∅ and

B = {xi ∈ X | xi is a universal vertex in G[X]}.
If B ̸= ∅, then NPg(G)(X) = P(B) \ {∅, X}.
Proof. Clearly, P(B) \ {∅, X} ⊆ NPg(G)(X). Let Y ∈ NPg(G)(X). Then
Y ̸= X and every y ∈ Y is adjacent to every vertex xi ∈ X \ {y}. Since
NG(x1) ∩ . . . ∩ NG(xt) = ∅, so y is a universal vertex of G[X]. Hence
Y ∈ P(B) \ {∅, X}. Therefore NPg(G)(X) ⊆ P(B) \ {∅, X}. □
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Definition 2.6. Let X and Y be two disjoint sets. For every
B ∈ P(Y ) \ ∅, we define B ∨ P(X) = {B ∪ A | A ∈ P(X)}.

Theorem 2.7. Let G be a graph, X = {x1, . . . , xt} ⊆ V (G), and
NG(x1) ∩ . . . ∩NG(xt) = X∗.

i) If t = 1, then
NPg(G)({x1}) = (P(NG(x1)) \ ∅) ∪ ({x1} ∨ P(NG(x1)) \ ∅).

ii) If t ≥ 2 and C = {xi ∈ X | xi is a universal vertex in G[X]}, then
NPg(G)(X) =

⋃
B∈P(C)\∅(B ∨ P(X∗)) ∪ (P(X∗) \ ∅).

Proof. i) Let X = {x1}. By Definition 2.1, we have
(P(NG(x1)) \ ∅) ∪ ({x1} ∨ P(NG(x1)) \ ∅) ⊆ NPg(G)({x1}).

Let Y ∈ NPg(G)({x1}). Then every vertex y ∈ Y is adjacent to vertex x1 in
graph G. Hence Y ∈ (P(NG(x1)) \ ∅) ∪ ({x1} ∨ P(NG(x1)) \ ∅). Therefore,

NPg(G)({x1}) = (P(NG(x1)) \ ∅) ∪ ({x1} ∨ P(NG(x1)) \ ∅).
ii) Let Y ∈ NPg(G)(X). Then every vertex y ∈ Y is adjacent to vertex xi in
G, for every 1 ≤ i ≤ t. So y ∈ C or y ∈ NG(x1) ∩ . . . ∩NG(xt) = X∗. Hence
Y ∈

⋃
B∈P(C)\∅(B ∨ P(X∗)) ∪ (P(X∗) \ ∅). Therefore,

NPg(G)(X) ⊆
⋃

B∈P(C)\∅

(B ∨ P(X∗)) ∪ (P(X∗) \ ∅).

It is easy to see that every Y ∈
⋃

B∈P(C)\∅(B ∨ P(X∗)) ∪ (P(X∗) \ ∅) is
adjacent to vertex X in general power graph Pg(G). Therefore

NPg(G)(X) =
⋃

B∈P(C)\∅

(B ∨ P(X∗)) ∪ (P(X∗) \ ∅).

□
Corollary 2.8. The general power graph Pg(G) is a complete graph if and
only if G is a complete graph.

Proof. Let V (G) = {v1, . . . , vn}. If Pg(G) is a complete graph, then for every
i, 1 ≤ i ≤ n, {vi} is a universal vertex of Pg(G). Thus for every i, 1 ≤ i ≤ n,
{vi} is adjacent to {v1, . . . , vn} \ {vi} in Pg(G). By Definition 2.1, vi is a
universal vertex of G. Hence G is a complete graph.

Now suppose that G is a complete graph. For every vertex
X = {x1, . . . , xt} in Pg(G), we have

X∗ = NG(x1) ∩ . . . ∩NG(xt) = V (G) \X.
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Since every vertex of X is a universal vertex in graph G, so
(P(X∗) \ ∅)

⋃
B∈P(X)\∅(B ∨ P(X∗)) = P(V (G)) \ {∅, X}.

By Theorem 2.7, NPg(G)(X) = P(V (G)) \ {∅, X}. Therefore Pg(G) is a
complete graph. □

3. Zero forcing number and maximum nullity of the general
power graphs

In this Section, we show that zero forcing number is equal to maximum
nullity, for general power graph of some graphs.

Theorem 3.1. [14] Let G be a connected graph of order n ⩾ 2. Then
Z(G) = n − 1 if and only if G is isomorphic to a complete graph of
order n.

Theorem 3.2. [3] Let G = (V,E) be a graph and Z ⊆ V a zero forcing set
for G. Then M(G) ⩽ Z(G).

