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K-FILTERS OF DISTRIBUTIVE LATTICES

M. Sambasiva Rao

Abstract. The concept of K-filters is introduced in distributive lattices and studied
some properties of these classes of filters. Some necessary and sufficient conditions
are derived for every π-filter of a distributive lattice to become a K-filter. Some
equivalent conditions are derived for every D-filter of a distributive lattice to become
a K-filter. Quasi-complemented lattices are characterized with the help of K-filters.

Introduction
Many authors introduced the concept of annihilators in the structures of

rings as well as lattices and characterized several algebraic structures in terms
of annihilators. T. P. Speed [14] and W. H. Cornish [4] made an extensive
study of annihilators in distributive lattices. In [5], some properties of min-
imal prime filters are studied in distributive lattices and the properties of
dense elements and D-filters are studied in MS-algebras [9]. In [2], the no-
tion of D-filters was introduced in pseudo-complemented semilattices. Later
it was generalized by the author [9] in MS-algebras. In the note [10], the au-
thors introduced the concepts of dual annihilators and µ-filters in distributive
lattices. Certain topological properties of prime µ-filters are also investigated
in this paper. In [11], the author introduced the notion of normal filters and
characterized the quasi-complemented lattices with the help of normal filters.
In [8], the authors investigated certain important properties of prime D-filters
of distributive lattices. Recently in 2022, M. S. Rao and Ch. V. Rao intro-
duced the concept of ω-filters [13] in distributive lattices and characterized
the ω-filters with the help of minimal prime D-filters. In [12], the authors
introduced the concepts of regular filters and π-filters of distributive lattices.

The main aim of this paper is to characterize quasi-complemented lattices
with the help of special kind of D-filters of distributive lattices. The notion
of K-filters is introduced and investigated certain properties of these filters
with the help of maximal filters and minimal prime D-filters of distributive
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lattices. It is initially characterize quasi-complemented lattices with the help
its prime D-filters. It is observed that every K-filter of a distributive lattice
is a π-filter. A set of equivalent conditions is given for every π-filter of a dis-
tributive lattice to become a K-filter. It is again observed that every proper
K-filter of a distributive lattice is an ω-filter but not the converse. However,
some equivalent conditions are derived for every ω-filter of a distributive lat-
tice to become a K-filter. Some equivalent conditions are derived for the
class of all K-filters of a distributive lattice to become a sublattice of the
lattice of all filters which leads to a characterization of quasi-complemented
lattices. Another characterization theorem of quasi-complemented lattices
is given which shows that every D-filter of a quasi-complemented lattice to
become a K-filter. Finally, the class of all Boolean algebras are characterized
with the help of K-filters of distributive lattices.

1. Preliminaries
In this section, we present certain definitions and results which are taken

mostly from the papers [1], [3], [10], [8], [13], [12] and [14].

Definition 1.1. [1] A type (2, 2) algebraic structure (L,∧,∨) is called a
distributive lattice if it satisfies the following properties (1), (2), (3) and (4)
along with (5) or (5′):
(1) x ∧ x = x, x ∨ x = x,
(2) x ∧ y = y ∧ x, x ∨ y = y ∨ x,
(3) (x ∧ y) ∧ z = x ∧ (y ∧ z), (x ∨ y) ∨ z = x ∨ (y ∨ z),
(4) (x ∧ y) ∨ x = x, (x ∨ y) ∧ x = x,
(5) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),
(5′) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z),

for all x, y, z ∈ L.

If L is a lattice, then the ideal (resp. filter) A of L is a non-empty lower
segment (resp. upper segment) closed under the operation ∨ (resp. operation
∧). For any lattice L with smallest element 0, the set I(L) of all ideals of L
forms a complete distributive lattice as well as the set F(L) of all filters of
(L,∨,∧, 1) forms a complete distributive lattice. A proper ideal (resp. filter)
I of a lattice L is said to be maximal if there exists no proper ideal (resp.
filter) J such that I ⊂ J . For any element a of a lattice L, the principal ideal
generated by a is the set (a] = {x ∈ L | x ≤ a}. The set of all principal ideals
of a lattice L is a sublattice of I(L). Dually the set [a) = {x ∈ L | a ≤ x}



K-FILTERS OF DISTRIBUTIVE LATTICES 3

is called a principal filter generated by a and the set of all principal filters is
a sublattice of F(L). A proper ideal (resp. proper filter) P of a lattice L is
called prime if for all a, b ∈ L, a ∧ b ∈ P (a ∨ b ∈ P ) then a ∈ P or b ∈ P .
Every maximal ideal (resp. maximal filter) is prime.

