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K-FILTERS OF DISTRIBUTIVE LATTICES
M. Sambasiva Rao

ABSTRACT. The concept of K-filters is introduced in distributive lattices and studied
some properties of these classes of filters. Some necessary and sufficient conditions
are derived for every w-filter of a distributive lattice to become a K-filter. Some
equivalent conditions are derived for every D-filter of a distributive lattice to become
a KC-filter. Quasi-complemented lattices are characterized with the help of K-filters.

INTRODUCTION

Many authors introduced the concept of annihilators in the structures of
rings as well as lattices and characterized several algebraic structures in terms
of annihilators. T. P. Speed [11] and W. H. Cornish [!] made an extensive
study of annihilators in distributive lattices. In [5], some properties of min-
imal prime filters are studied in distributive lattices and the properties of
dense elements and D-filters are studied in M S-algebras [9]. In [2], the no-
tion of D-filters was introduced in pseudo-complemented semilattices. Later
it was generalized by the author [9] in M S-algebras. In the note [10], the au-
thors introduced the concepts of dual annihilators and p-filters in distributive
lattices. Certain topological properties of prime pu-filters are also investigated
in this paper. In [11], the author introduced the notion of normal filters and
characterized the quasi-complemented lattices with the help of normal filters.
In [8], the authors investigated certain important properties of prime D-filters
of distributive lattices. Recently in 2022, M. S. Rao and Ch. V. Rao intro-
duced the concept of w-filters [13] in distributive lattices and characterized
the w-filters with the help of minimal prime D-filters. In [12], the authors
introduced the concepts of regular filters and w-filters of distributive lattices.

The main aim of this paper is to characterize quasi-complemented lattices
with the help of special kind of D-filters of distributive lattices. The notion
of IC-filters is introduced and investigated certain properties of these filters
with the help of maximal filters and minimal prime D-filters of distributive
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lattices. It is initially characterize quasi-complemented lattices with the help
its prime D-filters. It is observed that every KC-filter of a distributive lattice
is a mw-filter. A set of equivalent conditions is given for every m-filter of a dis-
tributive lattice to become a K-filter. It is again observed that every proper
IC-filter of a distributive lattice is an w-filter but not the converse. However,
some equivalent conditions are derived for every w-filter of a distributive lat-
tice to become a K-filter. Some equivalent conditions are derived for the
class of all KC-filters of a distributive lattice to become a sublattice of the
lattice of all filters which leads to a characterization of quasi-complemented
lattices. Another characterization theorem of quasi-complemented lattices
is given which shows that every D-filter of a quasi-complemented lattice to
become a K-filter. Finally, the class of all Boolean algebras are characterized
with the help of IC-filters of distributive lattices.

1. PRELIMINARIES

In this section, we present certain definitions and results which are taken
mostly from the papers [1], [2], [10], [<], [13], [12] and [11].

Definition 1.1. [I] A type (2,2) algebraic structure (L, A, V) is called a
distributive lattice if it satisfies the following properties (1), (2), (3) and (4)
along with (5) or (5'):

(H)zANzx=2x,zVr=ux,

(
(
4) (xANy)Vz ==z, (zVy) ANz =z,
(
(

YaxV(yANz)=(xVy A(zVz),
for all x,y, 2z € L.

If L is a lattice, then the ideal (resp. filter) A of L is a non-empty lower
segment (resp. upper segment) closed under the operation V (resp. operation
A). For any lattice L with smallest element 0, the set Z(L) of all ideals of L
forms a complete distributive lattice as well as the set F(L) of all filters of
(L, V, A, 1) forms a complete distributive lattice. A proper ideal (resp. filter)
I of a lattice L is said to be mazimal if there exists no proper ideal (resp.
filter) J such that I C J. For any element a of a lattice L, the principal ideal
generated by a is the set (a] = {x € L | x < a}. The set of all principal ideals
of a lattice L is a sublattice of Z(L). Dually the set [a) = {z € L | a < x}
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is called a principal filter generated by a and the set of all principal filters is
a sublattice of F(L). A proper ideal (resp. proper filter) P of a lattice L is
called prime if for all a,b € L, aAb € P (aV b€ P)thena € Porbe P.
Every maximal ideal (resp. maximal filter) is prime.

