RESULTS ON QUOTIENT NEAR-RINGS INVOLVING ADDITIVE MAPS

A. Raji, A. Boua* and A. Zerbane

ABSTRACT. In this paper, we study the commutativity of the quotient near-ring \mathcal{N}/\mathcal{P} with left multipliers and generalized derivations satisfying certain algebraic identities on \mathcal{P} . Furthermore, an example is given to show that the 3-primeness condition used in our results is necessary.

1. Introduction

Throughout this paper, \mathcal{N} will denote a left near-ring with multiplicative center $\mathcal{Z}(\mathcal{N})$. Recall that \mathcal{N} is called 3-prime if $x\mathcal{N}y=\{0\}$ for $x,y\in\mathcal{N}$ implies x=0 or y=0 and \mathcal{N} is said to be a 2-torsion free if \mathcal{N} has no element of order 2. For any pair $x,y\in\mathcal{N}$, we write [x,y]=xy-yx and $x\circ y=xy+yx$ to denote the Lie product and the Jordan product, respectively. A derivation on \mathcal{N} is an additive endomorphism d of \mathcal{N} such that d(xy)=xd(y)+d(x)y for all $x,y\in\mathcal{N}$ or equivalently, as noted in [16, Proposition 1], that d(xy)=d(x)y+xd(y) for all $x,y\in\mathcal{N}$. An additive mapping $\mathcal{D}:\mathcal{N}\longrightarrow\mathcal{N}$ is called a generalized derivation if there exists a derivation d on \mathcal{N} such that $\mathcal{D}(xy)=\mathcal{D}(x)y+xd(y)$ for all $x,y\in\mathcal{N}$ or equivalently, $\mathcal{D}(xy)=xd(y)+\mathcal{D}(x)y$ for all $x,y\in\mathcal{N}$. An additive mapping $H:\mathcal{N}\longrightarrow\mathcal{N}$ is said to be a left multiplier (resp. right multiplier) if H(xy)=H(x)y (resp. H(xy)=xH(y)) for all $x,y\in\mathcal{N}$. Thereby, if H is both a left multiplier and a right multiplier, then H is said to be a multiplier of \mathcal{N} .

A normal subgroup \mathcal{P} of $(\mathcal{N}, +)$ is called a left ideal (resp. a right ideal) if $\mathcal{NP} \subseteq \mathcal{P}$ (resp. $(x+r)y-xy \in \mathcal{P}$ for all $x,y \in \mathcal{N}, r \in \mathcal{P}$), and if \mathcal{P} is both a left ideal and a right ideal, then \mathcal{P} is said to be an ideal of \mathcal{N} .

According to [11, Definition 1(iv)], an ideal \mathcal{P} is a 3-prime if for $a, b \in \mathcal{N}$, $a\mathcal{N}b \subseteq \mathcal{P}$ implies $a \in \mathcal{P}$ or $b \in \mathcal{P}$. We denote by \mathcal{N}/\mathcal{P} the quotient near-ring and $\mathcal{Z}(\mathcal{N}/\mathcal{P})$ its multiplicative center. Clearly, if \mathcal{P} is 3-prime, then \mathcal{N}/\mathcal{P} is a 3-prime near-ring.

Published online: 9 April 2024

MSC(2020): Primary: 16N60; Secondary: 16W25, 16Y30.

Keywords: Prime near-rings; Derivations; Left multipliers; Commutativity.

Received: 22 September 2023, Accepted: 26 January 2024.

^{*}Corresponding author.

In the following, we present an example of a near-ring \mathcal{N} admitting a 3-prime ideal \mathcal{P} .

Example 1.1. Let $\mathcal{N} = \{0, a, b, c, d, e, f, g\}$ and define the two laws " + " and "." on \mathcal{N} by:

+	0	a	b	\mathbf{c}	d	e	f	g			0	a	b	\mathbf{c}	d	e	f	g
0	0	a	b	С	d	е	f	g	•	0	0	0	0	0	0	0	0	0
a	a	b	\mathbf{c}	0	e	f	g	d		a	0	a	0	a	0	a	a	0
b	b	\mathbf{c}	0	a	f	g	d	e		b	0	b	0	b	0	b	b	0
\mathbf{c}	c	0	a	b	g	d	e	f	and	\mathbf{c}	0	\mathbf{c}	0	\mathbf{c}	0	\mathbf{c}	\mathbf{c}	0
d	d	g	f	e	0	\mathbf{c}	b	a		d	d	d	d	d	d	d	d	d
e	е	d	g	f	a	0	\mathbf{c}	b		e	d	e	d	e	d	e	e	d
f	f	e	d	g	b	a	0	\mathbf{c}		f	d	f	d	f	d	f	f	d
g	g	f	e	d	\mathbf{c}	b	a	0		g	d	g	d	g	d	g	g	d

We can see that \mathcal{N} is a left near-ring and $\mathcal{P} = \{0, a, b, c\}$ is a 3-prime ideal of \mathcal{N} .

In [14], the authors defined a special derivation \tilde{d} on \mathcal{N}/\mathcal{P} by $\tilde{d}(\bar{x}) = \overline{d(x)}$ for all $x \in \mathcal{N}$. Motivated by this concept, we define a <u>left multiplier</u> \tilde{H} and a generalized derivation $\tilde{\mathcal{D}}$ on \mathcal{N}/\mathcal{P} as follows: $\tilde{H}(\bar{x}) = \overline{H(x)}$ and $\tilde{\mathcal{D}}(\bar{x}) = \overline{\mathcal{D}(x)}$ for all $x \in \mathcal{N}$, respectively.