The annihilator [14] of an element a of a distributive lattice L, is given as
the set (a)∗ = { x ∈ L | x ∧ a = 0 }. By a dense element of a lattice L, we
mean an element x such that (x)∗ = {0}. In a distributive lattice L, the set
D(L) of all dense elements forms a filter of L. A distributive lattice L with
0 is called quasi-complemented [7] if for each x ∈ L there exists x′ ∈ L such
that x ∧ x′ = 0 and x ∨ x′ ∈ D(L).
Definition 1.2. [10] For any subset A of a distributive lattice L, the set A+

is define as A+ = {x ∈ L | a ∨ x = 1 for all a ∈ A}.
Clearly A+ is a filter of any distributive lattice L and A+ is known as the

dual annihilator of the set A. For brevity, we denote {a}+ by (a)+. It can be
seen immediately that (a)+ = L if and only if a = 1.
Definition 1.3. [8] A filter F of a lattice L is called a D-filter if D(L) ⊆ F .

In any distributive lattice L, it is clear that D(L) is the smallest D-
filter of the lattice L. For any subset A of a distributive lattice L, define
A◦ = {x ∈ L | a∨x ∈ D for all a ∈ A}. In case of A = {a}, we simply repre-
sent ({a})◦ by (a)◦. Then it is obvious that (1)◦ = L. Obviously, L◦ = D(L)
and D(L)◦ = L. Further, D(L) ⊆ A◦ for any subset A of a lattice L. For
any subset A of L, A◦ is a D-filter of L. For any x ∈ L, it is obvious that
([x))◦ = (x)◦. Then (0)◦ = D(L).
Proposition 1.4. [8] Let L be a distributive lattice and a, b ∈ L. Then
(1) a ≤ b implies (a)◦ ⊆ (b)◦,
(2) (a ∧ b)◦ = (a)◦ ∩ (b)◦,
(3) (a ∨ b)◦◦ = (a)◦◦ ∩ (b)◦◦,
(4) (a)◦ = L if and only if a ∈ D(L).
Suppose that F is a D-filter and P a prime D-filter of a distributive lattice

L such that F ⊆ P . Then P is called a minimal prime D-filter belonging to
F if there is no prime D-filter Q such that F ⊆ Q ⊂ P . A prime D-filter
belonging to D is simply called minimal prime D-filter. A prime D-filter P
of a lattice L is minimal [8] if and only if to each x ∈ P , there exists y /∈ P
such that x ∨ y ∈ D(L).

A filter F of a lattice L is called a regular [12] if F = F ◦◦. Clearly, each (x)◦
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is a regular filter. A filter F of a lattice F is called a π-filter [12] if (x)◦◦ ⊆ F
whenever x ∈ F . Every regular filter of a distributive lattice is a π-filter. For
any ideal I of a lattice L, define ω(I) = {x ∈ L | x∨a ∈ D(L) for some a ∈ I}.
In [13], it is observed that ω(I) is a D-filter of L. A filter F of a lattice L
is called an ω-filter if F = ω(I) for some ideal I of L. Every minimal prime
D-filter of L is an ω-filter. Throughout this article, all lattices are bounded
distributive lattices unless otherwise mentioned.

2. Main results
In this section, the concept of K-filters is introduced in lattices. Equivalency

between K-filters and ω-filters of lattices is established. A set of equivalent
conditions is derived for every filter of a lattice to become a K-filter.
Lemma 2.1. Every maximal filter of a lattice is a prime D-filter.
Proof. Let M be a maximal filter of a lattice L and x ∈ D(L). Clearly M
is prime. Suppose x /∈ M . Since M is maximal, we get M ∨ [x) = L. Thus
0 ∈ M ∨ [x). Hence there exists 0 ̸= m ∈ M such that m ∧ x = 0. Thus
m ∈ (x)∗ = {0}, which is a contradiction. Hence x ∈ M , which concludes
that D(L) ⊆ M . Therefore M is a prime D-filter of L. □
Theorem 2.2. The following assertions are equivalent in a lattice L:
(1) L is quasi-complemented;
(2) every prime D-filter is maximal;
(3) every prime D-filter is minimal.

Proof. (1) ⇒ (2): Assume that L is quasi-complemented. Let P be a prime
D-filter of L. Suppose there exists a proper filter Q such that P ⊂ Q.
Choose x ∈ Q − P . Since L is quasi-complemented, there exists y ∈ L such
that x ∧ y = 0 and x ∨ y ∈ D(L). Since x /∈ P , we get (x)◦ ⊆ P . Hence
y ∈ (x)◦ ⊆ P ⊂ Q. Thus 0 = x ∧ y ∈ Q, which is a contradiction. Therefore
P is maximal.
(2) ⇒ (3): Since every maximal filter is a prime D-filter, it is clear.
(3) ⇒ (1): Assume that every prime D-filter is minimal. Let x ∈ L.

