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JNB-ALGEBRAS

Y. B. Jun, R. Noorbhasha and R. K. Bandaru∗

Abstract. As a generalization of the self-distributive BE-algebra, the JNB-algebra
is introduced, and its basic properties are investigated. This could play various roles
in the study of logical algebra, including BCK-algebra. First, examples are presented
showing that the three axioms of JNB-algebra are independent of each other. The
basic properties of JNB-algebras that will be needed to study various theories about
JNB-algebras are explored. Upper sets based on one and two elements are introduced
and its associated properties are examined. Two concepts so called JNB-deductive
system and JNB-filter are introduced, and their properties are investigated. Charac-
terizations of the JNB-deductive system and the JNB-filter are discussed. It is finally
confirmed that the JNB-deductive system matches the JNB-filter.

1. Introduction
L. Henkin and T. Skolem made significant contributions to the field of

intuitionistic and non-classical logics during the 1950s by introducing Hilbert
algebras. A. Diego studied the local finiteness of Hilbert algebras (see [9]).
Later, several researchers introduced different concepts in Hilbert algebras
and studied its properties (see [8, 7, 10]). J. C. Abbott introduced a concept of
implication algebra in the sake to formalize the logical connective implication
in the classical propositional logic and has shown that implication algebras
are a natural generalization of Boolean algebras (see [1]). R. A. Borzooei and
S. K. Shoar have shown that the implication algebras are equivalent to dual
implicative BCK-algebras (see [5]). H. S. Kim and Y. H. Kim introduced the
notion of BE-algebras as a generalization of dual BCK-algebras (see [11]).
A. Rezaei et al. studied the relationship between Hilbert algebras and BE-
algebras (see [12]). S. S. Ahn et al. studied the notions of ideas and upper
sets in BE-algebras (see [2]). A. Borumand Saeid et al. introduced and
studied some types of filters in BE-algebras (see [4]). R. A. Borzooei and J.
Shohani introduced the notion of a generalized Hilbert algebra and studied
its properties (see [6]). The process of generalization is pivotal in the study
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of algebraic structures, leading to the introduction of GE-algebras by R. K.
Bandaru et al. elaborated in (see [3]).

In this paper, we introduce the concept of a JNB-algebra which is a gen-
eralization of self-distributive BE-algebra and study its properties. We give
the relation between other algebraic structures related to BCK-algebra. We
introduce the notion of upper sets in a JNB-algebra and investigate its prop-
erties. We consider JNB-deductive systems and JNB-filters in a JNB-algebra
and characterize both.

2. Preliminaries
Diego (cf. [9]) introduced the Hilbert algebra as follows.

Definition 2.1 ([9]). A Hilbert algebra is defined to be an algebra (X, ∗, 1)
of type (2,0) satisfying the following conditions:

(H1) a ∗ (b ∗ a) = 1,
(H2) (a ∗ (b ∗ c)) ∗ ((a ∗ b) ∗ (a ∗ c)) = 1,
(H3) a ∗ b = 1 = b ∗ a ⇒ a = b

for all a, b, c ∈ X.

Definition 2.2 ([11]). A BE-algebra is an algebra (X, ∗, 1) of type (2, 0) that
satisfies:

(BE1) a ∗ a = 1,
(BE2) 1 ∗ a = a,
(BE3) a ∗ 1 = 1,
(BE4) a ∗ (b ∗ c) = b ∗ (a ∗ c),

for all a, b, c ∈ X.

A BE-algebra (X, ∗, 1) is said to be self-distributive (see [2, Definition 2.4])
if it satisfies:

(∀a, b, c ∈ X)(a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c)). (2.1)

Definition 2.3 ([5]). A dual BCK-algebra is a triple (X, ∗, 1) where X is a
set with a constant 1 and ∗ is a binary operation on X that satisfies:

(DBCK1) (b ∗ c) ∗ ((c ∗ a) ∗ (b ∗ a)) = 1,
(DBCK2) b ∗ ((b ∗ a) ∗ a) = 1,
(DBCK3) a ∗ a = 1,
(DBCK4) a ∗ b = 1 = b ∗ a imply a = b,
(DBCK5) a ∗ 1 = 1

for all a, b, c ∈ X.
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Definition 2.4 ([3]). A GE-algebra is a structure (X, ∗, 1) in which X is
set with a constant “1” and a binary operation “∗” satisfying the following
axioms:

(GE1) a ∗ a = 1,
(GE2) 1 ∗ a = a,
(GE3) a ∗ (b ∗ c) = a ∗ (b ∗ (a ∗ c))

for all a, b, c ∈ X.