There are several results claiming that 3-prime near-rings, under certain constraints due to special maps, have ring-like behavior, see for example [4, 8, 6, 7, 13, 12], where further references can be found.

Recently, Ashraf et al. [1] proved that if a 3-prime near-ring \mathcal{N} admits a nonzero derivation d satisfying d([x,y]) = [d(x),y] for all $x,y \in \mathcal{N}$, then \mathcal{N} must be a commutative ring. Motivated by this result, Enguady et al. [10] studied the commutativity of near-rings admitting a left derivation d and a multiplier H satisfying d([x,u]) = H([x,u]) for all $x \in \mathcal{N}$, $u \in U$, where U is a Lie ideal of \mathcal{N} .

In this note, we investigate the commutativity of a near-ring \mathcal{N}/\mathcal{P} in the case when \mathcal{N} admitting a generalized derivation \mathcal{D} and a left multiplier H satisfying any one of the properties (i) $\mathcal{D}([x,y]) - H([x,y]) \in \mathcal{P}$, (ii) $\mathcal{D}(x \circ y) - H(x \circ y) \in \mathcal{P}$ for all $x, y \in \mathcal{N}$, where \mathcal{P} is a 3-prime ideal of \mathcal{N} . The obtained results improve and unify those proved in [5, Theorem 2.2] and [1, Theorem 1(i)].

2. Main results

To facilitate our discussion, we need the following lemmas.

Lemma 2.1. Let \mathcal{N} be a 3-prime near-ring.

- a) [2, Lemma 1.3(i)] If x is an element of \mathcal{N} such that $\mathcal{N}x = \{0\}$ (resp. $x\mathcal{N} = \{0\}$), then x = 0.
- b) [2, Lemma 1.5)] If $\mathcal{N} \subseteq Z(\mathcal{N})$, then \mathcal{N} is a commutative ring.
- c) [9, Lemma 2] Let d be a derivation on \mathcal{N} . If $x \in Z(\mathcal{N})$, then $d(x) \in Z(\mathcal{N})$.
- d) [2, Theorem 2.1] If \mathcal{N} admits a nonzero derivation d for which $d(\mathcal{N}) \subseteq Z(\mathcal{N})$, then \mathcal{N} is a commutative ring.

The next lemma gives partial distributivity to the right of the multiplicative law. In our proof, we frequently use this result without mentioning it.

Lemma 2.2. [3, Lemma 1.3] Let \mathcal{N} be a near-ring. If \mathcal{N} admits a generalized derivation \mathcal{D} associated with a derivation d, then

$$(\mathcal{D}(x)y + xd(y))z = \mathcal{D}(x)yz + xd(y)z \text{ for all } x, y, z \in \mathcal{N}.$$

Theorem 2.3. Let \mathcal{P} be a 3-prime ideal of a near-ring \mathcal{N} . If \mathcal{N} admits a generalized derivation \mathcal{D} associated with a derivation d for which $d(\mathcal{N}) \nsubseteq \mathcal{P}$, and a left multiplier H, then the following assertions are equivalent:

- i) $\mathcal{D}([x,y]) H([x,y]) \in \mathcal{P} \text{ for all } x,y \in \mathcal{N},$
- ii) \mathcal{N}/\mathcal{P} is a commutative ring.

Proof. Obviously, we have $(ii) \Rightarrow (i)$. So, we need to prove that $(i) \Rightarrow (ii)$. By hypotheses given, we have $\mathcal{D}([x,y]) - H([x,y]) \in \mathcal{P}$ for all $x, y \in \mathcal{N}$, which implies that

$$\tilde{\mathcal{D}}([\bar{x}, \bar{y}]) = \tilde{H}([\bar{x}, \bar{y}]) \text{ for all } x, y \in \mathcal{N}.$$
 (2.1)

Case 1: Suppose that $H(\mathcal{N}) \subseteq \mathcal{P}$, so that (2.1) yields

$$\tilde{\mathcal{D}}([\bar{x}, \bar{y}]) = \bar{0} \text{ for all } x, y \in \mathcal{N}.$$
 (2.2)

Substituting [u, v] and [u, v]y for x and y, respectively, in (2.2) and using it again, we obtain

$$\begin{split} \tilde{\mathcal{D}}([[\bar{u},\bar{v}],[\bar{u},\bar{v}]\bar{y}]) &= \tilde{\mathcal{D}}([\bar{u},\bar{v}][[\bar{u},\bar{v}],\bar{y}]) \\ &= \tilde{\mathcal{D}}([\bar{u},\bar{v}])[[\bar{u},\bar{v}],\bar{y}] + [\bar{u},\bar{v}]\tilde{d}([[\bar{u},\bar{v}],\bar{y}]) \\ &= \bar{0} + [\bar{u},\bar{v}]\tilde{d}([[\bar{u},\bar{v}],\bar{y}]). \end{split}$$