The annihilator [14] of an element a of a distributive lattice L, is given as
the set (a)* ={ 2z € L|xANa=0}. Bya dense element of a lattice L, we
mean an element x such that (z)* = {0}. In a distributive lattice L, the set
D(L) of all dense elements forms a filter of L. A distributive lattice L with
0 is called quasi-complemented [7] if for each x € L there exists 2’ € L such
that z A2’ =0 and x V2’ € D(L).

Definition 1.2. [10] For any subset A of a distributive lattice L, the set A"
is define as At ={x € L|aVvae=1forall a e A}

Clearly A* is a filter of any distributive lattice L and A" is known as the
dual annihilator of the set A. For brevity, we denote {a}" by (a)". It can be
seen immediately that (a)*™ = L if and only if a = 1.

Definition 1.3. [8] A filter F of a lattice L is called a D-filter if D(L) C F.

In any distributive lattice L, it is clear that D(L) is the smallest D-
filter of the lattice L. For any subset A of a distributive lattice L, define
A°={x € L]aVvze D forall a € A}. In case of A = {a}, we simply repre-
sent ({a})° by (a)°. Then it is obvious that (1)° = L. Obviously, L° = D(L)
and D(L)° = L. Further, D(L) C A° for any subset A of a lattice L. For
any subset A of L, A° is a D-filter of L. For any x € L, it is obvious that
([2))° = (x)°. Then (0)° = D(L).

Proposition 1.4. [8] Let L be a distributive lattice and a,b € L. Then

(1) a < b implies (a)° C (b)°,

2) (@ A = () N (),

(3) (aVb)* =(a)”N(b)>,

(4) (a)° = L if and only if a € D(L).

Suppose that F'is a D-filter and P a prime D-filter of a distributive lattice
L such that ' C P. Then P is called a minimal prime D-filter belonging to
F' if there is no prime D-filter () such that F¥ C Q C P. A prime D-filter
belonging to D is simply called minimal prime D-filter. A prime D-filter P
of a lattice L is minimal [3] if and only if to each x € P, there exists y ¢ P
such that z Vy € D(L).

A filter F of a lattice L is called a regular [12] if FF = F°°. Clearly, each (x)°
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is a regular filter. A filter F' of a lattice F is called a 7-filter [12] if (x)°° C F
whenever x € F'. Every regular filter of a distributive lattice is a 7-filter. For
any ideal I of a lattice L, definew(l) = {z € L | xVa € D(L) for some a € I}.
In [13], it is observed that w([) is a D-filter of L. A filter F' of a lattice L
is called an w-filter if FF = w([I) for some ideal I of L. Every minimal prime
D-filter of L is an w-filter. Throughout this article, all lattices are bounded
distributive lattices unless otherwise mentioned.

2. MAIN RESULTS

In this section, the concept of IC-filters is introduced in lattices. Equivalency
between KC-filters and w-filters of lattices is established. A set of equivalent
conditions is derived for every filter of a lattice to become a K-filter.

Lemma 2.1. Fvery maximal filter of a lattice is a prime D-filter.

Proof. Let M be a maximal filter of a lattice L and = € D(L). Clearly M
is prime. Suppose x ¢ M. Since M is maximal, we get M V [x) = L. Thus
0 € MV [z). Hence there exists 0 # m € M such that m A x = 0. Thus
m € (z)* = {0}, which is a contradiction. Hence x € M, which concludes

that D(L) C M. Therefore M is a prime D-filter of L. O]

Theorem 2.2. The following assertions are equivalent in a lattice L:
(1) L is quasi-complemented;
(2) every prime D-filter is maximal;
(3) every prime D-filter is minimal.

Proof. (1) = (2): Assume that L is quasi-complemented. Let P be a prime
D-filter of L. Suppose there exists a proper filter () such that P C Q.
Choose z € () — P. Since L is quasi-complemented, there exists y € L such
that t Ay = 0 and x Vy € D(L). Since x ¢ P, we get (z)° C P. Hence
y€ (r)°C PCQ. Thus 0 =x Ay € Q, which is a contradiction. Therefore
P is maximal.