3. JNB-algebras
In this section, we give the definition of a JNB-algebra and its properties.

Definition 3.1. A JNB-algebra is defined to be an algebra (X, ∗, 1), where
X is a set with a special element 1 and ∗ is a binary operation on X that
satisfies:

1 ∗ x = x, (3.1)
x ∗ (y ∗ z) = (y ∗ x) ∗ (y ∗ z), (3.2)
(x ∗ y) ∗ ((y ∗ z) ∗ (x ∗ z)) = 1 (3.3)

for all x, y, z ∈ X.

We first illustrate how the three axioms of JNB algebra are independent of
each other through examples.

Example 3.2. (i) Let X = {1, a, b, c} be a set with the following table.
∗ 1 a b c

1 1 a b c
a 1 1 c c
b 1 1 1 c
c 1 1 c c

At this time, (X, ∗, 1) satisfies (3.1) and (3.2), but not satisfy (3.3) because
of (a ∗ a) ∗ ((a ∗ b) ∗ (a ∗ b)) = 1 ∗ c = c ̸= 1.

(ii) Let X = {1, a, b, c} be a set with the following table.
∗ 1 a b c

1 1 a b c
a 1 1 1 b
b 1 1 1 a
c 1 1 1 1
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Then (X, ∗, 1) satisfies (3.1) and (3.3), but not satisfy (3.2) since
b ∗ (a ∗ c) = b ∗ b = 1 ̸= b = 1 ∗ b = (a ∗ b) ∗ (a ∗ c).

(iii) Let X = {1, a, b, c} be a set with the following table.
∗ 1 a b c

1 1 a c 1
a 1 1 1 1
b 1 a 1 1
c 1 a 1 1

Then (X, ∗, 1) satisfies (3.2) and (3.3), but not satisfy (3.1) because of
1 ∗ b = c ̸= b.

We display the relationship between JNB-algebra, self-distributive BE-
algebra, dual BCK-algebra, BE-algebra, and GE-algebra.

First, we show by example that the BE-algebra and the JNB-algebra are
independent of each other.
Example 3.3. (i) Let X = {1, a, b, c} be a set with the following table.

∗ 1 a b c

1 1 a b c
a 1 1 a 1
b 1 1 1 c
c 1 a b 1

Then (X, ∗, 1) is a BE-algebra but not a JNB-algebra because
a ∗ (a ∗ b) = a ∗ a = 1 ̸= a = 1 ∗ a = (a ∗ a) ∗ (a ∗ b).

(ii) Let X = {1, a, b, c, d} be a set with the following table.
∗ 1 a b c d

1 1 a b c d
a 1 1 b c c
b 1 a 1 d d
c 1 a 1 1 1
d 1 a 1 1 1

Then (X, ∗, 1) is a JNB-algebra. We can observe that
(a ∗ b) ∗ (a ∗ c) = d ̸= c = a ∗ d = a ∗ (b ∗ c)

and
b ∗ (a ∗ c) = b ∗ c = d ̸= c = a ∗ d = a ∗ (b ∗ c).

Hence (X, ∗, 1) is not a (self-distributive) BE-algebra.
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Throrugh Example 3.3(ii), we can see that the JNB-algebra is not a (self-
distributive) BE-algebra.

Theorem 3.4. Every self-distributive BE-algebra is a JNB-algebra.

Proof. Let (X, ∗, 1) be a self-distributive BE-algebra and x, y, z ∈ X. Then

x ∗ (y ∗ z) (BE4)
= y ∗ (x ∗ z) (2.1)

= (y ∗ x) ∗ (y ∗ z)
and

(x ∗ y) ∗ ((y ∗ z) ∗ (x ∗ z)) (BE4)
= (y ∗ z) ∗ ((x ∗ y) ∗ (x ∗ z))

(2.1)
= (y ∗ z) ∗ (x ∗ (y ∗ z))
(BE4)
= x ∗ ((y ∗ z) ∗ (y ∗ z))

(BE1)
= x ∗ 1

(BE3)
= 1.

Hence (X, ∗, 1) is a JNB-algebra. □
From the perspective of Theorem 3.4, we can consider the JNB-algebra as

a generalization of the self-distributive BE-algebra.
We can see that the JNB-algebra and the dual BCK-algebra are indepen-

dent of each other by the following example.