It follows that

$$[\bar{u}, \bar{v}]\tilde{d}([[\bar{u}, \bar{v}], \bar{y}]) = \bar{0} \text{ for all } u, v, y \in \mathcal{N}.$$

$$(2.3)$$

Also, putting [u,v]y instead of y in (2.3) and using (2.3) we find that $[\bar{u},\bar{v}]\tilde{d}([\bar{u},\bar{v}])[[\bar{u},\bar{v}],\bar{y}] = \bar{0}$ for all $u,v,y\in\mathcal{N}$ which means that

$$[\bar{u}, \bar{v}]\tilde{d}([\bar{u}, \bar{v}])[\bar{u}, \bar{v}]\bar{y} = [\bar{u}, \bar{v}]\tilde{d}([\bar{u}, \bar{v}])\bar{y}[\bar{u}, \bar{v}] \text{ for all } u, v, y \in \mathcal{N}.$$

$$(2.4)$$

Taking yt instead of y in (2.4) and using it, we obtain $[\bar{u}, \bar{v}]\tilde{d}([\bar{u}, \bar{v}])\bar{y}[[\bar{u}, \bar{v}], \bar{t}] = \bar{0}$ for all $u, v, y, t \in \mathcal{N}$ which reduces to

$$[\bar{u}, \bar{v}]\tilde{d}([\bar{u}, \bar{v}]) \mathcal{N}/\mathcal{P}[[\bar{u}, \bar{v}], \bar{t}] = \{\bar{0}\} \text{ for all } u, v, t \in \mathcal{N}.$$
(2.5)

In view of the 3-primeness of \mathcal{N}/\mathcal{P} , (2.5) assures that

$$[\bar{u}, \bar{v}]\tilde{d}([\bar{u}, \bar{v}]) = \bar{0} \text{ or } [\bar{u}, \bar{v}] \in Z(\mathcal{N}/\mathcal{P}) \text{ for all } u, v \in \mathcal{N}.$$
 (2.6)

Our aim is to show that (2.6) gives $[\bar{u}, \bar{v}]\tilde{d}([\bar{u}, \bar{v}]) = \bar{0}$ for all $u, v \in \mathcal{N}$. Indeed, suppose that there exist $u_0, v_0 \in \mathcal{N}$ such that $[\bar{u}_0, \bar{v}_0] \in Z(\mathcal{N}/\mathcal{P})$. Return to (2.2) and replacing x and y by $[u_0, v_0]u_0$ and v_0 respectively, we find that $[\bar{u}_0, \bar{v}_0]\tilde{d}([\bar{u}_0, \bar{v}_0]) = \bar{0}$. Consequently, (2.6) reduces to

$$[\bar{u}, \bar{v}]\tilde{d}([\bar{u}, \bar{v}]) = \bar{0} \text{ for all } u, v \in \mathcal{N}.$$
(2.7)

From (2.3), we have $[\bar{u}, \bar{v}]\tilde{d}([\bar{u}, \bar{v}]\bar{y}) = [\bar{u}, \bar{v}]\tilde{d}(\bar{y}[\bar{u}, \bar{v}])$ for $u, v, y \in \mathcal{N}$. Solving this equation and using (2.7), we obtain

$$[\bar{u}, \bar{v}]^2 \tilde{d}(\bar{y}) = [\bar{u}, \bar{v}] \tilde{d}(\bar{y}) [\bar{u}, \bar{v}] + [\bar{u}, \bar{v}] \bar{y} \tilde{d}([\bar{u}, \bar{v}]) \text{ for all } u, v, y \in \mathcal{N}.$$
 (2.8)

Taking y = y[u, v] in (2.8) and using (2.7), we find that

$$[\bar{u}, \bar{v}]^2 \tilde{d}(\bar{y}[\bar{u}, \bar{v}]) = [\bar{u}, \bar{v}] \tilde{d}(\bar{y}[\bar{u}, \bar{v}]) [\bar{u}, \bar{v}] + [\bar{u}, \bar{v}] \bar{y}[\bar{u}, \bar{v}] \tilde{d}([\bar{u}, \bar{v}])$$
$$= [\bar{u}, \bar{v}] \tilde{d}([\bar{u}, \bar{v}] \bar{y}) [\bar{u}, \bar{v}] \text{ for all } u, v, y \in \mathcal{N}.$$

By the definition of \tilde{d} , and after simplification, we obtain $[\bar{u}, \bar{v}]^2 \bar{y} \tilde{d}([\bar{u}, \bar{v}]) = \bar{0}$ for all $u, v, y \in \mathcal{N}$ and therefore,

$$[\bar{u}, \bar{v}]^2 \mathcal{N}/\mathcal{P} \,\tilde{d}([\bar{u}, \bar{v}]) = \{\bar{0}\} \text{ for all } u, v \in \mathcal{N}. \tag{2.9}$$

Since \mathcal{N}/\mathcal{P} is 3-prime, (2.9) shows that

$$[\bar{u}, \bar{v}]^2 = \bar{0} \text{ or } \tilde{d}([\bar{u}, \bar{v}]) = \bar{0} \text{ for all } u, v \in \mathcal{N}.$$
 (2.10)

Let $u_0, v_0 \in \mathcal{N}$ such that $[\bar{u_0}, \bar{v_0}]^2 = \bar{0}$. On the one hand, (2.8) gives

$$[\bar{u}_0, \bar{v}_0]\tilde{d}(\bar{y})[\bar{u}_0, \bar{v}_0] + [\bar{u}_0, \bar{v}_0]\bar{y}\tilde{d}([\bar{u}_0, \bar{v}_0]) = \bar{0} \text{ for all } y \in \mathcal{N}.$$
(2.11)

