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STRUCTURED CONDITION PSEUDOSPECTRA AND STRUCTURED
ESSENTIAL CONDITION PSEUDOSPECTRA OF BOUNDED LINEAR
OPERATORS ON ULTRAMETRIC BANACH SPACES

J. Ettayb

ABSTRACT. In this paper, we introduce and study the structured condition pseu-
dospectra and the structured essential condition pseudospectra of bounded linear
operators on ultrametric Banach spaces. We establish a characterization of the
structured condition pseudospectrum of continuous linear operators and we give a
relationship between the structured condition pseudospectrum and the structured
pseudospectrum of continuous linear operators on ultrametric Banach spaces. Many
characterizations of the structured essential condition pseudospectrum of bounded
linear operators and examples are given.

1. INTRODUCTION AND PRELIMINARIES

In the classical analysis, Trefethen [10] introduced the pseudospectra of
matrices and bounded linear operators. Moreover, Davies [3] introduced the
structured pseudospectrum of a closed linear operator S on a complex Banach
space &£ as follows:

0.(S,B,C) = U o(S +CDB),
DeB(F.,G):||D||<e

where F and G are complex Banach spaces, B € B(E,F) and C € B(G,¢€).
He gave a characterization of the structured pseudospectrum of the closed
linear operator S. For more details, we refer to [3].

In ultrametric operator theory, the authors [3] extended and studied the
pseudospectra of linear operators on ultrametric Banach spaces. They charac-
terized the pseudospectra of linear operators and the essential pseudospectra
of closed linear operators. Furthermore, they established a relationship be-
tween the essential pseudospectra and the essential pseudospectra of closed
linear operators perturbed by completely continuous operators on ultramet-
ric Hilbert spaces. In [1], Ammar, Bouchekoua and Lazrag introduced and
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studied the condition pseudospectra of bounded linear operators on ultra-
metric Banach spaces. They gave a relationship between the condition pseu-
dospectra and the pseudospectra and they obtained some properties of the
essential condition pseudospectrum of bounded linear operators on ultramet-
ric Banach spaces. Recently, EL. Amrani, Ettayb and Blali [11] studied the
pseudospectra and the condition pseudospectra of ultrametric matrices and
the pseudospectra of ultrametric matrix pencils. They proved some results
about them and they gave some illustrative examples. Furthermore, the trace
pseudospectra, the determinant pseudospectra of ultrametric matrix pencils
and the condition pseudospectra of ultrametric operator pencils were studied
by several authors. For more details, we refer to [0], [7], [I 1] and [14].

The eigenvalue problem is one of interesting problems in ultrametric op-
erator theory. It played an important role in many parts of ultrametric ap-
plied mathematics and physics including matrix theory, ultrametric pseudo-
differential equations, control theory and ultrametric quantum mechanics.
For more details, we refer to [1], [2], [3] and [/]. This work is motivated
by many studies of ultrametric spectral theory and perturbation theory of
bounded linear operators. For more details, we refer to [3, 4, 6, 7, 11, 14].

Throughout this paper, K is a complete ultrametric field with non-trivial
valuation |- |, £ is an ultrametric Banach space over K, B(€) denotes the col-
lection of all continuous linear operators on &£, £* = B(&,K) is the dual space
of £ and Q,, is the field of p-adic numbers. For more details, we refer to [9, 17].
For S € B(E), N(5),R(S),p(S),0(S) and o.(5) are the kernel, the range,
the resolvent set, the spectrum and the essential spectrum of S respectively.
For more details, see [1, 9]. We begin with the following preliminaries.

Definition 1.1. [9] Let £ be a vector space over K. A function ||| : £ = Ry
is called an ultrametric norm if:

(i) For each u € &, ||u|| = 0 if and only if u = 0;
(ii) For all uw € £ and A € K, || Au|| = |A|||ul];
(iii) For any u,v € &, ||u + v|| < max(|jul], ||v]|).

Definition 1.2. [9] An ultrametric Banach space is a complete ultrametric
normed space.

