K-FILTERS OF DISTRIBUTIVE LATTICES

M. Sambasiva Rao

ABSTRACT. The concept of \mathcal{K} -filters is introduced in distributive lattices and studied some properties of these classes of filters. Some necessary and sufficient conditions are derived for every π -filter of a distributive lattice to become a \mathcal{K} -filter. Some equivalent conditions are derived for every D-filter of a distributive lattice to become a \mathcal{K} -filter. Quasi-complemented lattices are characterized with the help of \mathcal{K} -filters.

Introduction

Many authors introduced the concept of annihilators in the structures of rings as well as lattices and characterized several algebraic structures in terms of annihilators. T. P. Speed [14] and W. H. Cornish [4] made an extensive study of annihilators in distributive lattices. In [5], some properties of minimal prime filters are studied in distributive lattices and the properties of dense elements and D-filters are studied in MS-algebras [9]. In [2], the notion of D-filters was introduced in pseudo-complemented semilattices. Later it was generalized by the author [9] in MS-algebras. In the note [10], the authors introduced the concepts of dual annihilators and μ -filters in distributive lattices. Certain topological properties of prime μ -filters are also investigated in this paper. In [11], the author introduced the notion of normal filters and characterized the quasi-complemented lattices with the help of normal filters. In [8], the authors investigated certain important properties of prime D-filters of distributive lattices. Recently in 2022, M. S. Rao and Ch. V. Rao introduced the concept of ω -filters [13] in distributive lattices and characterized the ω -filters with the help of minimal prime D-filters. In [12], the authors introduced the concepts of regular filters and π -filters of distributive lattices.

The main aim of this paper is to characterize quasi-complemented lattices with the help of special kind of D-filters of distributive lattices. The notion of K-filters is introduced and investigated certain properties of these filters with the help of maximal filters and minimal prime D-filters of distributive

Published online: 9 April 2024

MSC(2010): 06D99.

Keywords: D-filter; Regular filter; π -Filter; ω -Filter; \mathcal{K} -Filter; Quasi-complemented lattice.

Received: 15 June 2023, Accepted: 19 August 2023.

lattices. It is initially characterize quasi-complemented lattices with the help its prime D-filters. It is observed that every \mathcal{K} -filter of a distributive lattice is a π -filter. A set of equivalent conditions is given for every π -filter of a distributive lattice to become a \mathcal{K} -filter. It is again observed that every proper \mathcal{K} -filter of a distributive lattice is an ω -filter but not the converse. However, some equivalent conditions are derived for every ω -filter of a distributive lattice to become a \mathcal{K} -filter. Some equivalent conditions are derived for the class of all \mathcal{K} -filters of a distributive lattice to become a sublattice of the lattice of all filters which leads to a characterization of quasi-complemented lattices. Another characterization theorem of quasi-complemented lattice is given which shows that every D-filter of a quasi-complemented lattice to become a \mathcal{K} -filter. Finally, the class of all Boolean algebras are characterized with the help of \mathcal{K} -filters of distributive lattices.

1. Preliminaries

In this section, we present certain definitions and results which are taken mostly from the papers [1], [3], [10], [8], [13], [12] and [14].

Definition 1.1. [1] A type (2,2) algebraic structure (L, \wedge, \vee) is called a distributive lattice if it satisfies the following properties (1), (2), (3) and (4) along with (5) or (5'):

- (1) $x \wedge x = x$, $x \vee x = x$,
- (2) $x \wedge y = y \wedge x, \ x \vee y = y \vee x,$
- (3) $(x \wedge y) \wedge z = x \wedge (y \wedge z), (x \vee y) \vee z = x \vee (y \vee z),$
- (4) $(x \wedge y) \vee x = x$, $(x \vee y) \wedge x = x$,
- $(5) x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z),$
- $(5') \ x \lor (y \land z) = (x \lor y) \land (x \lor z),$

for all $x, y, z \in L$.

If L is a lattice, then the ideal (resp. filter) A of L is a non-empty lower segment (resp. upper segment) closed under the operation \vee (resp. operation \wedge). For any lattice L with smallest element 0, the set $\mathcal{I}(L)$ of all ideals of L forms a complete distributive lattice as well as the set $\mathcal{F}(L)$ of all filters of $(L, \vee, \wedge, 1)$ forms a complete distributive lattice. A proper ideal (resp. filter) I of a lattice L is said to be maximal if there exists no proper ideal (resp. filter) J such that $I \subset J$. For any element a of a lattice L, the principal ideal generated by a is the set $(a] = \{x \in L \mid x \leq a\}$. The set of all principal ideals of a lattice L is a sublattice of $\mathcal{I}(L)$. Dually the set $[a) = \{x \in L \mid a \leq x\}$

is called a *principal filter* generated by a and the set of all principal filters is a sublattice of $\mathcal{F}(L)$. A proper ideal (resp. proper filter) P of a lattice L is called *prime* if for all $a, b \in L$, $a \land b \in P$ ($a \lor b \in P$) then $a \in P$ or $b \in P$. Every maximal ideal (resp. maximal filter) is prime.

The annihilator [14] of an element a of a distributive lattice L, is given as the set $(a)^* = \{ x \in L \mid x \land a = 0 \}$. By a dense element of a lattice L, we mean an element x such that $(x)^* = \{0\}$. In a distributive lattice L, the set D(L) of all dense elements forms a filter of L. A distributive lattice L with 0 is called quasi-complemented [7] if for each $x \in L$ there exists $x' \in L$ such that $x \land x' = 0$ and $x \lor x' \in D(L)$.

Definition 1.2. [10] For any subset A of a distributive lattice L, the set A^+ is define as $A^+ = \{x \in L \mid a \lor x = 1 \text{ for all } a \in A\}.$

Clearly A^+ is a filter of any distributive lattice L and A^+ is known as the dual annihilator of the set A. For brevity, we denote $\{a\}^+$ by $(a)^+$. It can be seen immediately that $(a)^+ = L$ if and only if a = 1.