Suppose [x) ∨ (x)◦ ̸= L. Then there exists a prime D-filter P of L such
that [x) ∨ (x)◦ ⊆ P . Then x ∈ P and (x)◦ ⊆ P . Since P is minimal and
(x)◦ ⊆ P , we get x /∈ P which is a contradiction. Hence [x)∨ (x)◦ = L. Thus
0 ∈ [x) ∨ (x)◦. Then there exist b ∈ (x)◦ such that x ∧ b = 0. Since b ∈ (x)◦,
we get b ∨ x ∈ D(L). Therefore L is quasi-complemented. □
Definition 2.3. For any filter F of a lattice L, define K(F ) as follows:
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K(F ) = {x ∈ X | (x)◦ ∨ F = L}.

Clearly K(L) = L. For F = D(L), obviously K(D(L)) = D(L).

Lemma 2.4. For any filter F of a lattice L, K(F ) is a D-filter of L.

Proof. Clearly D(L) ⊆ K(F ). Let x, y ∈ K(F ). Then, we get that
(x)◦ ∨ F = L and (y)◦ ∨ F = L. Hence

(x ∧ y)◦ ∨ F =
{
(x)◦ ∩ (y)◦

}
∨ F =

{
(x)◦ ∨ F

}
∩
{
(y)◦ ∨ F

}
= L ∩ L = L.

Hence x ∧ y ∈ K(F ). Let x ∈ K(F ) and x ≤ y. Then (x)◦ ⊆ (y)◦ and thus
L = (x)◦ ∨ F ⊆ (y)◦ ∨ F . Hence y ∈ K(F ). Therefore K(F ) is a D-filter of
L. □

In the following, some elementary properties of K(F ) are derived.

Lemma 2.5. For any two filters F and G of a lattice L, we have
(1) D(L) ⊆ F if and only if K(F ) ⊆ F ,
(2) F ⊆ G implies K(F ) ⊆ K(G),
(3) K(F ∩G) = K(F ) ∩ K(G),
(4) K(F ) ∨ K(G) ⊆ K(F ∨G).

Proof. (1) Assume that D(L) ⊆ F . Let x ∈ K(F ). Then, we get (x)◦∨F = L.
Hence x ∈ (x)◦ ∨ F . Thus x = a ∧ b for some a ∈ (x)◦ and b ∈ F . Since
a ∈ (x)◦, we get a ∨ x ∈ D(L). Then there exists some d ∈ D(L) such that
a ∨ x = d. Thus

x = x ∨ x = (a ∧ b) ∨ x = (a ∨ x) ∧ (b ∨ x) = d ∧ (b ∨ x) ∈ D(L) ∨ F = F

because of b ∨ x ∈ F . Therefore K(F ) ⊆ F . Converse follows immediately
due to D(L) ⊆ K(F ).

(2) Suppose F ⊆ G. Let x ∈ K(F ). Then L = (x)◦ ∨ F ⊆ (x)◦ ∨ G.
Therefore x ∈ K(G).

(3) Clearly K(F ∩ G) ⊆ K(F ) ∩ K(G). Conversely, let x ∈ K(F ) ∩ K(G).
Then (x)◦ ∨ F = (x)◦ ∨G = L. Now

(x)◦ ∨ (F ∩G) = {(x)◦ ∨ F} ∩ {(x)◦ ∨G} = L ∩ L = L.

Hence x ∈ K(F ∩ G). Thus K(F ) ∩ K(G) ⊆ K(F ∩ G). Therefore
K(F ∩G) = K(F ) ∩ K(G).

(4) It follows from (2). □

Definition 2.6. A filter F of a lattice L is called a K-filter if F = K(F ).
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Clearly D(L) and L are K-filters of L. In [13], the class of all π-filters
of a lattice L is characterized in terms of D-annulets of the lattice. In the
following theorem, it is proved that the class of all π-filters of a lattice L
contains properly the class of all K-filters of L.

Proposition 2.7. Every K-filter of a lattice is a π-filter.

Proof. Let F be a K-filter of a lattice L. Then K(F ) = F . Let x ∈ F . Then
(x)◦ ∨ F = L. Now, let t ∈ (x)◦◦. Then (x)◦ ⊆ (t)◦. Hence

L = (x)◦ ∨ F ⊆ (t)◦ ∨ F .
Thus t ∈ K(F ) = F , which concludes that (x)◦◦ ⊆ F . Therefore F is a
π-filter of L. □

The converse of Proposition 2.7 is not true. i.e. every π-filter of a lattice
need not be a K-filter. It can be seen in the following example:

Example 2.8. Consider the distributive lattice L = {0, a, b, c, 1} whose Hasse
diagram is given in the following figure.
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@@

�
��

c
c c

c
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b c

1

0
Consider the filter F = {b, 1}. It can be easily observed that (b)◦◦ ⊆ F . Hence
F is a π-filters of L. Observe that (b)◦ ∨ F = {a, b, c, 1} ̸= L. Therefore F is
not a K-filter of L.