Example 3.5. (i) Let X = {1, a, b, c} be a set with the following table.
∗ 1 a b c

1 1 a b c
a 1 1 a a
b 1 1 1 a
c 1 1 a 1

Then (X, ∗, 1) is a dual BCK-algebra but not a JNB-algebra since
a ∗ (a ∗ b) = a ∗ a = 1 ̸= a = 1 ∗ a = (a ∗ a) ∗ (a ∗ b).

(ii) The JNB-algebra in Example 3.3(ii) is not a dual BCK-algebra since
c ∗ d = 1 and d ∗ c = 1 but c ̸= d, i.e., (DBCK4) is not valid.

We can observe that the JNB-algebra and the GE-algebra are independent
of each other by the following example.

Example 3.6. (i) Let X = {1, a, b, c, d, e} be a set with the following table.
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∗ 1 a b c d e

1 1 a b c d e
a 1 1 1 d d e
b 1 a 1 e d e
c 1 a 1 1 1 1
d 1 a 1 1 1 1
e 1 a 1 1 1 1

Then (X, ∗, 1) is a JNB-algebra but not a GE-algebra since
a ∗ (b ∗ c) = a ∗ e = e ̸= d = a ∗ d = a ∗ (b ∗ d) = a ∗ (b ∗ (a ∗ c)).

(ii) Let X = {1, a, b, c} be a set with the following table.
∗ 1 a b c

1 1 a b c
a 1 1 1 1
b 1 1 1 c
c 1 a a 1

Then (X, ∗, 1) is a GE-algebra but not a JNB-algebra since
a ∗ (b ∗ c) = a ∗ c = 1 ̸= c = 1 ∗ c = (b ∗ a) ∗ (b ∗ c).

4. Properties of JNB-algebras
In what follows, let (X, ∗, 1) denote a JNB-algebra unless otherwise

specified.

Proposition 4.1. Every JNB-algebra (X, ∗, 1) satisfies the following
assertions.
(a1) x ∗ ((x ∗ y) ∗ y) = 1,
(a2) x ∗ x = 1,
(a3) x ∗ (x ∗ y) = x ∗ y,
(a4) x ∗ (y ∗ x) = 1,
(a5) x ∗ 1 = 1,
(a6) x ∗ y = 1 implies that (z ∗ x) ∗ (z ∗ y) = 1,
(a7) ((x ∗ y) ∗ z) ∗ (y ∗ (x ∗ z)) = 1,
(a8) x ∗ (y ∗ (z ∗ x)) = 1,
(a9) (y ∗ z) ∗ (y ∗ (x ∗ z)) = 1,

(a10) (y ∗ z) ∗ ((x ∗ y) ∗ (x ∗ z)) = 1,
(a11) (x ∗ y) ∗ (y ∗ z) = y ∗ z,
(a12) x ∗ (y ∗ ((x ∗ z) ∗ z)) = 1,
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(a13) x ∗ (((y ∗ x) ∗ z) ∗ z) = 1,
(a14) x ∗ ((x ∗ y) ∗ (z ∗ y)) = 1,
(a15) (x ∗ (y ∗ z)) ∗ (y ∗ (x ∗ z)) = 1,
(a16) (x ∗ (y ∗ z)) ∗ ((x ∗ y) ∗ (x ∗ z)) = 1,
(a17) x ∗ y = 1 and y ∗ z = 1 imply x ∗ z = 1

for all x, y, z ∈ X.

Proof. Let x, y, z ∈ X. If we put x = 1, y = x and z = y in (3.3) and use
(3.1), then 1 = (1 ∗ x) ∗ ((x ∗ y) ∗ (1 ∗ y)) = x ∗ ((x ∗ y) ∗ y). Hence (a1) is
valid. Also,

x ∗ x (3.1)
= 1 ∗ (x ∗ x) (3.1)

= 1 ∗ ((1 ∗ x) ∗ x) (a1)
= 1,

and so (a2) is valid.
(a3) We have x ∗ (x ∗ y) (3.2)

= (x ∗ x) ∗ (x ∗ y) (a2)
= 1 ∗ (x ∗ y) (3.1)

= x ∗ y.
(a4) We get x ∗ (y ∗ x) (3.2)

= (y ∗ x) ∗ (y ∗ x) (a2)
= 1.