Definition 1.3. [8] A filter F of a lattice L is called a D-filter if $D(L) \subseteq F$.

In any distributive lattice L, it is clear that D(L) is the smallest D-filter of the lattice L. For any subset A of a distributive lattice L, define $A^{\circ} = \{x \in L \mid a \lor x \in D \text{ for all } a \in A\}$. In case of $A = \{a\}$, we simply represent $(\{a\})^{\circ}$ by $(a)^{\circ}$. Then it is obvious that $(1)^{\circ} = L$. Obviously, $L^{\circ} = D(L)$ and $D(L)^{\circ} = L$. Further, $D(L) \subseteq A^{\circ}$ for any subset A of a lattice L. For any subset A of L, A° is a D-filter of L. For any $x \in L$, it is obvious that $([x))^{\circ} = (x)^{\circ}$. Then $(0)^{\circ} = D(L)$.

Proposition 1.4. [8] Let L be a distributive lattice and $a, b \in L$. Then

- (1) $a \le b \text{ implies } (a)^{\circ} \subseteq (b)^{\circ},$
- $(2) (a \wedge b)^{\circ} = (a)^{\circ} \cap (b)^{\circ},$
- $(3) (a \lor b)^{\circ \circ} = (a)^{\circ \circ} \cap (b)^{\circ \circ},$
- (4) $(a)^{\circ} = L$ if and only if $a \in D(L)$.

Suppose that F is a D-filter and P a prime D-filter of a distributive lattice L such that $F \subseteq P$. Then P is called a *minimal prime* D-filter belonging to F if there is no prime D-filter Q such that $F \subseteq Q \subset P$. A prime D-filter belonging to D is simply called *minimal prime* D-filter. A prime D-filter P of a lattice L is minimal [8] if and only if to each $x \in P$, there exists $y \notin P$ such that $x \vee y \in D(L)$.

A filter F of a lattice L is called a regular [12] if $F = F^{\circ \circ}$. Clearly, each $(x)^{\circ}$

is a regular filter. A filter F of a lattice F is called a π -filter [12] if $(x)^{\circ\circ} \subseteq F$ whenever $x \in F$. Every regular filter of a distributive lattice is a π -filter. For any ideal I of a lattice L, define $\omega(I) = \{x \in L \mid x \vee a \in D(L) \text{ for some } a \in I\}$. In [13], it is observed that $\omega(I)$ is a D-filter of L. A filter F of a lattice L is called an ω -filter if $F = \omega(I)$ for some ideal I of L. Every minimal prime D-filter of L is an ω -filter. Throughout this article, all lattices are bounded distributive lattices unless otherwise mentioned.

2. Main results

In this section, the concept of K-filters is introduced in lattices. Equivalency between K-filters and ω -filters of lattices is established. A set of equivalent conditions is derived for every filter of a lattice to become a K-filter.

Lemma 2.1. Every maximal filter of a lattice is a prime D-filter.

Proof. Let M be a maximal filter of a lattice L and $x \in D(L)$. Clearly M is prime. Suppose $x \notin M$. Since M is maximal, we get $M \vee [x] = L$. Thus $0 \in M \vee [x]$. Hence there exists $0 \neq m \in M$ such that $m \wedge x = 0$. Thus $m \in (x)^* = \{0\}$, which is a contradiction. Hence $x \in M$, which concludes that $D(L) \subseteq M$. Therefore M is a prime D-filter of L.

Theorem 2.2. The following assertions are equivalent in a lattice L:

- (1) L is quasi-complemented;
- (2) every prime D-filter is maximal;
- (3) every prime D-filter is minimal.

Proof. (1) \Rightarrow (2): Assume that L is quasi-complemented. Let P be a prime D-filter of L. Suppose there exists a proper filter Q such that $P \subset Q$. Choose $x \in Q - P$. Since L is quasi-complemented, there exists $y \in L$ such that $x \wedge y = 0$ and $x \vee y \in D(L)$. Since $x \notin P$, we get $(x)^{\circ} \subseteq P$. Hence $y \in (x)^{\circ} \subseteq P \subset Q$. Thus $0 = x \wedge y \in Q$, which is a contradiction. Therefore P is maximal.

- $(2) \Rightarrow (3)$: Since every maximal filter is a prime D-filter, it is clear.
- $(3) \Rightarrow (1)$: Assume that every prime D-filter is minimal. Let $x \in L$. Suppose $[x) \lor (x)^{\circ} \neq L$. Then there exists a prime D-filter P of L such that $[x) \lor (x)^{\circ} \subseteq P$. Then $x \in P$ and $(x)^{\circ} \subseteq P$. Since P is minimal and $(x)^{\circ} \subseteq P$, we get $x \notin P$ which is a contradiction. Hence $[x) \lor (x)^{\circ} = L$. Thus $0 \in [x) \lor (x)^{\circ}$. Then there exist $b \in (x)^{\circ}$ such that $x \land b = 0$. Since $b \in (x)^{\circ}$, we get $b \lor x \in D(L)$. Therefore L is quasi-complemented.

Definition 2.3. For any filter F of a lattice L, define $\mathcal{K}(F)$ as follows:

$$\mathcal{K}(F) = \{ x \in X \mid (x)^{\circ} \lor F = L \}.$$

Clearly $\mathcal{K}(L) = L$. For F = D(L), obviously $\mathcal{K}(D(L)) = D(L)$.

Lemma 2.4. For any filter F of a lattice L, K(F) is a D-filter of L.