However, in the following theorem, some equivalent conditions are given
for every regular filter of a lattice to become a K-filter.

Theorem 2.9. The following assertions are equivalent in a lattice L:
(1) every π-filter is a K-filter;
(2) every regular filter is a K-filter;
(3) for each x ∈ L, (x)◦◦ is a K-filter;
(4) for each x ∈ L, (x)◦ ∨ (x)◦◦ = L.

Proof. (1) ⇒ (2): Since every regular filter is a π-filter, it is clear.
(2) ⇒ (3): Since each (x)◦◦ is a regular filter, it is clear.
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(3) ⇒ (4): Let x ∈ L. Since (x)◦◦ is a K-filter of L, we get (x)◦◦ = K
(
(x)◦◦

)
.

Clearly x ∈ (x)◦◦ = K
(
(x)◦◦

)
. Hence (x)◦ ∨ (x)◦◦ = L.

(4) ⇒ (1): Assume that (x)◦∨ (x)◦◦ = L for each x ∈ L. Let F be a π-filter
of L. Clearly K(F ) ⊆ F . Conversely, let x ∈ F . Since F is a π-filter, we get
(x)◦◦ ⊆ F . Hence L = (x)◦ ∨ (x)◦◦ ⊆ (x)◦ ∨ F . Thus x ∈ K(F ). Therefore F
is a K-filter of L. □

In [13], authors studied the properties of ω-filters and proved that every ω-
filter of a lattice is the intersection of all minimal prime D-filters containing
it. In the following, it is proved that the class of all K-filters is properly
contained in the class of all ω-filters.

Theorem 2.10. Every proper K-filter of a lattice is an ω-filter.

Proof. Let F be a proper K-filter of a lattice L. Then K(F ) = F . Consider
S = { x ∈ L | (x)◦◦ ∨ F = L }. We first show that S is an ideal of L such
that S ∩D = ∅. Clearly 0 ∈ S. Let x, y ∈ S. Then

(x ∨ y)◦◦ ∨ F =
{
(x)◦◦ ∩ (y)◦◦

}
∨ F

=
{
(x)◦◦ ∨ F

}
∩
{
(y)◦◦ ∨ F

}
= L ∩ L

= L.

Hence x∨y ∈ S. Let x ∈ S and y ≤ x. Then L = (x)◦◦∨F ⊆ (y)◦◦∨F . Hence
y ∈ S. Thus S is an ideal of L. Suppose x ∈ S ∩D(L). Then (x)◦◦ ∨ F = L
and (x)◦◦ = D(L). Hence F = D(L) ∨ F = L, which is a contradiction.
Hence S ∩ D(L) = ∅. We now show that F = ω(S). Let x ∈ ω(S). Then
x ∨ y ∈ D(L) for some y ∈ S. Now

x ∨ y ∈ D(L) ⇒ y ∈ (x)◦

⇒ (y)◦◦ ⊆ (x)◦

⇒ L = (y)◦◦ ∨ F ⊆ (x)◦ ∨ F since y ∈ S

⇒ x ∈ K(F ) = F since F is a K-filter

which concludes that ω(S) ⊆ F . Conversely, let x ∈ F = K(F ). Then
(x)◦ ∨ K(F ) = L. Therefore 0 ∈ (x)◦ ∨ K(F ). Hence 0 = a ∧ b for some
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a ∈ (x)◦ and b ∈ K(F ). Thus a ∨ x ∈ D(L) and (b)◦ ∨ F = L. Now
a ∧ b = 0 ⇒ (a ∧ b)◦ = (0)◦ = D(L)

⇒ (a)◦ ∩ (b)◦ = D(L)

⇒ (b)◦ ⊆ (a)◦◦

⇒ L = (b)◦ ∨ F ⊆ (a)◦◦ ∨ F since b ∈ K(F )

⇒ a ∈ S and a ∨ x ∈ D(L)

⇒ x ∈ ω(S)

which gives F = K(F ) ⊆ ω(S). Hence F = ω(S). Therefore F is an ω-filter
of L. □

The converse of Theorem 2.10 is not true. i.e. every ω-filter of a lattice
need not be a K-filter. For, consider the distributive lattice given in Example
2.8. Consider F = {1, b} and I = {0, a, c}. Clearly F is a filter and I is an
ideal of L such that F = ω(I). Hence F is an ω-filter of L. Now, observe
that K(F ) = {1}, because of (b)◦ ∨ F = {1, a, b, c} ̸= L. Therefore F is not
a K-filter of L.