(a5) We have x ∗ 1 (a2)
= x ∗ (x ∗ x) (a3)

= x ∗ x (a2)
= 1.

(a6) If x ∗ y = 1, then

(z ∗ x) ∗ (z ∗ y) (3.1)
= (z ∗ x) ∗ (1 ∗ (z ∗ y))
= (z ∗ x) ∗ ((x ∗ y) ∗ (z ∗ y))

(3.3)
= 1.

(a7) We have

((x ∗ y) ∗ z) ∗ (y ∗ (x ∗ z)) (3.2)
= ((x ∗ y) ∗ z) ∗ ((x ∗ y) ∗ (x ∗ z))

(3.1)
= ((x ∗ y) ∗ z) ∗ (1 ∗ ((x ∗ y) ∗ (x ∗ z)))
(a4)
= ((x ∗ y) ∗ z) ∗ ((z ∗ (x ∗ z)) ∗ ((x ∗ y) ∗ (x ∗ z)))

(3.3)
= 1.

(a8) We obtain

x ∗ (y ∗ (z ∗ x)) (3.2)
= x ∗ ((z ∗ y) ∗ (z ∗ x))

(3.2)
= ((z ∗ y) ∗ x) ∗ ((z ∗ y) ∗ (z ∗ x))

(3.1)
= ((z ∗ y) ∗ x) ∗ (1 ∗ ((z ∗ y) ∗ (z ∗ x)))
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(a4)
= ((z ∗ y) ∗ x) ∗ ((x ∗ (z ∗ x)) ∗ ((z ∗ y) ∗ (z ∗ x)))

(3.3)
= 1.

(a9) We get (y ∗ z) ∗ (y ∗ (x ∗ z)) (3.2)
= z ∗ (y ∗ (x ∗ z)) (a8)

= 1.
(a10) We obtain

(y ∗ z) ∗ ((x ∗ y) ∗ (x ∗ z)) (3.2)
= (y ∗ z) ∗ (y ∗ (x ∗ z))

(3.2)
= z ∗ (y ∗ (x ∗ z))
(a8)
= 1.

(a11) We get

(x ∗ y) ∗ (y ∗ z) (3.2)
= (y ∗ (x ∗ y)) ∗ (y ∗ z) (a4)

= 1 ∗ (y ∗ z) (3.1)
= y ∗ z.

(a12) We have

x ∗ (y ∗ ((x ∗ z) ∗ z)) (3.2)
= (y ∗ x) ∗ (y ∗ ((x ∗ z) ∗ z))

(3.1)
= (y ∗ x) ∗ (1 ∗ (y ∗ ((x ∗ z) ∗ z)))
(a1)
= (y ∗ x) ∗ ((x ∗ ((x ∗ z) ∗ z)) ∗ (y ∗ ((x ∗ z) ∗ z)))

(3.3)
= 1.

(a13) We obtain
x ∗ (((y ∗ x) ∗ z) ∗ z)
(3.1)
= 1 ∗ (x ∗ (((y ∗ x) ∗ z) ∗ z))
(a1)
= ((y ∗ x) ∗ (((y ∗ x) ∗ z) ∗ z)) ∗ (x ∗ (((y ∗ x) ∗ z) ∗ z))
(a4)&
=

(3.1)
(x ∗ (y ∗ x)) ∗ (((y ∗ x) ∗ (((y ∗ x) ∗ z) ∗ z)) ∗ (x ∗ (((y ∗ x) ∗ z) ∗ z)))

(3.3)
= 1.

(a14) We have
x ∗ ((x ∗ y) ∗ (z ∗ y))
(3.1)
= 1 ∗ (x ∗ ((x ∗ y) ∗ (z ∗ y)))

(3.3)
= ((z ∗ x) ∗ ((x ∗ y) ∗ (z ∗ y))) ∗ (x ∗ ((x ∗ y) ∗ (z ∗ y)))
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(3.1)
= 1 ∗ (((z ∗ x) ∗ ((x ∗ y) ∗ (z ∗ y))) ∗ (x ∗ ((x ∗ y) ∗ (z ∗ y))))
(a4)
= (x ∗ (z ∗ x)) ∗ (((z ∗ x) ∗ ((x ∗ y) ∗ (z ∗ y))) ∗ (x ∗ ((x ∗ y) ∗ (z ∗ y))))

(3.3)
= 1.