Proof. Clearly $D(L) \subseteq \mathcal{K}(F)$. Let $x, y \in \mathcal{K}(F)$. Then, we get that $(x)^{\circ} \vee F = L$ and $(y)^{\circ} \vee F = L$. Hence

$$(x \wedge y)^{\circ} \vee F = \big\{ (x)^{\circ} \cap (y)^{\circ} \big\} \vee F = \big\{ (x)^{\circ} \vee F \big\} \cap \big\{ (y)^{\circ} \vee F \big\} = L \cap L = L.$$

Hence $x \wedge y \in \mathcal{K}(F)$. Let $x \in \mathcal{K}(F)$ and $x \leq y$. Then $(x)^{\circ} \subseteq (y)^{\circ}$ and thus $L = (x)^{\circ} \vee F \subseteq (y)^{\circ} \vee F$. Hence $y \in \mathcal{K}(F)$. Therefore $\mathcal{K}(F)$ is a D-filter of L.

In the following, some elementary properties of $\mathcal{K}(F)$ are derived.

Lemma 2.5. For any two filters F and G of a lattice L, we have

- (1) $D(L) \subseteq F$ if and only if $K(F) \subseteq F$,
- (2) $F \subseteq G$ implies $\mathcal{K}(F) \subseteq \mathcal{K}(G)$,
- (3) $\mathcal{K}(F \cap G) = \mathcal{K}(F) \cap \mathcal{K}(G)$,
- (4) $\mathcal{K}(F) \vee \mathcal{K}(G) \subseteq \mathcal{K}(F \vee G)$.

Proof. (1) Assume that $D(L) \subseteq F$. Let $x \in \mathcal{K}(F)$. Then, we get $(x)^{\circ} \vee F = L$. Hence $x \in (x)^{\circ} \vee F$. Thus $x = a \wedge b$ for some $a \in (x)^{\circ}$ and $b \in F$. Since $a \in (x)^{\circ}$, we get $a \vee x \in D(L)$. Then there exists some $d \in D(L)$ such that $a \vee x = d$. Thus

$$x = x \lor x = (a \land b) \lor x = (a \lor x) \land (b \lor x) = d \land (b \lor x) \in D(L) \lor F = F$$

because of $b \vee x \in F$. Therefore $\mathcal{K}(F) \subseteq F$. Converse follows immediately due to $D(L) \subseteq \mathcal{K}(F)$.

- (2) Suppose $F \subseteq G$. Let $x \in \mathcal{K}(F)$. Then $L = (x)^{\circ} \vee F \subseteq (x)^{\circ} \vee G$. Therefore $x \in \mathcal{K}(G)$.
- (3) Clearly $\mathcal{K}(F \cap G) \subseteq \mathcal{K}(F) \cap \mathcal{K}(G)$. Conversely, let $x \in \mathcal{K}(F) \cap \mathcal{K}(G)$. Then $(x)^{\circ} \vee F = (x)^{\circ} \vee G = L$. Now

$$(x)^{\circ} \vee (F \cap G) = \{(x)^{\circ} \vee F\} \cap \{(x)^{\circ} \vee G\} = L \cap L = L.$$

Hence $x \in \mathcal{K}(F \cap G)$. Thus $\mathcal{K}(F) \cap \mathcal{K}(G) \subseteq \mathcal{K}(F \cap G)$. Therefore $\mathcal{K}(F \cap G) = \mathcal{K}(F) \cap \mathcal{K}(G)$.

Definition 2.6. A filter F of a lattice L is called a K-filter if F = K(F).

Clearly D(L) and L are K-filters of L. In [13], the class of all π -filters of a lattice L is characterized in terms of D-annulets of the lattice. In the following theorem, it is proved that the class of all π -filters of a lattice L contains properly the class of all K-filters of L.

Proposition 2.7. Every K-filter of a lattice is a π -filter.

Proof. Let F be a K-filter of a lattice L. Then K(F) = F. Let $x \in F$. Then $(x)^{\circ} \vee F = L$. Now, let $t \in (x)^{\circ \circ}$. Then $(x)^{\circ} \subseteq (t)^{\circ}$. Hence

$$L = (x)^{\circ} \vee F \subseteq (t)^{\circ} \vee F.$$

Thus $t \in \mathcal{K}(F) = F$, which concludes that $(x)^{\circ \circ} \subseteq F$. Therefore F is a π -filter of L.

The converse of Proposition 2.7 is not true. i.e. every π -filter of a lattice need not be a \mathcal{K} -filter. It can be seen in the following example:

Example 2.8. Consider the distributive lattice $L = \{0, a, b, c, 1\}$ whose Hasse diagram is given in the following figure.

Consider the filter $F = \{b, 1\}$. It can be easily observed that $(b)^{\circ \circ} \subseteq F$. Hence F is a π -filters of L. Observe that $(b)^{\circ} \vee F = \{a, b, c, 1\} \neq L$. Therefore F is not a \mathcal{K} -filter of L.

However, in the following theorem, some equivalent conditions are given for every regular filter of a lattice to become a K-filter.

Theorem 2.9. The following assertions are equivalent in a lattice L:

- (1) every π -filter is a K-filter;
- (2) every regular filter is a K-filter;
- (3) for each $x \in L$, $(x)^{\circ \circ}$ is a K-filter;
- (4) for each $x \in L$, $(x)^{\circ} \lor (x)^{\circ \circ} = L$.

Proof. (1) \Rightarrow (2): Since every regular filter is a π -filter, it is clear.

 $(2) \Rightarrow (3)$: Since each $(x)^{\circ \circ}$ is a regular filter, it is clear.