Proposition 2.11. For each a ∈ L−D, (a)◦ is an ω-filter of L.
Proof. Let a ∈ L−D(L). Clearly (a]∩D(L) = ∅. We show that (a)◦ = ω((a]).
Let x ∈ (a)◦. Then x ∨ a ∈ D(L). Since a ∈ (a], we get x ∈ ω((a]). Hence
(a)◦ ⊆ ω((a]). Conversely, let x ∈ ω((a]). Then x ∨ t ∈ D(L) for some
t ∈ (a]. Since x ∨ t ≤ x ∨ a, we get x ∨ a ∈ D(L). Hence x ∈ (a)◦. Therefore
ω((a]) ⊆ (a)◦. □
Proposition 2.12. Every prime K-filter is a minimal prime D-filter.
Proof. Let P be a prime K-filter of a lattice L. Then P = K(P ). Let x ∈ P .
Since x ∈ K(P ), we get (x)◦ ∨ P = L. Hence 0 ∈ (x)◦ ∨ P . Thus there exist
a ∈ (x)◦ and b ∈ P such that a∧ b = 0. Since a ∈ (x)◦, we get a∨ x ∈ D(L).
Suppose a ∈ P . Then 0 = a ∧ b ∈ P , which is a contradiction. Thus to each
x ∈ P , there exists a /∈ P such that x ∨ a ∈ D(L). By Lemma (2.4), P is a
minimal prime D-filter of L. □

The converse of Proposition 2.12 is not true. For, consider the minimal
prime D-filter P = {1, a} of the distributive lattice given in Example 2.8.
Observe that K(P ) = {1}, because of (a)◦ ∨ P = {1, a, b, c} ̸= L. Therefore
P is not a K-filter of L. However, in the following theorem, a set of equiva-
lent conditions is established for every minimal prime D-filter of a lattice to
become a prime K-filter.
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Theorem 2.13. The following assertions are equivalent in a lattice L:
(1) Every minimal prime D-filter is a prime K-filter;
(2) for each x ∈ L, (x)◦ ∨ (x)◦◦ = L;
(3) every ω-filter is a K-filter;
(4) every prime ω-filter is a K-filter.

Proof. (1) ⇒ (2): Assume that every minimal prime D-filter is a prime K-
filter. Let x ∈ L. Suppose (x)◦ ∨ (x)◦◦ ̸= L. Then there exists a maximal
ideal M such that {(x)◦ ∨ (x)◦◦} ∩ M = ∅. Since D(L) ⊆ (x)◦ ∨ (x)◦◦, we
get M ∩ D(L) = ∅. Hence L − M is a minimal prime D-filter of L. By
the assumption, L − M is a K-filter. Suppose x ∈ M . Since x ∈ (x)◦◦,
we get x ∈ {(x)◦ ∨ (x)◦◦} ∩ M which is a contradiction. Thus x /∈ M and
therefore x ∈ L −M = K(L −M). Hence (x)◦ ∨ (L −M) = L, which gives
that 0 ∈ (x)◦ ∨ (L − M). Then a ∧ b = 0 ∈ M for some a ∈ (x)◦ and
b ∈ L − M . Since b /∈ M and M is prime, we must have a ∈ M . Hence
a ∈ {(x)◦ ∨ (x)◦◦} ∩M , which is a contradiction. Therefore (x)◦ ∨ (x)◦◦ = L
for all x ∈ L.
(2) ⇒ (3): Let F be an ω-filter of L. Clearly K(F ) ⊆ F . Conversely, let

x ∈ F . Since F is an ω-filter, we get (x)◦◦ ⊆ F . Hence L = (x)◦ ∨ (x)◦◦ ⊆
(x)◦ ∨ F . Thus x ∈ K(F ). Therefore F is a K-filter of L.
(3) ⇒ (4): is clear.
(4) ⇒ (1): Since every minimal prime D-filter is a prime ω-filter, it is

obvious. □

Definition 2.14. For any proper filter F of a lattice L, define
Ω(F ) = {x ∈ L | (x)◦ ⊈ F}.

Proposition 2.15. Let L be a lattice and M be a maximal filter of L. Then
the set Ω(M) is a D-filter of L such that Ω(M) ⊆ M .