(a15) We have
(x ∗ (y ∗ z)) ∗ (y ∗ (x ∗ z))
(3.2)
= (x ∗ (y ∗ z)) ∗ ((x ∗ y) ∗ (x ∗ z))

(3.1)
= (x ∗ (y ∗ z)) ∗ (1 ∗ ((x ∗ y) ∗ (x ∗ z)))

(3.3)
= (x ∗ (y ∗ z)) ∗ (((x ∗ y) ∗ ((y ∗ z) ∗ (x ∗ z))) ∗ ((x ∗ y) ∗ (x ∗ z)))

(3.2)
= (x ∗ (y ∗ z)) ∗ (((y ∗ z) ∗ (x ∗ z)) ∗ ((x ∗ y) ∗ (x ∗ z)))

(3.2)
= (x ∗ (y ∗ z)) ∗ (((x ∗ (y ∗ z)) ∗ (x ∗ z)) ∗ ((x ∗ y) ∗ (x ∗ z)))
(a14)
= 1.

(a16) We get

(x ∗ (y ∗ z)) ∗ ((x ∗ y) ∗ (x ∗ z)) (3.2)
= (x ∗ (y ∗ z)) ∗ (y ∗ (x ∗ z)) (a15)

= 1.

(a17) Assume that x ∗ y = 1 and y ∗ z = 1. Then

x ∗ z (3.1)
= 1 ∗ (x ∗ z) = (y ∗ z) ∗ (x ∗ z)

(3.1)
= 1 ∗ ((y ∗ z) ∗ (x ∗ z))
= (x ∗ y) ∗ ((y ∗ z) ∗ (x ∗ z))

(3.3)
= 1.

The proof has been completed. □
We can observe that every JNB-algebra (X, ∗, 1) satisfies the three condi-

tions (BE1), (BE2) and (BE3) in the definition of BE-algebra (see (3.1), (a2)
and (a5)). So, if a JNB-algebra (X, ∗, 1) satisfies the condition (BE4), then it
is a BE-algebra. However, we can observe that a JNB-algebra (X, ∗, 1) does
not satisfy the condition (BE4). For example, the JNB-algebra in Example
3.3(ii) does not satisfy the condition (BE4) since a∗(b∗d) = c ̸= d = b∗(a∗d).

In general, a JNB-algebra (X, ∗, 1) does not satisfy the condition (2.1). For
example, the JNB-algebra in Example 3.3(ii) does not satisfy the condition
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(2.1) since
(a ∗ b) ∗ (a ∗ c) = d ̸= c = a ∗ d = a ∗ (b ∗ c).

Theorem 4.2. If a JNB-algebra (X, ∗, 1) satisfies the condition (2.1), then
it is a self-distributive BE-algebra.

Proof. Let (X, ∗, 1) be a JNB-algebra that satisfies the condition (2.1). It is
sufficient to show that (X, ∗, 1) satisfies the condition (BE4) because other
three conditions are already checked (see (3.1), (a2) and (a5)). For every
x, y, z ∈ X, we have

x ∗ (y ∗ z) (2.1)
= (x ∗ y) ∗ (x ∗ z) (3.2)

= y ∗ (x ∗ z),
that is, (BE4) is valid. Hence (X, ∗, 1) is a self-distributive BE-algebra. □

We define a binary relation “≤” on a JNB-algebra (X, ∗, 1) as follows:
(∀x, y ∈ X)(x ≤ y if and only if x ∗ y = 1). (4.1)

It is clear that the relation ≤ is reflexive and transitive by (a2) and (a17),
respectively, that is, ≤ is a quasi order. But it is not a partial order because
it is not antisymmetric as seen in the following example.

Example 4.3. Let X = {1, a, b, c, d} be a set with the following table.
∗ 1 a b c d

1 1 a b c d
a 1 1 1 c 1
b 1 1 1 c 1
c 1 b b 1 d
d 1 a a c 1

Then (X, ∗, 1) is a JNB-algebra. Since a ∗ b = 1 and b ∗ a = 1 but a ̸= b, it is
not antisymmetric.