- (3) \Rightarrow (4): Let $x \in L$. Since $(x)^{\circ \circ}$ is a \mathcal{K} -filter of L, we get $(x)^{\circ \circ} = \mathcal{K}((x)^{\circ \circ})$. Clearly $x \in (x)^{\circ \circ} = \mathcal{K}((x)^{\circ \circ})$. Hence $(x)^{\circ} \vee (x)^{\circ \circ} = L$.
- $(4)\Rightarrow (1)$: Assume that $(x)^{\circ}\vee(x)^{\circ\circ}=L$ for each $x\in L$. Let F be a π -filter of L. Clearly $\mathcal{K}(F)\subseteq F$. Conversely, let $x\in F$. Since F is a π -filter, we get $(x)^{\circ\circ}\subseteq F$. Hence $L=(x)^{\circ}\vee(x)^{\circ\circ}\subseteq (x)^{\circ}\vee F$. Thus $x\in \mathcal{K}(F)$. Therefore F is a \mathcal{K} -filter of L.

In [13], authors studied the properties of ω -filters and proved that every ω -filter of a lattice is the intersection of all minimal prime D-filters containing it. In the following, it is proved that the class of all \mathcal{K} -filters is properly contained in the class of all ω -filters.

Theorem 2.10. Every proper K-filter of a lattice is an ω -filter.

Proof. Let F be a proper K-filter of a lattice L. Then K(F) = F. Consider $S = \{ x \in L \mid (x)^{\circ \circ} \lor F = L \}$. We first show that S is an ideal of L such that $S \cap D = \emptyset$. Clearly $0 \in S$. Let $x, y \in S$. Then

$$(x \vee y)^{\circ \circ} \vee F = \{(x)^{\circ \circ} \cap (y)^{\circ \circ}\} \vee F$$
$$= \{(x)^{\circ \circ} \vee F\} \cap \{(y)^{\circ \circ} \vee F\}$$
$$= L \cap L$$
$$= L.$$

Hence $x \lor y \in S$. Let $x \in S$ and $y \le x$. Then $L = (x)^{\circ \circ} \lor F \subseteq (y)^{\circ \circ} \lor F$. Hence $y \in S$. Thus S is an ideal of L. Suppose $x \in S \cap D(L)$. Then $(x)^{\circ \circ} \lor F = L$ and $(x)^{\circ \circ} = D(L)$. Hence $F = D(L) \lor F = L$, which is a contradiction. Hence $S \cap D(L) = \emptyset$. We now show that $F = \omega(S)$. Let $x \in \omega(S)$. Then $x \lor y \in D(L)$ for some $y \in S$. Now

$$x \lor y \in D(L) \Rightarrow y \in (x)^{\circ}$$

 $\Rightarrow (y)^{\circ \circ} \subseteq (x)^{\circ}$
 $\Rightarrow L = (y)^{\circ \circ} \lor F \subseteq (x)^{\circ} \lor F \text{ since } y \in S$
 $\Rightarrow x \in \mathcal{K}(F) = F \text{ since } F \text{ is a } \mathcal{K}\text{-filter}$

which concludes that $\omega(S) \subseteq F$. Conversely, let $x \in F = \mathcal{K}(F)$. Then $(x)^{\circ} \vee \mathcal{K}(F) = L$. Therefore $0 \in (x)^{\circ} \vee \mathcal{K}(F)$. Hence $0 = a \wedge b$ for some

$$a \in (x)^{\circ}$$
 and $b \in \mathcal{K}(F)$. Thus $a \vee x \in D(L)$ and $(b)^{\circ} \vee F = L$. Now $a \wedge b = 0 \Rightarrow (a \wedge b)^{\circ} = (0)^{\circ} = D(L)$ $\Rightarrow (a)^{\circ} \cap (b)^{\circ} = D(L)$ $\Rightarrow (b)^{\circ} \subseteq (a)^{\circ\circ}$ $\Rightarrow L = (b)^{\circ} \vee F \subseteq (a)^{\circ\circ} \vee F$ since $b \in \mathcal{K}(F)$ $\Rightarrow a \in S$ and $a \vee x \in D(L)$ $\Rightarrow x \in \omega(S)$

which gives $F = \mathcal{K}(F) \subseteq \omega(S)$. Hence $F = \omega(S)$. Therefore F is an ω -filter of L.

The converse of Theorem 2.10 is not true. i.e. every ω -filter of a lattice need not be a \mathcal{K} -filter. For, consider the distributive lattice given in Example 2.8. Consider $F = \{1, b\}$ and $I = \{0, a, c\}$. Clearly F is a filter and I is an ideal of L such that $F = \omega(I)$. Hence F is an ω -filter of L. Now, observe that $\mathcal{K}(F) = \{1\}$, because of $(b)^{\circ} \vee F = \{1, a, b, c\} \neq L$. Therefore F is not a \mathcal{K} -filter of L.

Proposition 2.11. For each $a \in L - D$, $(a)^{\circ}$ is an ω -filter of L.

Proof. Let $a \in L-D(L)$. Clearly $(a] \cap D(L) = \emptyset$. We show that $(a)^{\circ} = \omega((a])$. Let $x \in (a)^{\circ}$. Then $x \vee a \in D(L)$. Since $a \in (a]$, we get $x \in \omega((a])$. Hence $(a)^{\circ} \subseteq \omega((a])$. Conversely, let $x \in \omega((a])$. Then $x \vee t \in D(L)$ for some $t \in (a]$. Since $x \vee t \leq x \vee a$, we get $x \vee a \in D(L)$. Hence $x \in (a)^{\circ}$. Therefore $\omega((a]) \subseteq (a)^{\circ}$.

Proposition 2.12. Every prime K-filter is a minimal prime D-filter.