Theorem 1.3. [17] Assume that K is spherically complete. Let £ be an
ultrametric Banach space over K. For all uw € E\{0}, there is u* € £* such
that u*(u) = 1 and ||Ju*|| = |Jul 7"
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Definition 1.4. [9] Let w = (w;); be a sequence of K\{0}. We define &, by
Eo={u=(w):VieN, u; € Kand lim |w;|?|u;| = 0}.
71— 00
On &, we define

1
Vu e &, u= ()i, ||ul| =sup(|w;i|?|uy|).
1eN
Then (&,, || - ||) is an ultrametric Banach space.

Remark 1.5. [9] The orthogonal basis {e;, ¢ € N} is called the canonical
basis of &, where e; = (0;;)jen and §;; is the Kronecker symbol. For each

i €N, fleill = furl
Definition 1.6. [I5] Let S € B(£), S is called an upper semi-Fredholm
operator if
a(S) = dim N(S) is finite and R(S) is closed.

The collection of all upper semi-Fredholm operators on & is denoted by
o (E).
Definition 1.7. [15] Let S € B(£), S is said to be a lower semi-Fredholm
operator if 8(S) = dim(E/R(S)) is finite.

The collection of all lower semi-Fredholm operators on £ is denoted by
d_(E).

The collection of all bounded Fredholm operators on & is

OE) =D, (E)ND_(E).

Let S € (&), the index ind(S) of S is defined by ind(S) = a(S) — 5(.5). For

more details on bounded Fredholm operators, see [5], [10], [15] and [17].

Definition 1.8. [17] Let S € B(£), S is said to be an operator of finite rank
if dim R(S) is finite.

The set of all finite rank operators on £ will be denoted by Fy(&).

Definition 1.9. [9] Let £ be an ultrametric Banach space and let S € B(&),
S is called completely continuous if, there is a sequence of finite rank linear
operators (S;,)nen such that ||S, — S|| — 0 as n — oc.

C.(€) is the set of all completely continuous linear operators on .

Lemma 1.10. [10] Let £ be an ultrametric Banach space over a spherically

complete field K. If S € ®(E) and C € C.(E), hence S+ C € P(E).
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The following lemma showed that the index of a Fredholm operator be-
tween ultrametric Banach spaces is preserved under completely continuous
perturbations.

Lemma 1.11. [1] Suppose that K is spherically complete. If S € ®(E), hence
for each C € C.(E), S+ C € ®(&) and ind(S + C) = ind(9).

Theorem 1.12. [1] Suppose that K is spherically complete. Let S € B(E).
Then

o(S)= (] o(S+K).
KeC.(&)

As the classical setting, we have.

Proposition 1.13. [8] Let £ be an ultrametric Banach space over K. If
S,B € B(E), then —1 & o(SB) if, and only if, —1 & o(BS).

Lemma 1.14. [9] Let £ be an ultrametric Banach space over K. Let S € B(E)
such that ||S|| < 1, then (I — S)™t € B(E) and ||(I — S)7Y| < 1.

Let M,,(K) be the algebra of all n x n matrices with entries in K. We have
the following definitions.

Definition 1.15. [11] Let S € M,,(K). The spectrum o(S) of S is
o(S) ={A € K: S — Al is not invertible}.

The resolvent set p(.S) of S is K\o ().

]

Definition 1.16. [I 1] Let S € M,,(K) and £ > 0. The pseudospectrum o.(.S)
of S is defined by

0.(S)=c(SYU{NeK: ||[(S— M) >t}
By convention ||(S — M) = oo if A € o(S).
Proposition 1.17. [I1] Let S € M,,(K) and ¢ > 0. Hence
(i) o(S) = [)o:(5);

e>0
(ii) For each g1 and ey with 0 < &1 < €9, 0(5) C 0.,(5) C 0.,(9).

Theorem 1.18. [1 1] Let £ be a finite-dimensional ultrametric Banach space
over Q, such that ||E|| C |Qyl|, let S € B(E) and e > 0. Then
o(S)= |J a(5+0)

CeB(€):]|Cll<e
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The following definition is introduced.

Definition 1.19. [I 1] Let S € M,,(K) and € > 0. The condition pseudospec-
trum A.(S) of S is given by

A(S) =a(S)U{r e K [[(S=ADII(S = AD) | >},
by convention |[(S — AI)||||(S — AI)7!|| = oo if and only if X € o(9).
The condition pseudoresolvent of S is K\A.(.5).
2. MAIN RESULTS
We start with the following definition.