On the other hand, by virtue of (2.2) we have also $\tilde{\mathcal{D}}([[\bar{u}_0, \bar{v}_0], \bar{y}]) = \bar{0}$ for all $y \in \mathcal{N}$ which implies that $\tilde{\mathcal{D}}([\bar{u}_0, \bar{v}_0]\bar{y}) = \tilde{\mathcal{D}}(\bar{y}[\bar{u}_0, \bar{v}_0])$ for all $y \in \mathcal{N}$. This implies that

$$[\bar{u}_0, \bar{v}_0]\tilde{d}(\bar{y}) = \tilde{\mathcal{D}}(\bar{y})[\bar{u}_0, \bar{v}_0] + \bar{y}\tilde{d}([\bar{u}_0, \bar{v}_0]) \text{ for all } y \in \mathcal{N}.$$

Right-multiplying this equation by $[\bar{u_0}, \bar{v_0}]$ and using Lemma 2.2, we obtain for all $y \in \mathcal{N}$

$$[\bar{u}_0, \bar{v}_0]\tilde{d}(\bar{y})[\bar{u}_0, \bar{v}_0] = \tilde{\mathcal{D}}(\bar{y})[\bar{u}_0, \bar{v}_0]^2 + \bar{y}\tilde{d}([\bar{u}_0, \bar{v}_0])[\bar{u}_0, \bar{v}_0]. \tag{2.12}$$

According to (2.7) and the additivity of \tilde{d} , we obtain

$$\tilde{d}([\bar{u}_0, \bar{v}_0]^2) = \bar{0} = \tilde{d}([\bar{u}_0, \bar{v}_0])[\bar{u}_0, \bar{v}_0],$$

and therefore (2.12) reduces to $[\bar{u}_0, \bar{v}_0]\tilde{d}(\bar{y})[\bar{u}_0, \bar{v}_0] = \bar{0}$ for all $y \in \mathcal{N}$. Consequently, (2.11) implies that

$$[\bar{u}_0, \bar{v}_0] \mathcal{N}/\mathcal{P} \, \tilde{d}([\bar{u}_0, \bar{v}_0]) = \{\bar{0}\}$$

which, in view of the 3-primeness of \mathcal{N}/\mathcal{P} , forces that $[\bar{u}_0, \bar{v}_0] = \bar{0}$ or $\tilde{d}([\bar{u}_0, \bar{v}_0]) = \bar{0}$; but the first condition yields also $\tilde{d}([\bar{u}_0, \bar{v}_0]) = \bar{0}$ and hence (2.7) shows that $\tilde{d}([\bar{u}, \bar{v}]) = \bar{0}$ for all $u, v \in \mathcal{N}$ which, taking account the special case when $\alpha = id_{\mathcal{N}}$ in [15, Theorem 2.3], implies that \mathcal{N}/\mathcal{P} is a commutative ring.

Case 2: Suppose that $H(\mathcal{N}) \nsubseteq \mathcal{P}$. In this case, replacing x and y by [u,v]x and [u,v], respectively, in (2.1) and using it, we obtain

$$[\bar{u}, \bar{v}]\tilde{d}([\bar{x}, [\bar{u}, \bar{v}]]) = \bar{0} \text{ for all } u, v, x \in \mathcal{N}.$$
(2.13)

Next, taking x = [u, v]x in (2.13) we find that

$$\bar{0} = [\bar{u}, \bar{v}] \tilde{d} \Big([\bar{u}, \bar{v}] [\bar{x}, [\bar{u}, \bar{v}]] \Big)
= [\bar{u}, \bar{v}] \tilde{d} ([\bar{u}, \bar{v}]) [\bar{x}, [\bar{u}, \bar{v}]] + [\bar{u}, \bar{v}] [\bar{u}, \bar{v}] \tilde{d} ([\bar{x}, [\bar{u}, \bar{v}]])
= [\bar{u}, \bar{v}] \tilde{d} ([\bar{u}, \bar{v}]) [\bar{x}, [\bar{u}, \bar{v}]]$$
(2.14)

From (2.14), it follows that $[\bar{u}, \bar{v}]\tilde{d}([\bar{u}, \bar{v}])\bar{x}[\bar{u}, \bar{v}] = [\bar{u}, \bar{v}]\tilde{d}([\bar{u}, \bar{v}])[\bar{u}, \bar{v}]\bar{x}$ for all $u, v, x \in \mathcal{N}$. Substituting xt for x in the last equation and using it again, we infer that $[\bar{u}, \bar{v}]\tilde{d}([\bar{u}, \bar{v}])\bar{x}[\bar{t}, [\bar{u}, \bar{v}]] = \bar{0}$ for all $x, t, u, v \in \mathcal{N}$. Accordingly, $[\bar{u}, \bar{v}]\tilde{d}([\bar{u}, \bar{v}])\mathcal{N}/\mathcal{P}[\bar{t}, [\bar{u}, \bar{v}]] = \{\bar{0}\}$ for all $t, u, v \in \mathcal{N}$. Using the 3-primeness of \mathcal{N}/\mathcal{P} , we conclude that

$$[\bar{u}, \bar{v}]\tilde{d}([\bar{u}, \bar{v}]) = \bar{0} \text{ or } [\bar{u}, \bar{v}] \in Z(\mathcal{N}/\mathcal{P}) \text{ for all } u, v \in \mathcal{N}.$$
 (2.15)