The union of Gi = (V i, Ei), for i = 1, . . . , h, is⋃h
i=1Gi = (

⋃h
i=1 Vi,

⋃h
i=1Ei).

Theorem 3.3. [3] If G =
⋃h

i=1Gi, then mr(G) ≤
∑h

i=1mr(Gi).

Theorem 3.4. Let G be a graph of order n with V (G) = {v1, . . . , vn}. If for
every i, 1 ≤ i ≤ t < n, degG(vi) = n − t and for every j, t + 1 ≤ j ≤ n,
degG(vj) = n− 1, then Z(Pg(G)) = 2n − t− 3.

Proof. Let X = {v1, . . . , vt} and Y = {vt+1, . . . , vn}. Then

V (Pg(G)) =
2t−1⋃
i=1

(Bi ∨ P(Y )) ∪ (P(Y ) \ ∅),

where Bi ∈ P(X) \ ∅ and B1 = {v1}, . . . , Bt = {vt}. By Definition 2.1, every
vertex of Pg(G) in P(Y ) \ ∅ is a universal vertex of Pg(G). For every i,
1 ≤ i ≤ t induced subgraphs on Bi ∨ P(Y ) are isomorphic to K2n−t. For
every i, t+ 1 ≤ i ≤ 2t − 1, induced subgraphs on Bi ∨ P(Y ) are isomorphic
to K2n−t. Also every vertex of Bi ∨ P(Y ) is not adjacent to the vertices of
Bj ∨ P(Y ), where i ̸= j and 1 ≤ i, j ≤ 2t − 1. (See Fig. 2)

Let Z be a Zero forcing set of Pg(G) with minimum cardinality. If there
are at least two white vertices in P(Y ) \ ∅, then every black vertex has at
least two white vertices in its neighbourhood and so the forcing process is
stopped. It is a contradiction. So |Z ∩ P(Y ) \ ∅| ≥ 2n−t − 2.
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If |Z ∩ (Bi ∨ P(Y ))| ≤ 2n−t − 2, for every i, 1 ≤ i ≤ t, then every black
vertex in (Bi ∨ P(Y )) ∪ (P(Y ) \ ∅) has at least two white vertices in its
neighbourhood, which is not true. So |Z ∩ (Bi∨P(Y ))| ≥ 2n−t−1, for every
i, 1 ≤ i ≤ t.

If there are at least two white vertices in
⋃2t−1

i=t+1(Bi ∨ P(Y )), then they
can forced only by the black vertices of P(Y ) \ ∅. But every black vertex
of P(Y ) \ ∅ has at least two white vertices in its neighbourhood. Which
is false. So |

⋃2t−1
i=t+1(Bi ∨ P(Y )) ∩ Z| ≥ 2n−t(2t − t − 1) − 1. Therefore

|Z| ≥ (2n − 1)− (t+ 2) = 2n − t− 3.

Now let B =
{
{vi}

∣∣∣1 ≤ i ≤ t + 1
}
∪
{
{v1, v2}

}
and L = V (Pg(G)) \ B

be the set of initial black vertices of Pg(G). Since {vt+1} ∈ P(Y ) is the only
white neighbour of {v1, v2, vt+1} ∈ {v1, v2} ∨ P(Y ), so {v1, v2, vt+1} forces
{vt+1}.

For every 1 ≤ i ≤ t, {vi} is the only white neighbour of
{vi, vt+1} ∈ Bi ∨ P(Y ), so {vi} is forced by {vi, vt+1}. Finally, {v1, v2} is
forced by {vt+1}. Thus L is a zero forcing set of Pg(G). Hence

Z(Pg(G)) ≤ |L | = (2n − 1)− |B| = (2n − 1)− (t+ 2) = (2n − t− 3).

Therefore Z(Pg(G)) = 2n − t− 3.

P(Y ) \ ∅ K2n−t−1

B2t−1 ∨ P(Y )

K2n−t

Bt+1 ∨ P(Y )

K2n−t

{vt} ∨ P(Y )

K2n−t

{v1} ∨ P(Y )

K2n−t

FIGURE 2.
Every vertex of P(Y ) \ ∅ is adjacent to every vertex of the other sets.

□

Corollary 3.5. If n ≥ 2 and G ≃ K1,s, then

Z(Pg(G)) = 2(s+1) − s− 3 = M(Pg(G)).
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Proof. Let V (G) = {a, x1, · · · , xs}, degG(a) = s and X = {x1, · · · , xs}. Then

V (Pg(G)) =

{
{xi}, {a, xi}|1 ≤ i ≤ s

}
∪ {a}

∪
{
Bℓ, Bℓ ∪ {a}|Bℓ ∈ P(X), |Bℓ| ≥ 2

}
.