(2) = (3): Since every maximal filter is a prime D-filter, it is clear.

(3) = (1): Assume that every prime D-filter is minimal. Let x € L.
Suppose [x) V (z)° # L. Then there exists a prime D-filter P of L such
that [z) V (z)° € P. Then z € P and (z)° C P. Since P is minimal and
(x)° C P, we get « ¢ P which is a contradiction. Hence [z) V ()° = L. Thus
0 € [z) V (z)°. Then there exist b € (z)° such that z A b= 0. Since b € (z)°,
we get bV o € D(L). Therefore L is quasi-complemented. O

Definition 2.3. For any filter F of a lattice L, define IC(F') as follows:
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KF)={xe X | (x)°VF =L}
Clearly (L) = L. For F' = D(L), obviously KC(D(L)) = D(L).
Lemma 2.4. For any filter F' of a lattice L, KK(F) is a D-filter of L.

Proof. Clearly D(L) C K(F). Let z,y € K(F). Then, we get that
(x)°V F =L and (y)°V F = L. Hence

(zAy)°VF={(x)°Nny)°}VF={@x)°VF}n{{y)°VF}=LNL=L.

Hence x Ay € K(F). Let x € K(F) and x < y. Then (2)° C (y)° and thus
L= (x)°VFC(y)°VF. Hence y € K(F). Therefore K(F) is a D-filter of
L. [

In the following, some elementary properties of IC(F’) are derived.

Lemma 2.5. For any two filters F' and G of a lattice L, we have
(1) D(L) C F if and only if K(F') C F,
(2) F C G implies K(F) C K(G),

)
(3) K(FNG) = K(F) NK(G),
(4) K(F)VK(G) € K(FVG).

Proof. (1) Assume that D(L) C F. Let « € IC(F'). Then, we get (z)°VF = L.
Hence z € (z)°V F. Thus z = a A b for some a € (z)° and b € F. Since
a € (z)°, we get a Vo € D(L). Then there exists some d € D(L) such that
aVx =d. Thus

r=zVzr=(aANb)Vex=(aVa)ANbVz)=dAN(bVz)e DL)VF=F

because of bV x € F. Therefore IC(F') C F. Converse follows immediately
due to D(L) C K(F).

(2) Suppose FF C G. Let z € K(F). Then L = (z)°V F C (x)°V G.
Therefore z € K(G).

(3) Clearly K(FNG) C K(F)NK(G). Conversely, let x € IC(F) N K(G).
Then (z)°V F = (2)°V G = L. Now

(@)°V(FNG) ={(x)°VF}n{(x)°VG}=LNL=L.

Hence x € K(F N G). Thus K(F) N K(G) € K(F N G). Therefore
K(FNG)=K(F)NK(G).
(4) It follows from (2). O

Definition 2.6. A filter F' of a lattice L is called a K-filter if F' = IC(F).
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Clearly D(L) and L are K-filters of L. In [13], the class of all 7-filters
of a lattice L is characterized in terms of D-annulets of the lattice. In the
following theorem, it is proved that the class of all w-filters of a lattice L
contains properly the class of all IC-filters of L.

Proposition 2.7. Fvery K-filter of a lattice is a w-filter.

Proof. Let F be a K-filter of a lattice L. Then IC(F') = F. Let z € F. Then

()°V F = L. Now, let t € (2)°°. Then (x)° C (¢)°. Hence
L=(x)°VFC(t)°VF.

Thus t € K(F) = F, which concludes that (z)°° C F. Therefore F is a

m-filter of L. O]

The converse of Proposition 2.7 is not true. i.e. every w-filter of a lattice
need not be a KC-filter. It can be seen in the following example:

Example 2.8. Consider the distributive lattice L = {0, a, b, ¢, 1} whose Hasse
diagram is given in the following figure.

S\
¥

Consider the filter F' = {b, 1}. It can be easily observed that (b)°° C F. Hence

F is a w-filters of L. Observe that (b)°V F' = {a,b,c,1} # L. Therefore F is
not a K-filter of L.