Let $u_0, v_0 \in \mathcal{N}$ such that $[\bar{u}_0, \bar{v}_0] \in Z(\mathcal{N}/\mathcal{P})$. In (2.1), replacing x and y by $[u_0, v_0]u_0$ and v_0 respectively, we arrive at $[\bar{u}_0, \bar{v}_0]\tilde{d}([\bar{u}_0, \bar{v}_0]) = \bar{0}$, so that (2.15) reduces to

$$[\bar{u}, \bar{v}]\tilde{d}([\bar{u}, \bar{v}]) = \bar{0} \text{ for all } u, v \in \mathcal{N}.$$
 (2.16)

Also, from (2.13), we have $[\bar{u}, \bar{v}]\tilde{d}(\bar{x}[\bar{u}, \bar{v}]) = [\bar{u}, \bar{v}]\tilde{d}([\bar{u}, \bar{v}]\bar{x})$ for all $x, u, v \in \mathcal{N}$. Solving this equation and invoking (2.16), we obtain

$$[\bar{u}, \bar{v}]\bar{x}\tilde{d}([\bar{u}, \bar{v}]) + [\bar{u}, \bar{v}]\tilde{d}(\bar{x})[\bar{u}, \bar{v}] = [\bar{u}, \bar{v}]^2\tilde{d}(\bar{x}) \text{ for all } x, u, v \in \mathcal{N}.$$
 (2.17)

In (2.17), putting x[u, v] instead of x and invoking (2.16), we find that for all $x, u, v \in \mathcal{N}$.

$$[\bar{u}, \bar{v}]\bar{x}\tilde{d}([\bar{u}, \bar{v}])[\bar{u}, \bar{v}] + [\bar{u}, \bar{v}]\tilde{d}(\bar{x})[\bar{u}, \bar{v}]^2 = [\bar{u}, \bar{v}]^2\tilde{d}(\bar{x})[\bar{u}, \bar{v}] + [\bar{u}, \bar{v}]^2\bar{x}\tilde{d}([\bar{u}, \bar{v}])$$
(2.18)

Combining (2.17) and (2.18) and after simplifying, we get $[\bar{u}, \bar{v}]^2 \bar{x} \tilde{d}([\bar{u}, \bar{v}]) = \bar{0}$ for all $x, u, v \in \mathcal{N}$ which, in view of the 3-primeness of \mathcal{N}/\mathcal{P} , implies that

$$[\bar{u}, \bar{v}]^2 = \bar{0} \text{ or } \tilde{d}([\bar{u}, \bar{v}]) = \bar{0} \text{ for all } x, u, v \in \mathcal{N}.$$
 (2.19)

Suppose that there exist $u_0, v_0 \in \mathcal{N}$ such that $[\bar{u_0}, \bar{v_0}]^2 = \bar{0}$. In this case, returning to (2.1) and replacing x by $[u_0, v_0]$, we get

$$\tilde{\mathcal{D}}([[\bar{u}_0, \bar{v}_0], \bar{y}]) = \tilde{H}([[\bar{u}_0, \bar{v}_0], \bar{y}])$$

for all $y \in \mathcal{N}$. That is, $\tilde{\mathcal{D}}([\bar{u}_0, \bar{v}_0]\bar{y}) - \tilde{\mathcal{D}}(\bar{y}[\bar{u}_0, \bar{v}_0]) = \tilde{H}([\bar{u}_0, \bar{v}_0]\bar{y}) - \tilde{H}(\bar{y}[\bar{u}_0, \bar{v}_0])$. Using the property defining of $\tilde{\mathcal{D}}$ and \tilde{H} together (2.1), we find that

$$[\bar{u}_0, \bar{v}_0]\tilde{d}(\bar{y}) - \bar{y}\tilde{d}([\bar{u}_0, \bar{v}_0]) - \tilde{\mathcal{D}}(\bar{y})[\bar{u}_0, \bar{v}_0] = -\tilde{H}(\bar{y})[\bar{u}_0, \bar{v}_0] \text{ for all } y \in \mathcal{N}.$$

Replacing y by [x, y] in the previous equation and left-multiplying it by $[\bar{u}_0, \bar{v}_0]$, in virtue of our statement assumption, we get $[\bar{u}_0, \bar{v}_0]\bar{y}\tilde{d}([\bar{u}_0, \bar{v}_0]) = \bar{0}$ for all $y \in \mathcal{N}$, and hence $[\bar{u}_0, \bar{v}_0]\mathcal{N}/\mathcal{P}\tilde{d}([\bar{u}_0, \bar{v}_0]) = \{\bar{0}\}$. As \mathcal{N}/\mathcal{P} is 3-prime and \tilde{d} is additive, the last expression assures that $\tilde{d}([\bar{u}_0, \bar{v}_0]) = \bar{0}$ and thus (2.19) leads to $\tilde{d}([\bar{u}, \bar{v}]) = \bar{0}$ for all $u, v \in \mathcal{N}$, which forces that \mathcal{N}/\mathcal{P} is a commutative ring by [15, Theorem 2.3].

The next theorem generalizes the result [5, Theorem 2.4].

Theorem 2.4. Let \mathcal{N} be a 2-torsion near-ring, \mathcal{P} be a 3-prime ideal of \mathcal{N} , and H be a left multiplier of \mathcal{N} . Then, \mathcal{N} admits no generalized derivation \mathcal{D} associated with a derivation d for which $d(\mathcal{N}) \nsubseteq \mathcal{P}$ and $\mathcal{D}(x \circ y) - H(x \circ y) \in \mathcal{P}$ for all $x, y \in \mathcal{N}$.