Proof. Let P be a prime K-filter of a lattice L. Then P = K(P). Let $x \in P$. Since $x \in K(P)$, we get $(x)^{\circ} \vee P = L$. Hence $0 \in (x)^{\circ} \vee P$. Thus there exist $a \in (x)^{\circ}$ and $b \in P$ such that $a \wedge b = 0$. Since $a \in (x)^{\circ}$, we get $a \vee x \in D(L)$. Suppose $a \in P$. Then $0 = a \wedge b \in P$, which is a contradiction. Thus to each $x \in P$, there exists $a \notin P$ such that $x \vee a \in D(L)$. By Lemma (2.4), P is a minimal prime D-filter of L.

The converse of Proposition 2.12 is not true. For, consider the minimal prime D-filter $P = \{1, a\}$ of the distributive lattice given in Example 2.8. Observe that $\mathcal{K}(P) = \{1\}$, because of $(a)^{\circ} \vee P = \{1, a, b, c\} \neq L$. Therefore P is not a \mathcal{K} -filter of L. However, in the following theorem, a set of equivalent conditions is established for every minimal prime D-filter of a lattice to become a prime \mathcal{K} -filter.

Theorem 2.13. The following assertions are equivalent in a lattice L:

- (1) Every minimal prime D-filter is a prime K-filter;
- (2) for each $x \in L$, $(x)^{\circ} \lor (x)^{\circ \circ} = L$;
- (3) every ω -filter is a K-filter;
- (4) every prime ω -filter is a K-filter.

Proof. (1) \Rightarrow (2): Assume that every minimal prime D-filter is a prime \mathcal{K} -filter. Let $x \in L$. Suppose $(x)^{\circ} \vee (x)^{\circ \circ} \neq L$. Then there exists a maximal ideal M such that $\{(x)^{\circ} \vee (x)^{\circ \circ}\} \cap M = \emptyset$. Since $D(L) \subseteq (x)^{\circ} \vee (x)^{\circ \circ}$, we get $M \cap D(L) = \emptyset$. Hence L - M is a minimal prime D-filter of L. By the assumption, L - M is a \mathcal{K} -filter. Suppose $x \in M$. Since $x \in (x)^{\circ \circ}$, we get $x \in \{(x)^{\circ} \vee (x)^{\circ \circ}\} \cap M$ which is a contradiction. Thus $x \notin M$ and therefore $x \in L - M = \mathcal{K}(L - M)$. Hence $(x)^{\circ} \vee (L - M) = L$, which gives that $0 \in (x)^{\circ} \vee (L - M)$. Then $a \wedge b = 0 \in M$ for some $a \in (x)^{\circ}$ and $b \in L - M$. Since $b \notin M$ and M is prime, we must have $a \in M$. Hence $a \in \{(x)^{\circ} \vee (x)^{\circ \circ}\} \cap M$, which is a contradiction. Therefore $(x)^{\circ} \vee (x)^{\circ \circ} = L$ for all $x \in L$.

- $(2) \Rightarrow (3)$: Let F be an ω -filter of L. Clearly $\mathcal{K}(F) \subseteq F$. Conversely, let $x \in F$. Since F is an ω -filter, we get $(x)^{\circ \circ} \subseteq F$. Hence $L = (x)^{\circ} \vee (x)^{\circ \circ} \subseteq (x)^{\circ} \vee F$. Thus $x \in \mathcal{K}(F)$. Therefore F is a \mathcal{K} -filter of L.
 - $(3) \Rightarrow (4)$: is clear.
- (4) \Rightarrow (1): Since every minimal prime *D*-filter is a prime ω -filter, it is obvious.

Definition 2.14. For any proper filter F of a lattice L, define

$$\Omega(F) = \{ x \in L \mid (x)^{\circ} \not\subseteq F \}.$$

Proposition 2.15. Let L be a lattice and M be a maximal filter of L. Then the set $\Omega(M)$ is a D-filter of L such that $\Omega(M) \subseteq M$.

Proof. Let M be a maximal filter. Clearly $D(L) \subseteq M$. Since M is proper, we get $(d)^{\circ} \not\subseteq M$ for any $d \in D(L)$. Hence $D(L) \subseteq \Omega(M)$. Suppose $x, y \in \omega(M)$. Then $(x)^{\circ} \not\subseteq M$ and $(y)^{\circ} \not\subseteq M$. Hence $M \subset M \vee (x)^{\circ}$ and $M \subset M \vee (y)^{\circ}$. Since M is maximal, we get $M \vee (x)^{\circ} = L$ and $M \vee (y)^{\circ} = L$. Thus, we get

$$M \vee (x \wedge y)^{\circ} = M \vee \{(x)^{\circ} \cap (y)^{\circ}\}$$
$$= \{M \vee (x)^{\circ}\} \cap \{M \vee (y)^{\circ}\}$$
$$= L \cap L$$
$$= L.$$

If $(x \wedge y)^{\circ} \subseteq M$, then M = L which is a contradiction. Hence $(x \wedge y)^{\circ} \not\subseteq M$. Thus $x \wedge y \in \Omega(M)$. Again, let $x \in \Omega(M)$ and $x \leq y$. Then $(x)^{\circ} \not\subseteq M$ and $x \leq y$. Since $x \leq y$, we get $(x)^{\circ} \subseteq (y)^{\circ}$. Hence $(y)^{\circ} \not\subseteq M$. Hence $y \in \Omega(M)$. Therefore $\Omega(M)$ is a D-filter of L. Now, let $x \in \Omega(M)$. Then $(x)^{\circ} \not\subseteq M$. Hence, there exists $a \in (x)^{\circ}$ such that $a \notin M$. Since $a \in (x)^{\circ}$, we get $a \vee x \in D(L)$. Hence $[a \vee x) \subseteq D(L)$. Suppose $x \notin M$. Then $M \vee [x) = L$. Since $a \notin M$, we get $M \vee [a] = L$. Hence

$$L = M \vee \{[a) \cap [x)\} = M \vee [a \vee x) \subseteq M \vee D(L) = M,$$

which is a contradiction. Hence $x \in M$. Therefore $\Omega(M) \subseteq M$.