However, in the following theorem, some equivalent conditions are given
for every regular filter of a lattice to become a K-filter.

Theorem 2.9. The following assertions are equivalent in a lattice L:
(1) every w-filter is a K-filter;
(2) every regular filter is a KC-filter;
(3) for each x € L, (x)°° is a K-filter;
(4) for each x € L, (x)°V (x)°° = L.

Proof. (1) = (2): Since every regular filter is a w-filter, it is clear.
(2) = (3): Since each (z)°° is a regular filter, it is clear.



K-FILTERS OF DISTRIBUTIVE LATTICES 7

(3) = (4): Let « € L. Since () is a K-filter of L, we get ()*° = K((z)*°).
Clearly z € (2)*° = K((z)*°). Hence (z)°V (2)*° = L.

(4) = (1): Assume that (z)°V (x)°° = L for each x € L. Let F' be a m-filter
of L. Clearly IC(F') C F. Conversely, let z € F. Since F is a 7-filter, we get
(x)°° C F. Hence L = (2)° V (2)*° C (2)°V F. Thus x € K(F'). Therefore
is a K-filter of L. ]

In [13], authors studied the properties of w-filters and proved that every w-
filter of a lattice is the intersection of all minimal prime D-filters containing
it. In the following, it is proved that the class of all K-filters is properly
contained in the class of all w-filters.

Theorem 2.10. Every proper K-filter of a lattice is an w-filter.
Proof. Let F be a proper K-filter of a lattice L. Then KC(F) = F. Consider

S={xelL|(x)°VF =L} Wefirst show that S is an ideal of L such
that SN D = (). Clearly 0 € S. Let z,y € S. Then

(zVy)™

{()*N(y)°} Vv F

{xoo\/F}ﬂ{ )V F}
LN
L.

Hence zVvVy € S. Let z € Sandy < z. Then L = (2)°*°VF C (y)°*°VF. Hence
y € S. Thus S is an ideal of L. Suppose x € SN D(L). Then (2)*°V F =L
and () = D(L). Hence F = D(L)V F = L, which is a contradiction.
Hence SN D(L) = (. We now show that F' = w(S). Let € w(S). Then
xVy € D(L) for some y € S. Now

zVy€e D) =ye ()
= (1)~ < (2)°

=L=(y)°*VFC(z)°VF sinceyeS

=reK(F)=F  since F is a K-filter

which concludes that w(S) C F. Conversely, let + € F = I(F). Then
()° V K(F) = L. Therefore 0 € (z)°V KC(F). Hence 0 = a A b for some
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a€ (z)°and be (F). ThusaV e e D(L) and (b)°V F = L. Now
aANb=0= (aNnb)°=(0)°=D(L)
= (0" N () = D(L)
- 0 < 0"
= (b)°VF C(a)VF sincebe KC(F)
=a€S and aVze D(L)
=z € w(S)
which gives F' = IC(F) C w(S). Hence F' = w(S). Therefore F is an w-filter
of L. []

The converse of Theorem 2.10 is not true. i.e. every w-filter of a lattice
need not be a C-filter. For, consider the distributive lattice given in Example
2.8. Consider F' = {1,b} and I = {0,a,c}. Clearly F is a filter and [ is an
ideal of L such that F' = w(I). Hence F is an w-filter of L. Now, observe
that KC(F) = {1}, because of (b)°V F = {1,a,b,c} # L. Therefore F is not
a IC-filter of L.

Proposition 2.11. For each a € L — D, (a)° is an w-filter of L.

Proof. Let a € L—D(L). Clearly (a]ND(L) = (). We show that (a)° = w((a]).
Let z € (a)°. Then xVa € D(L). Since a € (a], we get x € w((a]). Hence
(a)° € w((a]). Conversely, let x € w((a]). Then xz VvVt € D(L) for some
t € (a]. Since x Vt < xVa, we get xVae€ D(L). Hence x € (a)°. Therefore
w((a]) € (a)°. O

Proposition 2.12. Every prime KC-filter is a minimal prime D-filter.