Definition 2.1. Let S, B,C € M,(K) and € > 0. The structured pseu-
dospectrum o.(S, B, C) of S is defined by

0.(S,B,C) =c(S)U{NeK: |B(S—A)"'C| > '}.
The structured pseudoresolvent p.(S, B, C) of S is defined by

p-(8,B,C) = p(S)N{A €K : |B(S —AI)"'C| <},
by convention ||B(S — AI)7!C|| = cc if, and only if, X € o(S).

We collect some properties of the structured pseudospectra of ultrametric
matrices.

Proposition 2.2. Let S, B,C € M, (K) and € > 0. Then
(1) J(S) — m 05(57 B7C>7

e>0
(ii) For all 1 and ey such that 0 < &1 < &,

o(S) C o, (5, B,C) Co.,(S,B,C).

Proof. The proof is similar to the proof of Proposition 1.17. ]
Theorem 2.3. Let S, B,C € B(Q}) such that 0 € p(B) N p(C) and € > 0.
Then

0.(S,B,C) = lJ e(s+CDB).

DeB(Qp):||Dll<e
Proof. The proof is similar to the proof of Theorem 1.18. ]
Example 2.4. Let € > 0, A1, A2 € Q,\{0} and let

A O 11 10
S:<01 M), B:<1 1) andCz(O O)eMz(@p).
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Then
0.(S,B,C) = o(S)U{A€Q,: ||B(S—AD)'C| > %}
= {0t Uu{reQ,: A= X\| <e}
Example 2.5. Let K = Q,,c > 0 and let

S:<8 ?), Bz(i ?) andC:[:((l) ?)GMQ(QP).

Hence
1
0:(S,B,C) = o(S)U{NeQ,: ||B(S—A)'C| > g}

1 1

1
= {0,1}u{reQ,: max{m, W} > g}

Example 2.6. Let K = Q,,c > 0 and let
10 1 0 01
SZ(l 1), Bz(o O) andC’z(O 0>€M2(Qp).

Consequently
7.(5,B,0) = o(S)UfA€Q,: |B(S — AN C) > 1}
= {1}u{reQ,: |A—1| <e}.
We introduce the following definition.

Definition 2.7. Let & be an ultrametric Banach space over K. Let
S, B,C € B(€) such that 0 € p(B)Np(C') and € > 0, the structured condition
pseudospectrum A, (S, B, C') of S is defined by

A(S, B,C) = o(S)U{A € K : [CN(S — A)BY||B(S — AD)'C|| > %}.
The structured condition pseudoresolvent of S is given by

p(S)N{A €K [CTH(S = ADBH|B(S — AI)7'C| < g}-
By convention ||C7Y(S — AX)B7H|||B(S — M)71C|| = 0o if X € 0(8S).
From Definition 2.7, we conclude the following remark.

Remark 2.8. If C = B = I, hence A.(S,I,I) = A.(S) (the condition pseu-
dospectrum of S).
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By Definition 2.7, it follows that the structured condition pseudospectra
associated with various ¢ are nested sets and the intersection of all the struc-
tured condition pseudospectra is the spectrum.

Proposition 2.9. Let £ be an ultrametric Banach space over K, let
S,B,C € B(E) such that 0 € p(B) N p(C) and € > 0, then

(i) o(S) = [V A(S, B, C);
e>0
(ii) If 0 < &1 < &9, hence o(S) C A, (S, B,C) C A, (S, B,C).
Proof. (i) From Definition 2.7, for each ¢ > 0, o(S) C A.(S,B,C). Con-
versely, if A € ﬂAg(S,B,C’), hence for each ¢ > 0, A € A.(5,B,C). If

>0
A € 0(9), hence A € {\ € K: |CHS = AX)B|||B(S — \I)7'C| > e},
taking limits as e — 0%, we have ||C71(S — A)B7Y||||B(S — A\I)~1C| = oc.
Then X € o(95).
(ii) If A € A, (S, B,C), hence

|C~HS — A)B7Y||B(S — M)71C|| > ;' > &5, Thus A € A, (S, B,C).
O

The next lemma establishes a characterization of the structured condition
pseudospectra of continuous linear operators on £.

Lemma 2.10. Let £ be an wultrametric Banach space over K, let
S,B,C € B(E) with 0 € p(B)Np(C) and e > 0. Hence A € A(S, B,C)\ o (5)
if, and only if, there is x € E\{0} such that

ICTH(S = ADB™ || < ellCH(S = ADB~[l«].
Proof. It A € A.(S, B,C) \ 0(95), then
|C~HS — AD)BH|[|B(S — M)~ 'C|| > 1.