Let A be the adjacency matrix of Pg(G) and Ri(A) be the i − th row of A
such that for 1 ≤ i ≤ s, Ri(A) be a row corresponding to vertex of {xi}.
For 1 ≤ j ≤ s, Rs+j(A) is the row corresponding to vertex {a, xj}. Also for
2s + 1 ≤ ℓ ≤ 2s+1 − 2, let Rℓ(A) is the row corresponding to vertex Bℓ or
Bℓ ∪ {a}, where Bℓ ∈ P(X) and |Bℓ| ≥ 2. The row R2s+1−1 is corresponding
to universal vertex {a}. (See the matrix A(Pg(K1,3)).

A(Pg(K1,3)) =



0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1

0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
1 1 1 1 1 1 0


Now let C be a matrix (2s+1 − 1)× (2s+1 − 1) such that

Cij =

{
1 1 ≤ i = j ≤ 2s

Aij o.w
.

Let Ri(C) be the i− th row of C. Then we have,
R1(C) = Rs+1(C)

R2(C) = Rs+2(C)
...

Rs(C) = R2s(C).
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Also for every i, 2s + 1 ≤ i ≤ 2s+1 − 2, we have, R2s+1(C) = Ri(C). Thus
rank(C) ≤ s+2. So null(C) ≥ (2s+1−1)− (s+2) = 2s+1−s−3. (See matrix
C for A(Pg(K1,3)).

C =



1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 1 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 1 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 1 1 1 1 1 1

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 0


Hence M(Pg(G)) ≥ 2s+1 − s− 3. By Theorem 3.2,

Z(Pg(G)) ≥ M(Pg(G)) ≥ 2s+1 − s− 3.

By Theorem 3.4, Z(Pg(G)) = 2s+1 − s− 3. Therefore
Z(Pg(G)) = M(Pg(G)) = 2s+1 − s− 3.

{a}

{a} ∨ P(X) \ ∅ K2s−1P(X) \ ∅K2s−1

FIGURE 3. Pe(K1,s)
Vertex {a} is adjacent to every vertex of the other sets.

In P(X) \ ∅ and {a} ∨ P(X) \ ∅, only and only the vertex {xi}
is adjacent to {a, xi}, for 1 ≤ i ≤ s.

□
It is clear that mr(Kr,s) = 2. So M(Kr,s) = r + s − 2. In the following

theorem, we show that Z(Pg(Kr,s)) = M(Pg(Kr,s)).
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Theorem 3.6. Let r, s ≥ 2 and G = Kr,s. Then
Z(Pg(G)) = 2r+s − 2r − 2s− 3 = M(Pg(G)).

Proof. Let X = {xi|1 ≤ i ≤ r} and Y = {yi|1 ≤ i ≤ s} be two partitions of
Kr,s. If T =

{
{xi}|1 ≤ i ≤ r

}
, Bi ∈ P(Y ) and |Bi| ≥ 2, then

V (Pg(G)) =
s⋃

i=1

({yi} ∨ (P(X) \ ∅))

2s−s−1⋃
i=1

(Bi ∨ (P(X) \ ∅))

∪P(X) \ (T ∪ {∅}) ∪ T ∪ (P(Y ) \ ∅).
By Definition 2.1, for any two indices i and j, (1 ≤ i ≤ s,
1 ≤ j ≤ 2s − s− 1), induced subgraphs on

P(X) \ (T ∪ {∅}), T, (P(Y ) \ ∅),
{yi} ∨ (P(X) \ ∅) and Bj ∨ (P(X) \ ∅) are empty graph, respectively. Also
we have,

NPg(G)({xi}) =
⋃s

j=1

{
{xi.yj}

}⋃2s−s−1
j=1 (Bj ∪ {xi}) ∪ (P(Y ) \ ∅),

for every 1 ≤ i ≤ r.

NPg(G)(Bi ∪ {xj}) =
{
{xj}

}
,

for every 1 ≤ i ≤ 2s − s− 1 and every 1 ≤ j ≤ r.
NPg(G)({yi, xj}) =

{
{xj}, {yi}

}
, for every i, j, where 1 ≤ i ≤ s and

1 ≤ j ≤ r.
NPg(G)({yi}) = (P(X) \ ∅) ∪ ({yi} ∨ (P(X) \ ∅)), for every 1 ≤ i ≤ s.
NPg(G)(A) = (P(Y ) \ ∅)), for every A ∈ P(X) \ (T ∪ {∅}).
NPg(G)({yi} ∪ A) =

{
{yi}

}
, for every A ∈ P(X), |A| ≥ 2.