Proof. Let P be a prime K-filter of a lattice L. Then P = IC(P). Let x € P.
Since = € IC(P), we get (x)°V P = L. Hence 0 € (z)°V P. Thus there exist
a € (z)° and b € P such that a Ab = 0. Since a € (z)°, we get aVx € D(L).
Suppose a € P. Then 0 = a A b € P, which is a contradiction. Thus to each
x € P, there exists a ¢ P such that x Va € D(L). By Lemma (2.4), P is a
minimal prime D-filter of L. ]

The converse of Proposition 2.12 is not true. For, consider the minimal
prime D-filter P = {1,a} of the distributive lattice given in Example 2.8.
Observe that K(P) = {1}, because of (a)°V P = {1,a,b,c} # L. Therefore
P is not a K-filter of L. However, in the following theorem, a set of equiva-
lent conditions is established for every minimal prime D-filter of a lattice to
become a prime K-filter.
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Theorem 2.13. The following assertions are equivalent in a lattice L:
(1) Every minimal prime D-filter is a prime KC-filter;

(2) for each x € L, (x)°V (2)*° = L;

(3) every w-filter is a KC-filter;

(4) every prime w-filter is a KC-filter.

Proof. (1) = (2): Assume that every minimal prime D-filter is a prime K-
filter. Let x € L. Suppose (z)°V (2)°° # L. Then there exists a maximal
ideal M such that {(x)°V (z)°} N M = (. Since D(L) C (z)° V (z)°°, we
get M N D(L) = (). Hence L — M is a minimal prime D-filter of L. By
the assumption, L — M is a K-filter. Suppose x € M. Since =z € (z)°°,
we get € {(x)°V ()} N M which is a contradiction. Thus x ¢ M and
therefore x € L — M = K(L — M). Hence (z)°V (L — M) = L, which gives
that 0 € (z)°V (L — M). Then a Ab = 0 € M for some a € (x)° and
be L — M. Since b ¢ M and M is prime, we must have a € M. Hence
a € {(z)°V (x)°°} N M, which is a contradiction. Therefore (z)°V (x)*° = L
for all z € L.

(2) = (3): Let F be an w-filter of L. Clearly K(F) C F. Conversely, let
x € F. Since F is an w-filter, we get (z)°° C F. Hence L = (2)° V (x)*° C
(x)°V F. Thus z € K(F). Therefore F'is a K-filter of L.

(3) = (4): is clear.

(4) = (1): Since every minimal prime D-filter is a prime w-filter, it is
obvious. ]

Definition 2.14. For any proper filter F’ of a lattice L, define
UF)={zel|(x)° ¢F}

Proposition 2.15. Let L be a lattice and M be a maximal filter of L. Then
the set Q(M) is a D-filter of L such that Q(M) C M.

Proof. Let M be a maximal filter. Clearly D(L) C M. Since M is proper, we
get (d gZ M for any d E D(L) Hence D(L) C Q(M). Suppose z,y € w(M).
Then (2)° € M and (y)° € M. Hence M C M V (z)° and M C M V (y)°.
Since M is maximal, we get M V (z)° = L and M V (y)° = L. Thus, we get
MV (zAy)° =MV{(z)n(y°}

= {MV (z)°}n{MV(y)°}

=LNL

~ I
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If (x Ny)° € M, then M = L which is a contradiction. Hence (x A y °d M.
Thus z Ay € Q(M) Again, let z € Q(M) and « < y. Then (x)° € M
and x < y. Since z < y, we get (z)° C (y)°. Hence (y)° ¢ M. Hence
y € Q(M). Therefore Q(M) is a D-filter of L. Now, let z € Q(M). Then
x)° ¢ M. Hence, there exists a € (x)° such that a ¢ M. Since a € (z)°, we
get aVa € D(L). Hence [aVz) C D(L). Suppose x ¢ M. Then MV [x) = L.
Since a ¢ M, we get M V [a) = L. Hence

L=MV{a)Nnz)}=MViave) CMV D)=
which is a contradiction. Hence x € M. Therefore Q(M) C M. O]

Proposition 2.16. Let P be a prime D-filter of a lattice L. Then
(1) K(P) € Q(P),
(2) if P is mazximal, then KC(P) = Q(P).