Thus ||B(S — X\I)~'C|| > a||C—1(Si/\I)B—1||' Hence
B(S — \I)~1C 1
p WBEDTC .
ye€\{0} [yl elC=HS = AN B7Y|
Then, there is y € £\{0} with ||B(S — XI)"1Cy]|| > vl =17 Setting

S[CTS-A\B
x = B(S — AI)7!'Cy, hence y = C71(S — \)B~'x. Consequently
|C~HS — \)B Lz

= Sens s
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Hence,

IC™H(S = ADB ™ || < ellCH(S = ADB~ ]

Conversely, assume that there is z € £\{0} such that

IC™H(S = ADB™ || < ellCH(S = ADB~ [«

If \ € 0(5) and z = B(S — M)~ 'Cy, then
lzll < [1B(S = A7 Cllly]l-
From (2.1) and y = C~1(S — AI) B~ 'z, we have

lzll < el B(S = ADT'CICTH(S = AD) B |[||]l.

Then .
IB(S —AD)~'C||C7(S = A)B~!|| > =
Consequently, A € A(S, B,C)\a(S).

(2.1)

]

The following theorem gives a relationship between the structured condition
pseudospectra of a continuous linear operator and the structured condition

pseudospectra of its inverse.

Theorem 2.11. Let £ be an ultrametric Banach space over K and let

e>0. Let S,B,C € B(E) with 0 € p(S) N p(B)Np(C) and SC = CS. Set

k= |IS7HIS|. Then the following statements hold.
(i) If X € Ao(S7, B, O)\{0}, then ; € A (S, B,C)\{0};
(ii) If 5 € Ack(S, B,C)\{0}, then X € Ay2(S™1, B, C)\{0}.
Proof. (i) If X € A.(S71, B,C)\{0}, thus
1

- < ICTHST = ADBTIB(ST = ADTC

— \|A0—1S—1(§ - s) BY| x |\)\‘1B<£ - S>_1SCH

A
I
< -1 -1(4
< s stie (5
Hence + € A.(S, B, C)\{0}.
(i) If + € Ak (S, B,C)\{0}, hence

1 . I e
= < IC7H (s =ADBIB(S = A" C

- ||A—1C—IS(M . S‘1>B‘1H x |\B ()\I _ 5—1)_15—10”

§) B HB(§ _ s)_lcu.
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—1
< ISTISIHICT™ A =SB < |B(A = 57) Cll
Then
2 |C~Y A — S HBY| HB(M — S‘1>_1C||
ck? '
Consequently, A € A2(S™1, B, C)\{0}. O

Theorem 2.12. Let & be an ultrametric Banach space over K, let
S,B,C € B(E) with 0 € p(B) N p(C) and € > 0. If there is D € B(E) with
|D|| < e||C7HS — A)B7Y|| and A € 0(S + CDB). Hence A € A(S, B,C).
Proof. Assume that there exists D € B(E) with | D|| < ¢]|C~1(S — A\I) B~}
and A € o(S+ CDB). Let A € A(S, B,C), thus A € p(S) and
|C7HS — AX)B7Y|[|B(S — AI)7'C|| < e (2.2)
Consider F' defined on £ by

F= i(s — AI)—IC( — DB(S — /\[)‘10) nc—l. (2.3)

It follows from (2.2) and Lemma 1.14 that
-1
F=(S— )\])‘10<C + CDB(S — )\1)‘10) .

Then S+ CDB — Al is invertible and F = (S +CDB — X )~! € B(€) which
is a contradiction. Thus A € A.(S, B, C). O

We put D.(€) = {D € B(E) : | D|| < e|C~1(S — M\)B~Y||}.

Theorem 2.13. Let £ be an ultrametric Banach space over a spherically
complete field K with ||€]] C |K|, let S,B,C € B(E) with 0 € p(B) N p(C)
and € > 0. Hence

A(S,B,C)= | ] o(S+CDB).

DeD.(€)

Proof. From Theorem 2.12, we get U o(S 4+ CDB) C A(S,B,C).
DeD.(€)

Conversely, suppose that A € A.(S, B,C). If A € o(S5), we may set D = 0.

If A € A.(S,B,C) and X & o(S). From Lemma 2.10 and ||€]| C |K|, there

exists x € £ with ||z|| = 1 and ||C71(S — M)B™ 2| < ¢||C~1(S — AI)B7Y.