Proposition 2.16. Let P be a prime D-filter of a lattice L. Then

- (1) $\mathcal{K}(P) \subseteq \Omega(P)$,
- (2) if P is maximal, then $K(P) = \Omega(P)$.

Proof. (1) Let $x \in \mathcal{K}(P)$. Then $(x)^{\circ} \vee P = L$. Suppose $(x)^{\circ} \subseteq P$. Then P = L, which is a contradiction. Hence $(x)^{\circ} \nsubseteq P$. Thus $x \in \Omega(P)$. Therefore $\mathcal{K}(P) \subseteq \Omega(P)$.

(2) From (1), we get $\mathcal{K}(P) \subseteq \Omega(P)$. Conversely, let $x \in \Omega(P)$. Then $(x)^{\circ} \not\subseteq P$. Since P is maximal, we get $(x)^{\circ} \vee P = L$. Thus $x \in \mathcal{K}(P)$. Therefore $\Omega(P) = \mathcal{K}(P)$.

Let us denote that μ is the set of all maximal filters of a lattice L. For any filter F of a lattice L, we also denote $\mu(F) = \{M \in \mu \mid F \subseteq M\}$.

Theorem 2.17. For any filter F of a lattice L, $\mathcal{K}(F) = \bigcap_{M \in \mu(F)} \Omega(M)$.

Proof. Let $x \in \mathcal{K}(F)$ and $F \subseteq M$ where $M \in \mu$. Then

$$L = (x)^{\circ} \vee F \subseteq (x)^{\circ} \vee M.$$

Suppose $(x)^{\circ} \subseteq M$, then M = L, which is a contradiction. Hence $(x)^{\circ} \not\subseteq M$. Thus $x \in \Omega(M)$ for all $M \in \mu(F)$. Hence $\mathcal{K}(F) \subseteq \bigcap_{M \in \mu(F)} \Omega(M)$.

Conversely, let $x \in \bigcap_{M \in \mu(F)} \Omega(M)$. Then $x \in \Omega(M)$ for all $M \in \mu(F)$.

Suppose $(x)^{\circ} \vee F \neq L$. Then there exists a maximal filter M_0 such that $(x)^{\circ} \vee F \subseteq M_0$. Hence $(x)^{\circ} \subseteq M_0$ and $F \subseteq M$. Since $F \subseteq M_0$, by hypothesis, we get $x \in \Omega(M_0)$. Hence $(x)^{\circ} \not\subseteq M_0$, which is a contradiction. Therefore $(x)^{\circ} \vee F = L$. Hence $x \in \mathcal{K}(F)$. Therefore $\bigcap_{M \in \mu(F)} \Omega(M) \subseteq \mathcal{K}(F)$.

From the above theorem, it can be easily observed that $\mathcal{K}(F) \subseteq \Omega(M)$ for every $M \in \mu(F)$. Now, in the following, a set of equivalent conditions is derived for the class of all D-filters of the form $\mathcal{K}(F)$ to become a sublattice to the lattice $\mathcal{F}(L)$ of all filters of L, which leads to a characterization of a quasi-complemented lattice.

Theorem 2.18. The following assertions are equivalent in lattice L:

- (1) L is quasi-complemented;
- (2) for any $M \in \mu$, $\Omega(M)$ is maximal;
- (3) for any $F, G \in \mathcal{F}(L)$, $F \vee G = L$ implies $\mathcal{K}(F) \vee \mathcal{K}(G) = L$;
- (4) for any $F, G \in \mathcal{F}(L)$, $\mathcal{K}(F) \vee \mathcal{K}(G) = \mathcal{K}(F \vee G)$;
- (5) for any two distinct maximal filters M and N, $\Omega(M) \vee \Omega(N) = L$;
- (6) for any $M \in \mu$, M is the unique member of μ such that $\Omega(M) \subseteq M$.
- Proof. (1) \Rightarrow (2): Assume that L is quasi-complemented. Let M be a maximal filter of L. It is enough to show that $\Omega(M) = M$. Clearly $\Omega(M) \subseteq M$. On the other hand, let $x \in M$. Since L is quasi-complemented, there exists $y \in L$ such that $x \wedge y = 0$ and $x \vee y \in D(L)$. Hence $y \in (x)^{\circ}$. If $y \in M$, then $0 = x \wedge y \in M$ which is a contradiction. Hence $y \notin M$ such that $y \in (x)^{\circ}$. Thus $(x)^{\circ} \not\subseteq M$. Hence $x \in \Omega(M)$. Therefore $M \subseteq \Omega(M)$.
- $(2) \Rightarrow (3)$: Clearly $\Omega(M) = M$ for all $M \in \mu$. Let $F, G \in \mathcal{F}(L)$ be such that $F \vee G = L$. Suppose $\mathcal{K}(F) \vee \mathcal{K}(G) \neq L$. Then there exists a maximal filter M such that $\mathcal{K}(F) \vee \mathcal{K}(G) \subseteq M$. Hence $\mathcal{K}(F) \subseteq M$ and $\mathcal{K}(G) \subseteq M$. Now

$$\mathcal{K}(F) \subseteq M \Rightarrow \bigcap_{M_i \in \mu(F)} \Omega(M_i) \subseteq M$$

$$\Rightarrow \Omega(M_i) \subseteq M \quad \text{for some } M_i \in \mu(F) \text{ (since } M \text{ is prime)}$$

$$\Rightarrow M_i \subseteq M \quad \text{by (2)}$$

$$\Rightarrow F \subseteq M \quad \text{since } F \subseteq M_i.$$

Similarly, we get $G \subseteq M$. Hence $L = F \vee G \subseteq M$, which is a contradiction to the maximality of M. Therefore $\mathcal{K}(F) \vee \mathcal{K}(G) = L$.