Proof. Let M be a maximal filter. Clearly D(L) ⊆ M . Since M is proper, we
get (d)◦ ⊈ M for any d ∈ D(L). Hence D(L) ⊆ Ω(M). Suppose x, y ∈ ω(M).
Then (x)◦ ⊈ M and (y)◦ ⊈ M . Hence M ⊂ M ∨ (x)◦ and M ⊂ M ∨ (y)◦.
Since M is maximal, we get M ∨ (x)◦ = L and M ∨ (y)◦ = L. Thus, we get

M ∨ (x ∧ y)◦ = M ∨
{
(x)◦ ∩ (y)◦

}
=

{
M ∨ (x)◦

}
∩
{
M ∨ (y)◦

}
= L ∩ L

= L.
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If (x ∧ y)◦ ⊆ M , then M = L which is a contradiction. Hence (x ∧ y)◦ ⊈ M .
Thus x ∧ y ∈ Ω(M). Again, let x ∈ Ω(M) and x ≤ y. Then (x)◦ ⊈ M
and x ≤ y. Since x ≤ y, we get (x)◦ ⊆ (y)◦. Hence (y)◦ ⊈ M . Hence
y ∈ Ω(M). Therefore Ω(M) is a D-filter of L. Now, let x ∈ Ω(M). Then
(x)◦ ⊈ M . Hence, there exists a ∈ (x)◦ such that a /∈ M . Since a ∈ (x)◦, we
get a∨x ∈ D(L). Hence [a∨x) ⊆ D(L). Suppose x /∈ M . Then M ∨ [x) = L.
Since a /∈ M , we get M ∨ [a) = L. Hence

L = M ∨ {[a) ∩ [x)} = M ∨ [a ∨ x) ⊆ M ∨D(L) = M ,

which is a contradiction. Hence x ∈ M . Therefore Ω(M) ⊆ M . □

Proposition 2.16. Let P be a prime D-filter of a lattice L. Then
(1) K(P ) ⊆ Ω(P ),
(2) if P is maximal, then K(P ) = Ω(P ).

Proof. (1) Let x ∈ K(P ). Then (x)◦ ∨ P = L. Suppose (x)◦ ⊆ P . Then
P = L, which is a contradiction. Hence (x)◦ ⊈ P . Thus x ∈ Ω(P ). Therefore
K(P ) ⊆ Ω(P ).

(2) From (1), we get K(P ) ⊆ Ω(P ). Conversely, let x ∈ Ω(P ). Then
(x)◦ ⊈ P . Since P is maximal, we get (x)◦ ∨ P = L. Thus x ∈ K(P ).
Therefore Ω(P ) = K(P ). □

Let us denote that µ is the set of all maximal filters of a lattice L. For any
filter F of a lattice L, we also denote µ(F ) = {M ∈ µ | F ⊆ M}.

Theorem 2.17. For any filter F of a lattice L, K(F ) =
∩

M∈µ(F )

Ω(M).

Proof. Let x ∈ K(F ) and F ⊆ M where M ∈ µ. Then

L = (x)◦ ∨ F ⊆ (x)◦ ∨M .

Suppose (x)◦ ⊆ M , then M = L, which is a contradiction. Hence
(x)◦ ⊈ M . Thus x ∈ Ω(M) for all M ∈ µ(F ). Hence K(F ) ⊆

∩
M∈µ(F )

Ω(M).

Conversely, let x ∈
∩

M∈µ(F )

Ω(M). Then x ∈ Ω(M) for all M ∈ µ(F ).

Suppose (x)◦ ∨ F ̸= L. Then there exists a maximal filter M0 such that
(x)◦∨F ⊆ M0. Hence (x)◦ ⊆ M0 and F ⊆ M . Since F ⊆ M0, by hypothesis,
we get x ∈ Ω(M0). Hence (x)◦ ⊈ M0, which is a contradiction. Therefore
(x)◦ ∨ F = L. Hence x ∈ K(F ). Therefore

∩
M∈µ(F )

Ω(M) ⊆ K(F ). □
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From the above theorem, it can be easily observed that K(F ) ⊆ Ω(M) for
every M ∈ µ(F ). Now, in the following, a set of equivalent conditions is
derived for the class of all D-filters of the form K(F ) to become a sublattice
to the lattice F(L) of all filters of L, which leads to a characterization of a
quasi-complemented lattice.

Theorem 2.18. The following assertions are equivalent in lattice L:
(1) L is quasi-complemented;
(2) for any M ∈ µ, Ω(M) is maximal;
(3) for any F,G ∈ F(L), F ∨G = L implies K(F ) ∨ K(G) = L;
(4) for any F,G ∈ F(L), K(F ) ∨ K(G) = K(F ∨G);
(5) for any two distinct maximal filters M and N , Ω(M) ∨ Ω(N) = L;
(6) for any M ∈ µ, M is the unique member of µ such that Ω(M) ⊆ M .