By Theorem 1.3, there is ¢ € &* with p(z) = 1 and ||| = ||zt = 1.

Consider D on & defined by for each y € £, Dy = —p(y)C~ (S — A[)B™ .
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Then | D|| < ¢||C7YS = AI)B71||. For x € E\{0}, (S—X)B 2+ CDz = 0.
Set 2 = B7lx € E\{0}, we have (S+CDB — X )z =0, hence S+CDB — I
is not injective, then S + CDB — A is not invertible. Hence,

rxe |J o(S+CDB).
DeD.(€)

Example 2.14. Let € > 0,a,b € Q, and let

S = (g 2), B:(i (1)> andC’:(é (2)> EMQ(@p>7

then o(S) = {a,b} and || B(S — )\I)_lCH - max{laikl’ wl—iﬂ} and

|C~H(S — AI)B™!|| = max {|a — ), b—A }
Thus

A(S,B,C) =
2(a— M) 1 b — A 1
0} U{AN € :—>—}U A€ :—>—}.
{CL } { Qp ‘b—)\‘ B { QP |2(CL—)\)‘ c
The following proposition gives a relationship between the structured
condition pseudospectra and the structured pseudospectra of continuous lin-
ear operators on &.

Proposition 2.15. Let £ be an ultrametric Banach space over K, e > 0 and
let S,B,C € B(E) such that 0 € p(B) N p(C) and ||C71(S — MX)B~|| # 0.
Hence

(i) S AE(S, B,C) if and only if A € 05”0—1(5,)\[)3—1”(5,B,C);

(ii)) A € 0.(S, B,C) if and only if A € A (S, B,C).

e A5

Proof. (i) If A € A:(S, B, C), hence A € o(S) and
|C~HS = ADB7H|||B(S = AXI)7'C|| > L.

Then A € o(S) and [|B(S — X)7IC| > 1 Thus,

e||C—H(S-AI)B~ "
A € ogjc-1(s-xnB-1| (S, B,C). The converse is similar.

(ii) If A € 0.(S, B,C), hence A € o(S) and ||B(S — A\)~'C|| > 7. Thus
ICH(S = AnBY
. :

A€ o(S)and [|[C7HS — AX)B7Y|||B(S — XI)~'C|| >
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Then, A\ € AHC S, B, (). The converse is similar. ]

“TE—ADB ]

Theorem 2.16. Let £ be an wultrametric Banach space over K, let
S,B,C,U € B(€) and € > 0 such that 0 € p(B) N p(C)NpU), UC = CU
and BU =UB. Set V =U"'SU, then

A5 (5,B,C) CA(V,B,C) C Ae(S, B, O),
in which k = ||U||||U].
Proof. It A € A5 (S, B, C), hence A € O'(S)( = 0(V)> and

2
T <o s - anBIB(s - Al

- \|C‘1U<V - )\1) U=1B7Y| x HBU(V . A])_lU‘lCH
< (i) e (v = a1)B < 1B(V - 1)
< kQ\\cH(v - M)B—l\\HB(V - A[)_lCH.

Or k? > 0, hence A € A(V, B,C). Then Ak%(S, B,C) CA.(V,B,C).
Let A € A.(V, B, C). Hence

1 . . .
— <ICTV =ADBTIB(V = AD)7C|

— |ctUt (s . )J) UB™Y| x |BU! (s _ >\I>_1UOH
< (Nl 1) e (s = AL)B < |B(s - A1) ¢
< w2 (s A1) B B(s - >\I>_ICH.
Then A € Age.(S, B, C). Thus A(V, B,C) C Ap(S, B, C). =

We have the following example.

Example 2.17. Let S,B,C € B(&,) be diagonal operators with
0 € p(B) N p(C) defined by

for all 2 € N, Se; = a;e;, Be; = bie; and Ce; = ¢;e;
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where (a;)ien, (b;)ien, (¢i)ien C K such that sup,cy|ai|,sup;ey|b;| and
SUp,ey |¢i| are finite. One can see that o(S) = {a; : i € N}. For each A\ € p(95),

B(S = \I)~"'C i b;c;
IB(S — A1) = sup IZEZADCeill _ —|
ieN el ieN |a; — A
and ||C1(S — AI)B7Y| = sup|c; *(a; — A\)b; !|. Consequently,
i€N

A(S, B, C) =

{a;: 1€ N} U {)\ c p(S) :sup e, (a; — A)b; | sup
1eN 1€N

). 1)
a; — A 9
We introduce the concept of structured essential condition pseudospectra

of continuous linear operators on ultrametric Banach spaces.