Proof. (1) Let x € K(P). Then (z)°Vv P = L. Suppose (z)° C P. Then
P = L, which is a contradiction. Hence (z)° € P. Thus x € Q(P). Therefore
K(P) € Q(P).
( ) From (1), we get IC(P) C Q(P). Conversely, let x € Q(P). Then
)° € P. Since P is maximal, we get ()°V P = L. Thus x € K(P).
Therefore Q(P) = K(P). ]

Let us denote that p is the set of all maximal filters of a lattice L. For any
filter I of a lattice L, we also denote u(F) ={M e u | F C M}.

Theorem 2.17. For any filter F' of a lattice L, K(F) =[] Q(M).
Mep(F)

Proof. Let x € IC(F) and F C M where M € u. Then
L= (z)°VFC(z)VM.

Suppose (x)° € M, then M = L, which is a contradiction. Hence
x)° ¢ M. Thus x € Q(M) for all M € u(F). Hence K(F) C () Q(M).
Meu(F)
Conversely, let x € () Q(M). Then x € Q(M) for all M € u(F).
Meu(F)
Suppose (2)° V F # L. Then there exists a maximal filter M, such that
(x)°V EF C My. Hence (x)° C My and F C M. Since F' C My, by hypothesis,
we get © € Q(My). Hence (2)° ¢ M, which is a contradiction. Therefore

(x)°V F = L. Hence z € K(F). Therefore (| QM) C K(F). O
Mep(F)
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From the above theorem, it can be easily observed that K(F) C Q(M) for
every M € p(F). Now, in the following, a set of equivalent conditions is
derived for the class of all D-filters of the form K(F') to become a sublattice
to the lattice F(L) of all filters of L, which leads to a characterization of a
quasi-complemented lattice.

Theorem 2.18. The following assertions are equivalent in lattice L:
(1) L is quasi-complemented;
(2) for any M € pu, Q(M) is mazimal;
(3) for any F,G € F(L), FV G = L implies K(F)V K(G) = L;
(4) for any F,G € F(L), K(F)V K(G)=K(FVG);
(5) for any two distinct mazimal filters M and N, Q(M)V Q(N) = L;
(6) for any M € u, M is the unique member of u such that Q(M) C M.

Proof. (1) = (2): Assume that L is quasi-complemented. Let M be a maxi-
mal filter of L. It is enough to show that Q(M) = M. Clearly Q(M) C M.
On the other hand, let x € M. Since L is quasi-complemented, there exists
y € L such that z Ay =0and zVy € D(L). Hence y € (x)°. If y € M, then
0 =2 Ay € M which is a contradiction. Hence y ¢ M such that y € (x)°.
Thus (z)° € M. Hence x € Q(M). Therefore M C Q(M).

(2) = (3): Clearly Q(M) = M for all M € p. Let F,G € F(L) be such
that F'V G = L. Suppose K(F)V K(G) # L. Then there exists a maximal
filter M such that IC(F)V K(G) € M. Hence K(F) C M and K(G) C M.
Now

KF)cM= (] QM)cM
M;ep(F)
= Q(M;) C M for some M; € p(F) (since M is prime)
= M; C M by (2)
= FCM since F' C M,;.

Similarly, we get G C M. Hence L = F'V G C M, which is a contradiction
to the maximality of M. Therefore K(F) VvV K(G) = L.

(3) = (4): Let .G € F(L). Clearly K(F)V K(G) C K(F V G). Con-
versely, let z € K(FVG). Then {(z)°V F}V{(x)°VG} = (2)°VFVG = L.
Hence by condition (3), we get K((z)° V F)V K((z)° VG) = L. Thus
r € K((x)°V F)VK((x)°VG). Hence x = r A s for some r € K((z)° V F)
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and s € K((x)° vV G). Now
re K(z)°VF)=(r)°Vv{(z)VF}=L
=L={(r)°V(@)}VFC(rvz)VF
= (rva)°VF=L
=rVaze(F)
Similarly, we get s V& € K(G). Now, we have the following consequence:
r=zxzVux
=(rAs)Vz
=(rva)A(sVzx)
where r Vo € K(F) and s V2 € K(G). Hence x € K(F) V K(G). Thus
K(FVG)CK(F)VK(G). Therefore K(F)V K(G) = K(F V G).
(4) = (5): Let M,N be two distinct maximal filters of L. Choose

r € M—Nandy € N— M. Since x ¢ N, we get NV [z) = L. Since
y%M,wegetM\/[y):L Now, we get

K(L)
= IC(L V L)
RNV (v )
=K({MVz)} V{NVy})
=K(M V N) sincex € M and y € N
=K(M)V IK(N) by condition (4)
CQ(M)VQN) by Proposition 2.16(1)

Therefore Q(M)V Q(N) = L.