NPg(G)(B) = P(X) \ ∅, for every B ∈ P(Y ), |B| ≥ 2.
NPg(G)(Bi ∪ A) = ∅, for every A ∈ P(X), |A| ≥ 2. (See Fig. 4 )
It is easy to see that,

Pg(G) =
s⋃

t=1

(K1,2r−1)
r⋃

t=1

(K1,2s−1)

(2r−1−r)(2s−1−s)⋃
t=1

(K1) ∪K2r−1,2s−1.

By Theorem 3.3, mr(Pg(G)) ≤ 2s+ 2r + 2. Hence,
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M(Pg(G)) ≥ 2r+s − 2s− 2r − 3.

By Theorem 3.2, Z(Pg(G)) ≥ M(Pg(G)) ≥ 2r+s − 2s− 2r − 3. Now let

B =
{
{xi}, {y1, y3, xi}|1 ≤ i ≤ r

}
∪

{
{yi}, {x1, yi}|1 ≤ i ≤ s

}
∪

{
{x1, x2}, {y1, y3}

}
and Z = V (Pg(G)) \ B be the set of initial black vertices of Pg(G). For
every i, 1 ≤ i ≤ r, {xi} is the only white neighbour of {xi, y1, y2}. So {xi} is
forced by {xi, y1, y2}. Since

NPg(G)({y1, y2}) = P(X) \ ∅, so {x1, x2}

is the only white neighbour of {y1, y2}. Thus {y1, y2} forces {x1, x2}.
For every i, 1 ≤ i ≤ s, we have NPg(G)({yi, x2}) =

{
{yi}, {x2}

}
. So {yi}

is the only white neighbour of {yi, x2}. Hence for every i, 1 ≤ i ≤ s, {yi} is
forced by {yi, x2}. Since {y1, y3} is the only white neighbour of {x1, x2}, so
{y1, y3} is forced by {x1, x2}.
For every i, 1 ≤ i ≤ s, {yi, x1} is the only white neighbour of {yi}. So for
every i, 1 ≤ i ≤ s, {yi} forces {yi, x1}. Finally, for every 1 ≤ i ≤ r, {xi, y1, y3}
is the only white neighbour of {xi}. So {xi, y1, y3} is forced by {xi}. Hence Z
is a zero forcing set of Pg(G). Thus

Z(Pg(G)) ≤ |Z| = 2r+s − 2s− 2r − 3.

Therefore,

2r+s − 2s− 2r − 3 ≤ M(Pg(G)) ≤ Z(Pg(G)) ≤ 2r+s − 2s− 2r − 3.

Hence, Z(Pg(G)) = M(Pg(G)) = 2r+s − 2s− 2r − 3.
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P(X) \ T ∪ {∅} P(Y ) \ ∅

{ys} ∨ P(X) \ ∅{y1} ∨ P(X) \ ∅

T

B2s−1 ∨ P(X) \ ∅Bs+1 ∨ P(X) \ ∅

FIGURE 4. Pe(Kr,s)
Every vertex of P(Y ) \ ∅ is adjacent to every vertex of P(X) \ (T ∪ {∅}) ∪ T . For every 1 ≤ i ≤ s the

vertex {yi} in P(Y ) \ ∅ is adjacent to every vertex of {yi} ∨ (P(X) \ ∅). For every 1 ≤ i ≤ r the vertex
{xi} in T is adjacent to the vertex Bj ∨ {xi}, where 1 ≤ j ≤ 2s − 1.

□
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عمومی توانی گراف های پوچی ماکسیمم و صفر تحمیلی عدد

دوست٢ وطن ای. و دوست١ خیری اف.

ایران قزوین، (ره)، خمینی امام المللی بین دانشگاه پایه، علوم دانشکده محض، ریاضی ١,٢گروه

با را آن که G گراف عمومی توانی گراف باشد. جهت دار غیر و ساده گراف G = (V,E) کنید فرض
B متمایز راس دو همچنین است. P(V (G)) \ ϕ رئوس مجموعه با گرافی می دهیم، نشان Pg(G)

مقاله این در باشد. مجاور G در c ∈ C \ {b} هر با b ∈ B هر اگر تنها و اگر مجاورند آن در C و
ماکسیمم با صفر تحمیلی عدد کامل، بخشی دو گراف های عمومی توانی گراف های برای می دهیم نشان

است. برابر پوچی

پوچی. ماکسیمم گراف، صفر تحمیلی عدد توانی، مجموعه کلیدی: کلمات


	1. Introduction
	2.  General Power Graph
	3. Zero forcing number and maximum nullity of the general power graphs
	References