For every x, y ∈ X, we define two sets:
−→x = {z ∈ X | x ∗ z = 1} and

−−−→
(x, y) = {z ∈ X | x ∗ (y ∗ z) = 1},

called the x-upper set and the (x, y)-upper set, respectively. We can observe
that 1, x ∈ −→x and 1, x, y ∈

−−−→
(x, y). Especially, −→1 = {1} =

−−−→
(1, 1). In general,

−→x and
−−−→
(x, y) cannot be identical. In fact, −→a = {1, a, b, d} and

−−−→
(a, c) = X in

Example 4.3.
We explore the conditions under which the x-upper set and the (x, y)-upper

set can be identical for x, y ∈ X.
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Proposition 4.4. For every x, y ∈ X, we have

y ∈ −→x ⇔ −→x =
−−−→
(x, y). (4.2)

Proof. Assume that y ∈ −→x . Then x ∗ y = 1. Let a ∈ −→x . Then x ∗ a = 1.
That implies y ∗ (x ∗ a) = (x ∗ y) ∗ (x ∗ a) = 1. Therefore x ∗ (y ∗ a) = 1. So
that a ∈

−−−→
(x, y). Thus −→x ⊆

−−−→
(x, y). Let a ∈

−−−→
(x, y). Then x ∗ (y ∗ a) = 1. Hence

y ∗ (x ∗a) = 1. So that (x ∗ y) ∗ (x ∗a) = 1, which gives x ∗a = 1 ∗ (x ∗a) = 1.

Therefore a ∈ −→x . Hence
−−−→
(x, y) ⊆ −→x . Thus −→x =

−−−→
(x, y).

Conversely, assume that −→x =
−−−→
(x, y). Since x ∗ (y ∗ y) = 1, we get that

y ∈
−−−→
(x, y). Therefore y ∈ −→x . □

Proposition 4.5. For every x, y ∈ X, we have
(i) The x-upper set can be represented by the intersection of (x, y)-upper

sets for all y ∈ X, that is, −→x =
∩
y∈X

−−−→
(x, y).

(ii)
−−−→
(x, y) =

−−−→
(y, x).

(iii) x ≤ y if and only if −→y ⊆ −→x .
(iv) x ≤ y and y ≤ x if and only if −→x = −→y .

Proof. (i). Let z ∈ −→x . Then x ∗ z = 1 and hence y ∗ (x ∗ z) = 1, for all y ∈ X
which implies that 1 = y ∗ (x ∗ z) ≤ x ∗ (y ∗ z). Therefore x ∗ (y ∗ z) = 1.

So that z ∈
−−−→
(x, y), for all y ∈ X which gives that z ∈

∩
y∈X

−−−→
(x, y). Hence

−→x ⊆
∩
y∈X

−−−→
(x, y). Now, z ∈

∩
y∈X

−−−→
(x, y) implies that x ∗ (y ∗ z) = 1, for all y ∈ X.

Since 1 ∈ X, we have x ∗ (1 ∗ z) = 1. Hence x ∗ z = 1. Therefore z ∈ −→x .
Thus

∩
y∈X

−−−→
(x, y) ⊆ −→x . Hence −→x =

∩
y∈X

−−−→
(x, y).

(ii). We have

z ∈
−−−→
(x, y) ⇔ x ∗ (y ∗ z) = 1 ⇔ y ∗ (x ∗ z) = 1 ⇔ z ∈

−−−→
(y, x).

Therefore
−−−→
(x, y) =

−−−→
(y, x).

(iii). Assume that x ≤ y. Let a ∈ −→y . Then y ∗ a = 1. That implies y ≤ a.
By our assumption, we get that x ≤ a. Therefore a ∈ −→x . Hence −→y ⊆ −→x .
Conversely, assume that −→y ⊆ −→x . For any y ∈ X, we have that y ∗ y = 1.
Therefore y ∈ −→y . Hence y ∈ −→x which gives x ∗ y = 1. Therefore x ≤ y.

(iv). It is straightforward by (iii). □
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5. JNB-subalgebras and JNB-deductive systems
In this section, we introduce JNB-subalgebra and JNB-deductive system

in a JNB-algebra and study their properties. We characterize JNB-deductive
systems in terms of upper sets.

Definition 5.1. A subset D of X is called a JNB-subalgebra of (X, ∗, 1) if
x ∗ y ∈ D for all x, y ∈ D.

Example 5.2. Let (X, ∗, 1) be the JNB-algebra in Example 4.3. Then the
set D := {1, a, b} is a JNB-subalgebra of (X, ∗, 1).

Definition 5.3. A subset D of X is called a JNB-deductive system of (X, ∗, 1)
if it satisfies:

(ds1) 1 ∈ D
(ds2) if x ∗ y ∈ D and x ∈ D then y ∈ D.