(5) = (6): Let M € u. Suppose N € p such that N # M and Q(N) C M.
Since (M) C M, by hypothesis, we get L = Q(M) V Q(N) = M, which is a
contradiction. Hence M is the unique maximal filter such that Q(M) C M.

(6) = (1): Let 2 € L. Suppose 0 ¢ [x) V (x)°. Then there exist a maximal
filter M such that [x)V (z)° C M. Then z € M and (z)° C M. Hence x € M
and x ¢ Q(M). Since x ¢ Q(M), there exists a maximal filter M, such that
xr & My and Q(M) C M,. By the uniqueness of M, we get M = M,. Hence
r ¢ My = M, which is a contradiction. Thus 0 € [x) V (x)°, which gives
0 =z Aa for some a € (z)°. Hence z Aa =0 and z Va € D(L). Therefore
L is a quasi-complemented lattice. ]

Theorem 2.19. Following assertions are equivalent in a lattice L:
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(1) L is quasi-complemented;

(2) every D-filter is a K-filter;

(3) every prime D-filter is a K-filter;
(4) every prime D-filter is minimal.

Proof. (1) = (2): Assume that L is quasi-complemented. Let F' be a D-filter
of L. Clearly IC(F') C F. On the other hand, let x € F. Since L is quasi-
complemented, there exists y € L such that ztAy =0and xVy € D. Suppose
()°V F # L. Then there exists a prime filter P such that (z)° v F C P.
Then (z)° € P and z € FF C P. Suppose y € P. Then 0 =z Ay € P which
is a contradiction. Hence y ¢ P. Since x Vy € D, we get y € (z)° C P
yields a contradiction. Thus (z)°V F = L which gives that x € IC(F"). Hence
F C K(F). Therefore F is K-filter of L.

(2) = (3): It is clear.

(3) = (4): Assume that every prime D-filter is a KC-filter. Let P be a
prime D-filter of L. Since P is proper, there exists ¢ € L such that ¢ ¢ P.
By condition (3), P is a K-filter of L. Hence IC(P) = P. Let z € P = K(P).
Then (z)°V P = L and thus ¢ € (z)° V P. Then ¢ = a A b for some a € (z)°
and b € P. Since a € (x)°, we get x Va € D(L). Suppose a € P. Since P is
prime and b € P, we get ¢ = a Ab € P which is a contradiction. Thus a ¢ P.
Hence z V a € D(L) for some a ¢ P. Therefore P is minimal.

(4) = (1): By Theorem 2.2, it follows. ]

Since every Boolean algebra contains a unique dense element precisely 1,
it is clear that every filter of a Boolean algebra is a D-filter. Further, it can
be easily seen that every Boolean algebra is quasi-complemented. Thus, we
have the following:

Theorem 2.20. Following assertions are equivalent in a lattice L:

(1) L is a Boolean algebra;

(2) every filter is a K-filter;

(3) every prime filter is a K-filter;
(4) every prime filter is minimal.

Proof. (1) = (2), (2) = (3) and (3) = (4) are straightforward.

(4) = (1): Assume that every prime filter of L is minimal. Let
x € L. Suppose 0 ¢ [x) V (z)". Then there exists a prime filter P such
that [x) V (x)* C P. Hence z € P and (z)" C P. Since P is minimal and
(x)" C P, we get ¢ P which is a contraction. Hence 0 € [z) V (z)*. Then
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there exist a € ()" such that a Az = 0. Since a € (z)", we get ©Va = 1.
Hence a is the complement of . Therefore L is Boolean. ]
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