Proof. By hypotheses given, we have

$$\tilde{\mathcal{D}}(\bar{x} \circ \bar{y}) = \tilde{H}(\bar{x} \circ \bar{y}) \text{ for all } x, y \in \mathcal{N}.$$
 (2.20)

Replacing y by xy in (2.12), we obtain $\tilde{\mathcal{D}}(\bar{x}(\bar{x}\circ\bar{y})) = \tilde{H}(\bar{x}(\bar{x}\circ\bar{y}))$ for all $x,y\in\mathcal{N}$. Again, substituting $u\circ v$ for x in the last equation and applying

(2.12), we arrive at $(\bar{u} \circ \bar{v})\tilde{d}((\bar{u} \circ \bar{v}) \circ \bar{y}) = \bar{0}$ for all $u, v, y \in \mathcal{N}$. Again, taking $(u \circ v)y$ instead of y we infer that $(\bar{u} \circ \bar{v})\tilde{d}(\bar{u} \circ \bar{v})((\bar{u} \circ \bar{v}) \circ \bar{y}) = \bar{0}$. So that, for all $u, v, y \in \mathcal{N}$, we have

$$(\bar{u} \circ \bar{v})\tilde{d}(\bar{u} \circ \bar{v})((\bar{u} \circ \bar{v})\bar{y}) = -(\bar{u} \circ \bar{v})\tilde{d}(\bar{u} \circ \bar{v})\bar{y}(\bar{u} \circ \bar{v}). \tag{2.21}$$

Substituting yt for y in (2.21) and using (2.21), we get

$$(\bar{u} \circ \bar{v})\tilde{d}(\bar{u} \circ \bar{v})\bar{y}[(\bar{u} \circ \bar{v}), \tilde{t}] = \bar{0}$$

for all $u, v, y, t \in \mathcal{N}$ which can be written as

$$(\bar{u} \circ \bar{v})\tilde{d}(\bar{u} \circ \bar{v}) \mathcal{N}/\mathcal{P} \left[-(\bar{u} \circ \bar{v}), \tilde{t} \right] = \{\bar{0}\}.$$

In virtue of the 3-primeness of \mathcal{N}/\mathcal{P} , the preceding result shows that

$$(\bar{u} \circ \bar{v})\tilde{d}(\bar{u} \circ \bar{v}) = \bar{0} \text{ or } -(\bar{u} \circ \bar{v}) \in Z(\mathcal{N}/\mathcal{P}) \text{ for all } u, v, y \in \mathcal{N}.$$
 (2.22)

Letting u_0, v_0 two elements of \mathcal{N} such that $-(\bar{u}_0 \circ \bar{v}_0) \in Z(\mathcal{N}/\mathcal{P})$. In particular, by replacing x by $(-(u_0 \circ v_0))x$ in (2.20) and using (2.20), we find that $(-(u_0 \circ v_0))\tilde{d}(\bar{x} \circ \bar{y}) = \bar{0}$ for all $x, y \in \mathcal{N}$. Left-multiplying this equation by \bar{r} , where $r \in \mathcal{N}$, and using the fact that \mathcal{N}/\mathcal{P} is 3-prime, we conclude that $\bar{u}_0 \circ \bar{v}_0 = \bar{0}$ or $\tilde{d}(\bar{x} \circ \bar{y}) = \bar{0}$ for all $x, y \in \mathcal{N}$. But, in view of [15, Corollary 3.7], the second condition cannot be verified and therefore, (2.22) gives

$$(\bar{u} \circ \bar{v})\tilde{d}(\bar{u} \circ \bar{v}) = \bar{0} \text{ for all } u, v \in \mathcal{N}.$$
 (2.23)

Now, return to (2.20) and taking $x = u \circ v$ and $y = (u \circ v)y$, we find that $(\bar{u} \circ \bar{v})\tilde{d}((\bar{u} \circ \bar{v}) \circ \bar{y}) = \bar{0}$ which implies that

$$(\bar{u} \circ \bar{v})\tilde{d}((\bar{u} \circ \bar{v})\bar{y}) = -(\bar{u} \circ \bar{v})\tilde{d}(\bar{y}(\bar{u} \circ \bar{v})) \text{ for all } u, v, y \in \mathcal{N}.$$

Solving this equation and using (2.23), we obtain for all $u, v, y \in \mathcal{N}$,

$$(\bar{u} \circ \bar{v})^2 \tilde{d}(\bar{y}) = -(\bar{u} \circ \bar{v}) \bar{y} \tilde{d}(\bar{u} \circ \bar{v}) - (\bar{u} \circ \bar{v}) \tilde{d}(\bar{y}) (\bar{u} \circ \bar{v})$$
(2.24)

$$= -(\bar{u} \circ \bar{v})\tilde{d}(\bar{y})(\bar{u} \circ \bar{v}) - (\bar{u} \circ \bar{v})\bar{y}\tilde{d}(\bar{u} \circ \bar{v}). \tag{2.25}$$