(3) \Rightarrow (4): Let $F, G \in \mathcal{F}(L)$. Clearly $\mathcal{K}(F) \vee \mathcal{K}(G) \subseteq \mathcal{K}(F \vee G)$. Conversely, let $x \in \mathcal{K}(F \vee G)$. Then $\{(x)^{\circ} \vee F\} \vee \{(x)^{\circ} \vee G\} = (x)^{\circ} \vee F \vee G = L$. Hence by condition (3), we get $\mathcal{K}((x)^{\circ} \vee F) \vee \mathcal{K}((x)^{\circ} \vee G) = L$. Thus $x \in \mathcal{K}((x)^{\circ} \vee F) \vee \mathcal{K}((x)^{\circ} \vee G)$. Hence $x = r \wedge s$ for some $r \in \mathcal{K}((x)^{\circ} \vee F)$

and $s \in \mathcal{K}((x)^{\circ} \vee G)$. Now

$$r \in \mathcal{K}((x)^{\circ} \vee F) \Rightarrow (r)^{\circ} \vee \{(x)^{\circ} \vee F\} = L$$
$$\Rightarrow L = \{(r)^{\circ} \vee (x)^{\circ}\} \vee F \subseteq (r \vee x)^{\circ} \vee F$$
$$\Rightarrow (r \vee x)^{\circ} \vee F = L$$
$$\Rightarrow r \vee x \in \mathcal{K}(F)$$

Similarly, we get $s \vee x \in \mathcal{K}(G)$. Now, we have the following consequence:

$$x = x \lor x$$

$$= (r \land s) \lor x$$

$$= (r \lor x) \land (s \lor x)$$

where $r \vee x \in \mathcal{K}(F)$ and $s \vee x \in \mathcal{K}(G)$. Hence $x \in \mathcal{K}(F) \vee \mathcal{K}(G)$. Thus $\mathcal{K}(F \vee G) \subseteq \mathcal{K}(F) \vee \mathcal{K}(G)$. Therefore $\mathcal{K}(F) \vee \mathcal{K}(G) = \mathcal{K}(F \vee G)$.

 $(4) \Rightarrow (5)$: Let M, N be two distinct maximal filters of L. Choose $x \in M - N$ and $y \in N - M$. Since $x \notin N$, we get $N \vee [x] = L$. Since $y \notin M$, we get $M \vee [y] = L$. Now, we get

$$L = \mathcal{K}(L)$$

$$= \mathcal{K}(L \vee L)$$

$$= \mathcal{K}(\{N \vee [x)\} \vee \{M \vee [y)\})$$

$$= \mathcal{K}(\{M \vee [x)\} \vee \{N \vee [y)\})$$

$$= \mathcal{K}(M \vee N) \qquad \text{since } x \in M \text{ and } y \in N$$

$$= \mathcal{K}(M) \vee \mathcal{K}(N) \qquad \text{by condition } (4)$$

$$\subseteq \Omega(M) \vee \Omega(N) \qquad \text{by Proposition } 2.16(1)$$

Therefore $\Omega(M) \vee \Omega(N) = L$.

- (5) \Rightarrow (6): Let $M \in \mu$. Suppose $N \in \mu$ such that $N \neq M$ and $\Omega(N) \subseteq M$. Since $\Omega(M) \subseteq M$, by hypothesis, we get $L = \Omega(M) \vee \Omega(N) = M$, which is a contradiction. Hence M is the unique maximal filter such that $\Omega(M) \subseteq M$.
- $(6) \Rightarrow (1)$: Let $x \in L$. Suppose $0 \notin [x) \lor (x)^{\circ}$. Then there exist a maximal filter M such that $[x) \lor (x)^{\circ} \subseteq M$. Then $x \in M$ and $(x)^{\circ} \subseteq M$. Hence $x \in M$ and $x \notin \Omega(M)$. Since $x \notin \Omega(M)$, there exists a maximal filter M_0 such that $x \notin M_0$ and $\Omega(M) \subseteq M_0$. By the uniqueness of M, we get $M = M_0$. Hence $x \notin M_0 = M$, which is a contradiction. Thus $0 \in [x) \lor (x)^{\circ}$, which gives $0 = x \land a$ for some $a \in (x)^{\circ}$. Hence $x \land a = 0$ and $x \lor a \in D(L)$. Therefore L is a quasi-complemented lattice.

Theorem 2.19. Following assertions are equivalent in a lattice L:

- (1) L is quasi-complemented;
- (2) every D-filter is a K-filter;
- (3) every prime D-filter is a K-filter;
- (4) every prime D-filter is minimal.
- Proof. (1) \Rightarrow (2): Assume that L is quasi-complemented. Let F be a D-filter of L. Clearly $\mathcal{K}(F) \subseteq F$. On the other hand, let $x \in F$. Since L is quasi-complemented, there exists $y \in L$ such that $x \wedge y = 0$ and $x \vee y \in D$. Suppose $(x)^{\circ} \vee F \neq L$. Then there exists a prime filter P such that $(x)^{\circ} \vee F \subseteq P$. Then $(x)^{\circ} \subseteq P$ and $x \in F \subseteq P$. Suppose $y \in P$. Then $0 = x \wedge y \in P$ which is a contradiction. Hence $y \notin P$. Since $x \vee y \in D$, we get $y \in (x)^{\circ} \subseteq P$ yields a contradiction. Thus $(x)^{\circ} \vee F = L$ which gives that $x \in \mathcal{K}(F)$. Hence $F \subseteq \mathcal{K}(F)$. Therefore F is \mathcal{K} -filter of L.
 - $(2) \Rightarrow (3)$: It is clear.
- (3) \Rightarrow (4): Assume that every prime D-filter is a \mathcal{K} -filter. Let P be a prime D-filter of L. Since P is proper, there exists $c \in L$ such that $c \notin P$. By condition (3), P is a \mathcal{K} -filter of L. Hence $\mathcal{K}(P) = P$. Let $x \in P = \mathcal{K}(P)$. Then $(x)^{\circ} \vee P = L$ and thus $c \in (x)^{\circ} \vee P$. Then $c = a \wedge b$ for some $a \in (x)^{\circ}$ and $b \in P$. Since $a \in (x)^{\circ}$, we get $x \vee a \in D(L)$. Suppose $a \in P$. Since P is prime and $b \in P$, we get $c = a \wedge b \in P$ which is a contradiction. Thus $a \notin P$. Hence $x \vee a \in D(L)$ for some $a \notin P$. Therefore P is minimal.