Definition 2.18. Let £ be an ultrametric Banach space over K, let
S,B,C € B(E) with 0 € p(B) N p(C) and € > 0. The structured essential
condition pseudospectrum A..(S, B, C) of S is defined by

K\ {)\ eK:S+CDB— )\ € $y(€) for each D € B(E),
IDII < el|CH(S = ADB~HI},
where ®y(€) is the set of continuous Fredholm operators on £ of index 0.
We have the following theorem.

Theorem 2.19. Let & be an ultrametric Banach space over K. Let
S,B,C € B(E) such that 0 € p(B) N p(C) and € > 0. Hence

Aeo(S,B,C) = U oc(5+ CDB).
DeB(&):||D||<el|C-1(S—AI)B-1||

Proof. If X &€ A.-(S, B,C), hence for each D € B(&) with

ID]| < elC7HS = A B,
we have S+ CDB — A\ € ®(&) and ind(S + CDB — A\I) = 0. Then for all
D € B(€) with ||D|| < ¢||C71(S — M) B7Y||, we get A & 0.(S + CDB). Thus

A\ ¢ U 0e(S + CDB).
DeB(E):||D||<el|C—1(S—AI)B-1||
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Consequently,

U Oe(S+CDB) gAe,e(S;Bac)'
DeB(&):||D||<el|C-1(S—AI)B-1||

Conversely, if

\ e U o.(S+CDB),
DeB(E):||D||<el|C—1(S—AI)B~1||

hence for each D € B(€) with ||D|| < e||C7Y(S—=A)B7Y||, A € 0.(S+CDB).
Thus

S+ CDB— X\ € () and ind(S + CDB — \I) =0,

for each D € B(E) such that |D| < ¢l|C}S — A)B7Y|, hence
NN (S, B,C). O

The next theorem showed that the structured essential condition pseu-
dospectra of bounded linear operators is invariant under perturbation of
completely continuous linear operators on ultrametric Banach spaces over
a spherically complete field K.

Theorem 2.20. Let £ be an ultrametric Banach space over a spherically
complete field K. Let S, B,C € B(E) with 0 € p(B) N p(C) and £ > 0. Hence

A (S, B,C)= A o(S+ K, B,C) for each K € C.(E). (2.4)
Proof. If X & A.-(S, B,C), then for each D € B(&) with
IDI| < elC7H(S = ADB~'l,

S+CDB— X € ®(€) and ind(S+ CDB — A\I) = 0. From Lemma 1.10 and
Lemma 1.11, for all K € C.(€) and D € B(£) with

IDI| < ellC7H(S = A B,
we obtain that
S+CDB+K—-M €®(€)andind(S+CDB+ K —\)=0. (2.5)
By (2.5), we get A € A..(S + K, B,C). Then
A (S+K,B,C)C A (S,B,C).

The opposite inclusion follows from symmetry.
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Theorem 2.21. Let £ be an ultrametric Banach space over a spherically
complete field K such that ||E|| C |K|. Let S, B,C' € B(E) with 0 € p(B)Np(C)
and € > 0. Hence

Aec(S,B,C)= () A(S+K,B,C).
KeC.(€)

Proof. If \ ¢ ﬂ A:(S + K, B, C), hence there is K € C.(€) with
KeC.(&)
ANEAN(S+K,B,C).

By Theorem 2.13, for each D € B(E) with ||D|| < ¢||C1(S — M)B™!],
we get (S + K + CDB — M)t € B(€). Then for each D € B(£) with
|D|| < e||C~H(S — X\)B™!|, we have

S+ K +CDB— M € ®€)and ind(S+ K +CDB—X)=0. (2.6)

By Lemma 1.10 and Lemma 1.11, for each D € B(€) such that
1Dl < el CTH(S = A B!, we get

S+CDB— X € ®(€) and ind(S+CDB — \)=0. (2.7)
Hence A € A..(S, B,C). Thus
Aec(8,B,C)C () AA(S+K,B,C). (2.8)
KeC(€)

Conversely, if A & A. (S, B,C). From Theorem 2.19, for each D € B(£)
with ||D|| < g||C~1(S —AI)B7Y|, X € 0.(S+CDB). By Theorem 1.12, there
is K € C.(€) with A € o(S 4+ CDB + K), hence for each D € B(£) with
|D|| < el|CH(S = AI)B7Y|, A € p(S+ K + CDB). Then

Y= f p(S+ K +CDB). (2.9)
DEB(E):||D||<e|C-1(S—AI)B-1|
By Theorem 2.13, A &€ A.(S + K, B, (C'). Consequently,
Ag () AA(S+K,B.C).