Substituting $y(u \circ v)$ for y in (2.24), we get

$$(\bar{u} \circ \bar{v})^2 \tilde{d}(\bar{y})(\bar{u} \circ \bar{v}) + (\bar{u} \circ \bar{v})^2 \bar{y} \tilde{d}(\bar{u} \circ \bar{v}) = -(\bar{u} \circ \bar{v}) \tilde{d}(\bar{y})(\bar{u} \circ \bar{v})^2 -(\bar{u} \circ \bar{v}) \bar{y} \tilde{d}(\bar{u} \circ \bar{v})(\bar{u} \circ \bar{v}).(2.26)$$

Right-multiplying (2.25) by $\bar{u} \circ \bar{v}$, we obtain

$$(\bar{u} \circ \bar{v})^2 \tilde{d}(\bar{y})(\bar{u} \circ \bar{v}) = -(\bar{u} \circ \bar{v})\tilde{d}(\bar{y})(\bar{u} \circ \bar{v})^2 - (\bar{u} \circ \bar{v})\bar{y}\tilde{d}(\bar{u} \circ \bar{v})(\bar{u} \circ \bar{v}). \quad (2.27)$$

From (2.26) and (2.27), we conclude that

$$(\bar{u} \circ \bar{v})^2 \bar{y} \tilde{d}(\bar{u} \circ \bar{v}) = \bar{0} \text{ for all } u, v, y \in \mathcal{N}$$

that is, $(\bar{u} \circ \bar{v})^2 \mathcal{N}/\mathcal{P} \tilde{d}(\bar{u} \circ \bar{v}) = \{\bar{0}\}$ for all $u, v \in \mathcal{N}$. Since \mathcal{N}/\mathcal{P} is 3-prime, it follows that

$$(\bar{u} \circ \bar{v})^2 = \bar{0} \text{ or } \tilde{d}(\bar{u} \circ \bar{v}) = \bar{0} \text{ for all } u, v \in \mathcal{N}.$$
 (2.28)

Let $u_0, v_0 \in \mathcal{N}$ such that $(\bar{u_0} \circ \bar{v_0})^2 = \bar{0}$. In this case, return to (2.20) and using the additivity property of $\tilde{\mathcal{D}}$ and \tilde{H} , we obtain

$$\tilde{\mathcal{D}}(\bar{x}\bar{y}) + \tilde{\mathcal{D}}(\bar{y}\bar{x}) = \tilde{H}(\bar{x}\bar{y}) + \tilde{H}(\bar{y}\bar{x})$$

for all $x, y \in \mathcal{N}$. And thus,

$$\tilde{\mathcal{D}}(\bar{x})\bar{y} + \bar{x}\tilde{d}(\bar{y}) + \bar{y}\tilde{d}(\bar{x}) + \tilde{\mathcal{D}}(\bar{y})\bar{x} = \tilde{H}(\bar{x})\bar{y} + \tilde{H}(\bar{y})\bar{x} \text{ for all } x, y \in \mathcal{N}.$$

Now, by replacing x and y by $u_0 \circ v_0$ and $r \circ s$ respectively in the latter equation, we get

$$(\bar{u_0} \circ \bar{v_0})\tilde{d}(\bar{r} \circ \bar{s}) + (\bar{r} \circ \bar{s})\tilde{d}(\bar{u_0} \circ \bar{v_0}) = \bar{0} \text{ for all } r, s \in \mathcal{N}.$$

Left-multiplying by $(\bar{u}_0 \circ \bar{v}_0)$ and using our statement assumption, we obtain $(\bar{u}_0 \circ \bar{v}_0)(\bar{r} \circ \bar{s})\tilde{d}(\bar{u}_0 \circ \bar{v}_0) = \bar{0}$ for all $r, s \in \mathcal{N}$. It follows that $(\bar{u}_0 \circ \bar{v}_0)\bar{r}\bar{s} + (\bar{u}_0 \circ \bar{v}_0)\bar{s}\bar{r})\tilde{d}(\bar{u}_0 \circ \bar{v}_0) = \bar{0}$ for all $r, s \in \mathcal{N}$. Again, taking $s = (u_0 \circ v_0)s$, we find that $(\bar{u}_0 \circ \bar{v}_0)\bar{r}(\bar{u}_0 \circ \bar{v}_0)\bar{s}\tilde{d}(\bar{u}_0 \circ \bar{v}_0) = \bar{0}$ for all $r, s \in \mathcal{N}$, which can be written as

$$(\bar{u}_0 \circ \bar{v}_0) \mathcal{N}/\mathcal{P} (\bar{u}_0 \circ \bar{v}_0) \mathcal{N}/\mathcal{P} \tilde{d}(\bar{u}_0 \circ \bar{v}_0) = \{\bar{0}\}. \tag{2.29}$$

In the light of the 3-primeness of \mathcal{N}/\mathcal{P} , (2.29) implies that $\tilde{d}(\bar{u}_0 \circ \bar{v}_0) = \bar{0}$ and hence (2.28) reduces to $\tilde{d}(\bar{u} \circ \bar{v}) = \bar{0}$ for all $u, v \in \mathcal{N}$. In view of [15, Corollary 3.7], we get the required result.

The following example proves that the 3-primeness of \mathcal{P} that we used in our theorems is necessary.