$$(4) \Rightarrow (1)$$
: By Theorem 2.2, it follows.

Since every Boolean algebra contains a unique dense element precisely 1, it is clear that every filter of a Boolean algebra is a D-filter. Further, it can be easily seen that every Boolean algebra is quasi-complemented. Thus, we have the following:

Theorem 2.20. Following assertions are equivalent in a lattice L:

- (1) L is a Boolean algebra;
- (2) every filter is a K-filter;
- (3) every prime filter is a K-filter;
- (4) every prime filter is minimal.

Proof. (1) \Rightarrow (2), (2) \Rightarrow (3) and (3) \Rightarrow (4) are straightforward.

 $(4) \Rightarrow (1)$: Assume that every prime filter of L is minimal. Let $x \in L$. Suppose $0 \notin [x) \lor (x)^+$. Then there exists a prime filter P such that $[x) \lor (x)^+ \subseteq P$. Hence $x \in P$ and $(x)^+ \subseteq P$. Since P is minimal and $(x)^+ \subseteq P$, we get $x \notin P$ which is a contraction. Hence $0 \in [x) \lor (x)^+$. Then

there exist $a \in (x)^+$ such that $a \wedge x = 0$. Since $a \in (x)^+$, we get $x \vee a = 1$. Hence a is the complement of x. Therefore L is Boolean.

Acknowledgments

The author would like to thank the referee for his valuable suggestions and comments which improved the presentation of this article.

REFERENCES

- 1. G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. XXV, Providence, 1967.
- 2. T. S. Blyth, Ideals and filters of pseudo-complemented semilattices, *Proc. Edinb. Math. Soc.*, **23** (1980), 301–316.
- 3. S. Burris and H. P. Sankappanavar, A Cource in Universal Algebra, Springer Verlag, 1981.
- 4. W. H. Cornish, Annulets and α -ideals in distributive lattices, J. Aust. Math. Soc., 15 (1973), 70–77.
- 5. W. H. Cornish, Normal lattices, J. Aust. Math. Soc., 14 (1972), 200–215.
- 6. W. H. Cornish, O-ideals, Congruences, Sheaf representation of distributive lattices, *Rev. Roum. Math. Pures et Appl.*, **22**(8) (1977), 1059–1067.
- 7. W. H. Cornish, Quasicomplemented lattices, Comment. Math. Univ. Carolin., 15(3) (1974), 501–511.
- 8. A. P. Phaneendra Kumar, M. Sambasiva Rao and K. Sobhan Babu, Generalized prime *D*-filters of distributive lattices, *Arch. Math. (Brno)*, **57**(3) (2021), 157–174.
- 9. M. Sambasiva Rao, e-filters of MS-algebras, Acta Math. Sci., 33B(3) (2013), 738–746.
- 10. M. Sambasiva Rao, μ -filters of distributive lattices, Southeast Asian Bull. Math., **40**(2) (2016), 251–264.
- 11. M. Sambasiva Rao, Normal filters of distributive lattices, *Bull. Sec. logic*, **41** (2012), 131–143.
- 12. M. Sambasiva Rao and A. P. Phaneendra Kumar, Regular filters of distributive lattices, J. Algebr. Syst., 12(2) (2025), 283–299.
- 13. M. Sambasiva Rao and Ch. Venkata Rao, ω -filters of distributive lattices, Algebraic structures and their applications, $\mathbf{9}(1)$ (2022), 145–159.
- 14. T. P. Speed, Some remarks on a class of distributive lattices, *J. Aust. Math. Soc.*, **9** (1969), 289–296.

Mukkamala Sambasiva Rao

Department of Mathematics, MVGR College of Engineering, Vizianagaram, Andhra Pradesh, India-535005. Email: mssraomaths35@rediffmail.com

Journal of Algebraic Systems

K-FILTERS OF DISTRIBUTIVE LATTICES

M. SAMBASIVA RAO

فیلترهای مشبکههای توزیعپذیر $-\mathcal{K}$ ام. سامباسیوارائو

گروه ریاضی، کالج مهندسی MVGR، ویزیاناگارام، آندراپرادش، هند

در این مقاله، مفهوم \mathcal{K} -فیلترها در مشبکههای توزیعپذیر معرفی شده و برخی از ویژگیهای این دسته از فیلترها مورد مطالعه گرفته است. برخی شرایط لازم و کافی برای اینکه هر π -فیلتر یک مشبکه توزیعپذیر به یک \mathcal{K} -فیلتر تبدیل شود، ارائه شده است. همچنین، برخی شرایط معادل برای اینکه هر D-فیلتر یک مشبکه توزیعپذیر به \mathcal{K} -فیلتر تبدیل شود، بیان شده است. به علاوه، مشبکههای شبه-کامل شده با کمک \mathcal{K} -فیلترها مشخصه سازی شده اند.

کلمات کلیدی: D-فیلتر، فیلتر منظم، π -فیلتر، ω -فیلتر، مشبکه شبه-کامل شده.