Obviously, {1} and X are JNB-deductive systems of (X, ∗, 1). A JNB-
deductive system D is said to be proper if D ̸= X.

Example 5.4. Consider the JNB-algebra (X, ∗, 1) in Example 3.3(ii). Then
we can verify that D1 = {1}, D2 = {1, a}, D3 = {1, a, b}, D4 = {1, b, c, d},
and D5 = X are all JNB-deductive systems of (X, ∗, 1).

Proposition 5.5. Every JNB-deductive system D of (X, ∗, 1) satisfies:
(∀a, x ∈ X)(a ∈ D ⇒ (a ∗ x) ∗ x ∈ D). (5.1)

Proof. Let D be a JNB-deductive system of (X, ∗, 1), and let x ∈ X and
a ∈ D. Then a∗ ((a∗x)∗x) = 1 ∈ D by (a1) and (ds1). Hence (a∗x)∗x ∈ D
by (ds2). □

Theorem 5.6. A subset D of X is a JNB-deductive system of (X, ∗, 1) if
and only if it satisfies:

(∀x, a, b ∈ X)(a, b ∈ D, a ∗ (b ∗ x) = 1 ⇒ x ∈ D). (5.2)

Proof. Suppose D is a JNB-deductive system of X. Let x, a, b ∈ X be such
that a, b ∈ D and a ∗ (b ∗x) = 1. Then a ∗ (b ∗x) ∈ D by (ds1), and so x ∈ D
by (ds2).

Conversely, assume that D satisfies (5.2). Since a∗ (a∗1) = 1 for all a ∈ D,
we have 1 ∈ D by (5.2). Let x, y ∈ X be such that x ∗ y ∈ D and x ∈ D.
Then, since x ∗ ((x ∗ y) ∗ y) (a1)

= 1 ∈ D, we have y ∈ D by (5.2). Hence D is a
JNB-deductive system of (X, ∗, 1). □
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Theorem 5.7. A subset D of X is a JNB-deductive system of (X, ∗, 1) if
and only if

−−−→
(x, y) ⊆ D for all x, y ∈ D.

Proof. Assume that D is a JNB-deductive system of (X, ∗, 1). For every
x, y ∈ D, if z ∈

−−−→
(x, y), then x ∗ (y ∗ z) = 1 ∈ D and so z ∈ D. Hence

−−−→
(x, y) ⊆ D.

Conversely, assume that
−−−→
(x, y) ⊆ D for all x, y ∈ D. For every z ∈ D, we

have 1 ∈
−−−→
(z, z) ⊆ D. Let x, y ∈ X be such that x ∗ y ∈ D and x ∈ D. Then

y ∈
−−−−−→
(x ∗ y, x) ⊆ D. Therefore D is a JNB-deductive system of (X, ∗, 1). □

Proposition 5.8. Let D be a JNB-deductive system of (X, ∗, 1). Then D
contains the x-upper set for all x ∈ D, and D can be represented by the union
of (x, y)-upper sets for all x, y ∈ D.

Proof. For every x ∈ D, if z ∈ −→x , then x ∗ z = 1 ∈ D and hence z ∈ D.
Therefore −→x ⊆ D.

Let x, y ∈ D. It is clear that x ∈
−−−→
(x, 1). Thus

D ⊆
∪
x∈D

−−−→
(x, 1) ⊆

∪
x,y∈D

−−−→
(x, y).

If z ∈
∪

x,y∈D

−−−→
(x, y), then z ∈

−−−→
(a, b) for some a, b ∈ D, and so

a ∗ (b ∗ z) = 1 ∈ D. It follows from (ds2) that z ∈ D. Thus
∪

x,y∈D

−−−→
(x, y) ⊆ D,

and consequently D =
∪

x,y∈D

−−−→
(x, y). □

The proof of the following lemma is straightforward and hence we omit the
proof.

Lemma 5.9. If {Di}i∈Λ is a family of JNB-deductive systems (resp., JNB-
subalgebras) of (X, ∗, 1), then so is

∩
i∈Λ

Di.

The following example shows that the union of JNB-deductive systems
(resp., JNB-subalgebras) of (X, ∗, 1) may not be a JNB-deductive system
(resp., JNB-subalgebra) of (X, ∗, 1).