Example 2.5. Consider \mathcal{M} be an any left near-ring and let us define $\mathcal{N}, \mathcal{P}, \mathcal{D}, d, H$ by:

$$\mathcal{N} = \left\{ \begin{pmatrix} 0 & r & 0 \\ 0 & 0 & 0 \\ 0 & s & t \end{pmatrix} \mid 0, r, s, t \in \mathcal{M} \right\}, \quad \mathcal{P} = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & r & 0 \end{pmatrix} \mid 0, r \in \mathcal{M} \right\}, \\
d \begin{pmatrix} 0 & r & 0 \\ 0 & 0 & 0 \\ 0 & s & t \end{pmatrix} = \begin{pmatrix} 0 & r & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad H \begin{pmatrix} 0 & r & 0 \\ 0 & 0 & 0 \\ 0 & s & t \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & s & t \end{pmatrix}$$

and $\mathcal{D} = H$. We can see that \mathcal{P} is a non-3-prime ideal of the near-ring \mathcal{N} , \mathcal{D} is a generalized derivation of \mathcal{N} associated with a derivation d, and H is a multiplier of \mathcal{N} which satisfies all hypotheses of our theorems. Furthermore, \mathcal{N}/\mathcal{P} is not a commutative ring.

Acknowledgments

The authors thank the reviewer for valuable suggestions and comments.

REFERENCES

- 1. M. Ashraf, A. Boua and A. Raji, On derivations and commutativity in prime near-rings, *Journal of taibah university for science*, **8**(3) (2014), 301–306.
- 2. H. E. Bell, On derivations in near-rings II, Kluwer Academic Publishers, Netherlands, 1997, 191–197.
- 3. H. E. Bell, On prime near-rings with generalized derivations, *Int. J. Math. Math. Sci.*, (2008), Article ID: 490316, 5 pages.
- 4. H. E. Bell, A. Boua and L. Oukhtite, On derivations of prime near-rings, *Afr. Diaspora J. Math.*, **14**(1) (2012), 65–72.
- 5. A. Boua and L. Oukhtite, Derivations on prime near-rings, *Int. J. Open Problems Compt. Math.*, **4**(2) (2011), 162–167.
- 6. A. Boua, L. Oukhtite and A. Raji, On generalized semiderivations in 3-prime near-rings, *Asian-European Journal of Mathematics*, **9**(2) (2016), Article ID: 1650036.
- 7. A. Boua, L. Oukhtite and A. Raji, On 3-prime near-rings with generalized derivations, *Palest. J. Math.*, **5**(1) (2016), 12–16.
- 8. A. Boua and A. Raji, Several algebraic inequalities on a 3-prime near-ring, *JP Journal of Algebra, Number Theory and Applications*, **39**(1) (2017), 105–113.
- 9. M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, *Internat. J. Math. & Math. Sci.*, **15** (1992), 205–206.
- 10. A. En-guady and A. Boua, On Lie ideals with left derivations in 3-prime near-rings, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (NS), 68(1) (2022), 123–132.
- 11. N. J. Groenewald, Different prime ideals in near-rings, Comm. Algebra, 19(10) (1991), 2667–2675.
- 12. A. Raji, Results on 3-prime near-rings with generalized derivations, *Beitrage zur Algebra und Geometrie*, **57**(4) (2016), 823–829.
- 13. A. Raji, Some commutativity criteria for 3-prime near-rings, *Algebra Discrete Math.*, **32**(2) (2021), 280–298.
- 14. M. Samir and A. Boua, (σ, τ) -P-derivations on left near-rings, Note Mat., **42**(2) (2022), 93–107.
- 15. M. Samman, L. Oukhtite, A. Raji and A. Boua, Two sided α -derivations in 3-prime near-rings, *Rocky Mountain J. Math.*, **46**(4) (2016), 1379–1393.
- 16. X. K. Wang, Derivations in prime near-rings, *Proc. Amer. Math. Soc.*, **121** (1994), 361–366.

Abderrahmane Raji

LMACS Laboratory, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco.

Email: rajiabd2@gmail.com

Abdelkarim Boua

Department of Mathematics, Polydisciplinary Faculty, LSI, Sidi Mohammed Ben Abdellah University, Taza, Morocco.

Email: abdelkarimboua@yahoo.fr

Abdelilah Zerbane

Department of Mathematics, Polydisciplinary Faculty, LSI, Sidi Mohammed Ben Abdellah University, Taza, Morocco.

Email: abdelilah.zerbane@usmba.ac.ma

Journal of Algebraic Systems

RESULTS ON QUOTIENT NEAR-RINGS INVOLVING ADDITIVE MAPS

A. RAJI, A. BOUA AND A. ZERBANE

نتایجی درباره شبه حلقه های خارج قسمتی در ارتباط با نگاشت های جمعی این راجی این راجی این بوا و این زربانه 7

ا آزمایشگاه LMACS، دانشکده علوم و فناوری، دانشگاه سلطان مولای اسلیمان، بنی ملال، مراکش

۲٫۳ گروه ریاضیات، دانشکده چند رشتهای، LSI، دانشگاه سیدی محمد بن عبدالله، تازه، مراکش

در این مقاله، جابجاییپذیری شبه حلقه خارج قسمتی \mathcal{N}/\mathcal{P} با مضربهای چپ و مشتقات تعمیمیافته که در مشخصه های جبری خاصی روی \mathcal{P} صدق میکنند، را بررسی میکنیم. به علاوه، مثالی ارائه شده که نشان می دهد شرط \mathbf{r} -اولیه که در نتایج ما استفاده شده است، ضروری می باشد.

كلمات كليدى: شبه حلقه هاى اول، مشتقات، مضرب هاى چپ، جابجايى پذيرى.