Proof. (1) ⇒ (2): Assume that L is quasi-complemented. Let M be a maxi-
mal filter of L. It is enough to show that Ω(M) = M . Clearly Ω(M) ⊆ M .
On the other hand, let x ∈ M . Since L is quasi-complemented, there exists
y ∈ L such that x∧ y = 0 and x∨ y ∈ D(L). Hence y ∈ (x)◦. If y ∈ M , then
0 = x ∧ y ∈ M which is a contradiction. Hence y /∈ M such that y ∈ (x)◦.
Thus (x)◦ ⊈ M . Hence x ∈ Ω(M). Therefore M ⊆ Ω(M).
(2) ⇒ (3): Clearly Ω(M) = M for all M ∈ µ. Let F,G ∈ F(L) be such

that F ∨ G = L. Suppose K(F ) ∨ K(G) ̸= L. Then there exists a maximal
filter M such that K(F ) ∨ K(G) ⊆ M . Hence K(F ) ⊆ M and K(G) ⊆ M .
Now

K(F ) ⊆ M ⇒
∩

Mi∈µ(F )

Ω(Mi) ⊆ M

⇒ Ω(Mi) ⊆ M for some Mi ∈ µ(F ) (since M is prime)
⇒ Mi ⊆ M by (2)
⇒ F ⊆ M since F ⊆ Mi.

Similarly, we get G ⊆ M . Hence L = F ∨ G ⊆ M , which is a contradiction
to the maximality of M . Therefore K(F ) ∨ K(G) = L.
(3) ⇒ (4): Let F,G ∈ F(L). Clearly K(F ) ∨ K(G) ⊆ K(F ∨ G). Con-

versely, let x ∈ K(F ∨G). Then {(x)◦ ∨F}∨ {(x)◦ ∨G} = (x)◦ ∨F ∨G = L.
Hence by condition (3), we get K((x)◦ ∨ F ) ∨ K((x)◦ ∨ G) = L. Thus
x ∈ K((x)◦ ∨ F ) ∨ K((x)◦ ∨ G). Hence x = r ∧ s for some r ∈ K((x)◦ ∨ F )



12 SAMBASIVA RAO

and s ∈ K((x)◦ ∨G). Now
r ∈ K((x)◦ ∨ F ) ⇒ (r)◦ ∨ {(x)◦ ∨ F} = L

⇒ L = {(r)◦ ∨ (x)◦} ∨ F ⊆ (r ∨ x)◦ ∨ F

⇒ (r ∨ x)◦ ∨ F = L

⇒ r ∨ x ∈ K(F )

Similarly, we get s ∨ x ∈ K(G). Now, we have the following consequence:
x = x ∨ x

= (r ∧ s) ∨ x

= (r ∨ x) ∧ (s ∨ x)

where r ∨ x ∈ K(F ) and s ∨ x ∈ K(G). Hence x ∈ K(F ) ∨ K(G). Thus
K(F ∨G) ⊆ K(F ) ∨ K(G). Therefore K(F ) ∨ K(G) = K(F ∨G).
(4) ⇒ (5): Let M,N be two distinct maximal filters of L. Choose

x ∈ M − N and y ∈ N − M . Since x /∈ N , we get N ∨ [x) = L. Since
y /∈ M , we get M ∨ [y) = L. Now, we get

L = K(L)

= K(L ∨ L)

= K
({

N ∨ [x)
}
∨
{
M ∨ [y)

})
= K

({
M ∨ [x)

}
∨
{
N ∨ [y)

})
= K(M ∨N) since x ∈ M and y ∈ N

= K(M) ∨ K(N) by condition (4)
⊆ Ω(M) ∨ Ω(N) by Proposition 2.16(1)

Therefore Ω(M) ∨ Ω(N) = L.
(5) ⇒ (6): Let M ∈ µ. Suppose N ∈ µ such that N ̸= M and Ω(N) ⊆ M .

Since Ω(M) ⊆ M , by hypothesis, we get L = Ω(M)∨Ω(N) = M , which is a
contradiction. Hence M is the unique maximal filter such that Ω(M) ⊆ M .
(6) ⇒ (1): Let x ∈ L. Suppose 0 /∈ [x) ∨ (x)◦. Then there exist a maximal

filter M such that [x)∨(x)◦ ⊆ M . Then x ∈ M and (x)◦ ⊆ M . Hence x ∈ M
and x /∈ Ω(M). Since x /∈ Ω(M), there exists a maximal filter M0 such that
x /∈ M0 and Ω(M) ⊆ M0. By the uniqueness of M , we get M = M0. Hence
x /∈ M0 = M , which is a contradiction. Thus 0 ∈ [x) ∨ (x)◦, which gives
0 = x ∧ a for some a ∈ (x)◦. Hence x ∧ a = 0 and x ∨ a ∈ D(L). Therefore
L is a quasi-complemented lattice. □
Theorem 2.19. Following assertions are equivalent in a lattice L:



K-FILTERS OF DISTRIBUTIVE LATTICES 13

(1) L is quasi-complemented;
(2) every D-filter is a K-filter;
(3) every prime D-filter is a K-filter;
(4) every prime D-filter is minimal.