KeC.(€)

Thus Ac(S, B,C) = Ngee,e) Ae(S + K, B, C).
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Remark 2.22. Let £ be an ultrametric Banach space over a spherically com-
plete field K with ||€]| C |K]|. Let S, B,C € B(E) such that 0 € p(B) N p(C)
and € > 0. From Example 3.31. of [9] and Theorem 2.21, we obtain that

Aec(S,B,C)= [ AAS+F,B,C),
FG.F()((g)

where Fy(&) is the set of all finite rank operators on £.
Proposition 2.23. Let £ be an ultrametric Banach space over a spherically
complete field K with ||E|| C |K|. Let S, B,C € B(E) with 0 € p(B) N p(C)
and € > 0. Hence

(i) Aec(S,B,C) C A(S, B, C).

(ii) For each g1 and €9 such that 0 < g1 < &9, we get
0.(S) C Aee, (S, B,C) C A, (S, B, C).
Proof. (i) If A € A..(S, B,C'). From Theorem 2.19,
A€ U o.(S+ CDB).
DEB(E):||D||<e||C-1(S—A)B-1||
By 0.(S+ CDB) C o(S + CDB), hence
A€ U o(S+ CDB).
DeB(E):||D|<e||C~H(S=AI)B~1|

From Theorem 2.13, A € A.(S, B, C).
(ii) Firstly, we prove that for each ¢ > 0, 0.(S) C A..(S,B,C). If
AE A .(S,B,C), then for each D € B(&) such that

IDI| < ellC™HS = ADBl,

we get Al —(S+CDB) € (&) and ind(A — (S+CDB)) = 0. Taking limits
ase — 0, \[ =S € (&) and ind(Al — §) =0, thus X € 0.(5). Hence

0e(S) C A (S, B, C).
XN A, (5, B,C), hence for each D € B(€) such that
IDII < el|C™H(S = A B,

we have A\l — (S + CDB) € ®(€) and ind(A — (S + CDB)) = 0. Since
g1 < g9, for all D € B(&) such that || D|| < &||C~Y(S — M )B™||, we have
M—(S+CDB) € ®(€) and ind(AM[—(S+CDB)) = 0, thus A € A. ., (S, B, C).
Consequently, A, (S, B,C) C A, (S, B,C). O
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Proposition 2.24. Let £ be an ultrametric Banach space over a spherically
complete field K such that ||E|| C |K|. Let S, B,C' € B(E) with 0 € p(B)Np(C)
and € > 0, hence

= [ Aec(S.B,C).

e>0

Proof. Suppose that A € ﬂ Ac:(S,B,C) and || €|| € |K]|. By Theorem 2.21,

e>0
(Aec(S,B,C) = () ) A(S+K,B,C)
e>0 e>0 KeC.(€)
= () ()A(S+K,B.C). (2.10)
KeC.(€)e>0

By (i) of Proposition 2.9, ﬂ A(S+ K,B,C)=0(S+ K). By (2.10), we

e>0

(VAec(S,B.C)= [ o(S+K).

e>0 KeC.(€)

By Theorem 1.12, A € 0.(S). Conversely, A € ¢.(5). From Theorem 1.12,
A€ ﬂ (S + K). By (i) of Proposition 2.9, we have

get

KeC.(€)
re) ﬂ (S+K,B,0).
e>0 KeC.(€
Since ||€]] C |K]|, by Theorem 2.13,
re) g (| o(S+CDB+K).
>0 DEB(E):||D||<e || C-} (S—AI) B-1|| KC.(E)
From Theorem 1.12, A € ﬂ U o.(S+ CDB). B

>0 DEB(E):|| D <e|C-1(S—AI)B-1|
Theorem 2.19, \ € ﬂ A.-(S, B, C). Consequently,

e>0

= [ Aec(S.B,C).

e>0
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