Proof. (1) ⇒ (2): Assume that L is quasi-complemented. Let F be a D-filter
of L. Clearly K(F ) ⊆ F . On the other hand, let x ∈ F . Since L is quasi-
complemented, there exists y ∈ L such that x∧y = 0 and x∨y ∈ D. Suppose
(x)◦ ∨ F ̸= L. Then there exists a prime filter P such that (x)◦ ∨ F ⊆ P .
Then (x)◦ ⊆ P and x ∈ F ⊆ P . Suppose y ∈ P . Then 0 = x ∧ y ∈ P which
is a contradiction. Hence y /∈ P . Since x ∨ y ∈ D, we get y ∈ (x)◦ ⊆ P
yields a contradiction. Thus (x)◦∨F = L which gives that x ∈ K(F ). Hence
F ⊆ K(F ). Therefore F is K-filter of L.
(2) ⇒ (3): It is clear.
(3) ⇒ (4): Assume that every prime D-filter is a K-filter. Let P be a

prime D-filter of L. Since P is proper, there exists c ∈ L such that c /∈ P .
By condition (3), P is a K-filter of L. Hence K(P ) = P . Let x ∈ P = K(P ).
Then (x)◦ ∨ P = L and thus c ∈ (x)◦ ∨ P . Then c = a ∧ b for some a ∈ (x)◦

and b ∈ P . Since a ∈ (x)◦, we get x ∨ a ∈ D(L). Suppose a ∈ P . Since P is
prime and b ∈ P , we get c = a∧ b ∈ P which is a contradiction. Thus a /∈ P .
Hence x ∨ a ∈ D(L) for some a /∈ P . Therefore P is minimal.
(4) ⇒ (1): By Theorem 2.2, it follows. □

Since every Boolean algebra contains a unique dense element precisely 1,
it is clear that every filter of a Boolean algebra is a D-filter. Further, it can
be easily seen that every Boolean algebra is quasi-complemented. Thus, we
have the following:

Theorem 2.20. Following assertions are equivalent in a lattice L:
(1) L is a Boolean algebra;
(2) every filter is a K-filter;
(3) every prime filter is a K-filter;
(4) every prime filter is minimal.

Proof. (1) ⇒ (2), (2) ⇒ (3) and (3) ⇒ (4) are straightforward.
(4) ⇒ (1): Assume that every prime filter of L is minimal. Let

x ∈ L. Suppose 0 /∈ [x) ∨ (x)+. Then there exists a prime filter P such
that [x) ∨ (x)+ ⊆ P . Hence x ∈ P and (x)+ ⊆ P . Since P is minimal and
(x)+ ⊆ P , we get x /∈ P which is a contraction. Hence 0 ∈ [x) ∨ (x)+. Then
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there exist a ∈ (x)+ such that a ∧ x = 0. Since a ∈ (x)+, we get x ∨ a = 1.
Hence a is the complement of x. Therefore L is Boolean. □
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K-FILTERS OF DISTRIBUTIVE LATTICES

M. SAMBASIVA RAO

توزیع پذیر مشبکه های K-فیلترهای

سامباسیوارائو ام.

هند آندراپرادش، ویزیاناگارام، ،MVGR مهندسی کالج ریاضی، گروه

از دسته این ویژگی های از برخی و شده معرفی توزیع پذیر مشبکه های در K-فیلترها مفهوم مقاله، این در
توزیع پذیر مشبکه یک π-فیلتر هر اینکه برای کافی و لازم شرایط برخی است. گرفته مطالعه مورد فیلترها
D-فیلتر هر اینکه برای معادل شرایط برخی همچنین، است. شده ارائه شود، تبدیل K-فیلتر یک به
با شبه-کامل شده مشبکه های علاوه، به است. شده بیان شود، تبدیل K-فیلتر به توزیع پذیر مشبکه یک

شده اند. مشخصه سازی K-فیلترها کمک

شبه-کامل شده. مشبکه K-فیلتر، ω-فیلتر، π-فیلتر، منظم، فیلتر D-فیلتر، کلیدی: کلمات
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