Example 5.10. Let X = {1, a, b, c, d, e, f} be a set with the following table.
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∗ 1 a b c d e f

1 1 a b c d e f
a 1 1 1 e d e e
b 1 1 1 d d e d
c 1 1 1 1 1 1 1
d 1 a b a 1 1 a
e 1 a b a 1 1 a
f 1 1 1 1 1 1 1

Then (X, ∗, 1) is a JNB-algebra. Let D = {1, a, b} and G = {1, d, e}. Then
D and G are JNB-deductive systems of (X, ∗, 1). But D ∪G = {1, a, b, d, e}
is not a JNB-deductive system of (X, ∗, 1) since b ∗ f = d ∈ D ∪ G but
f /∈ D ∪G.

We denote the set of all JNB-deductive systems of (X, ∗, 1) by D(X). Since
the set D(X) is closed under arbitrary intersections, we have the following
theorem.

Theorem 5.11. (D(X),⊆) is a complete lattice.

We now establish the relationship between a JNB-subalgebra and a JNB-
deductive system.

Theorem 5.12. Every JNB-deductive system is a JNB-subalgebra.

Proof. Let D be a JNB-deductive system of (X, ∗, 1). If x, y ∈ D, then

y ∗ (x ∗ y) (a4)
= 1 ∈ D,

and so x∗y ∈ D by (ds2). Hence (X, ∗, 1) is a JNB-subalgebra of (X, ∗, 1). □
In Example 4.3, we can observe that D := {1, a, b} is a JNB-subalgebra of

(X, ∗, 1). But it is not a JNB-deductive system of (X, ∗, 1) since a ∗ d = 1
and a ∈ D but d /∈ D. Therefore, we know the converse of Theorem 5.12
does not hold in general.

Lemma 5.13. Every JNB-algebra (X, ∗, 1) satisfies:
(∀x ∈ X)(1 ≤ x ⇒ x = 1).

Proof. Straightforward. □

Theorem 5.14. For every x, y ∈ X, the (x, y)-upper set
−−−→
(x, y) is both a

JNB-subalgebra and a JNB-deductive system of (X, ∗, 1).
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Proof. Let a, b ∈
−−−→
(x, y). Then x ∗ (y ∗ a) = 1 and x ∗ (y ∗ b) = 1, that is,

x ≤ y ∗ a and x ≤ y ∗ b. Using (a6) and (a15) in Proposition 4.1, we get
a ∗ x ≤ a ∗ (y ∗ b) ≤ y ∗ (a ∗ b). Since ≤ is transitive, it follows from (a4) and
(a6) that

1 = x ∗ (a ∗ x) ≤ x ∗ (y ∗ (a ∗ b)) .

Hence x ∗ (y ∗ (a ∗ b)) = 1 by Lemma 5.13, that is, a ∗ b ∈
−−−→
(x, y). Thus

−−−→
(x, y)

is a JNB-subalgebra of (X, ∗, 1). Let x, y ∈ X. Since x ∗ (y ∗ 1) = x ∗ 1 = 1

by (a5), we have 1 ∈
−−−→
(x, y). Let a, b ∈ X be such that a ∗ b ∈

−−−→
(x, y) and

a ∈
−−−→
(x, y). Then x ∗ (y ∗ (a ∗ b)) = 1 and x ∗ (y ∗ a) = 1. Hence

x ≤ y ∗ (a ∗ b) ≤ a ∗ (y ∗ b) = (y ∗ a) ∗ (y ∗ b)
by (4.1), (a15) and (3.2), and so x ≤ (y ∗ a) ∗ (y ∗ b) since ≤ is transitive.
Therefore 1 = x ∗ ((y ∗ a) ∗ (y ∗ b)) ≤ (y ∗ a) ∗ (x ∗ (y ∗ b)), which implies
from Lemma 5.13 that (y ∗ a) ∗ (x ∗ (y ∗ b)) = 1, i.e., y ∗ a ≤ x ∗ (y ∗ b).
Hence 1 = x ∗ (y ∗ a) ≤ x ∗ (x ∗ (y ∗ b)) = x ∗ (y ∗ b) by (a6) and (a3), and
so x ∗ (y ∗ b) = 1 by Lemma 5.13. Thus b ∈

−−−→
(x, y). Therefore

−−−→
(x, y) is a

JNB-deductive system of (X, ∗, 1). □
The combination of Proposition 4.5(i), Lemma 5.9 and Theorem 5.14 de-

rives to the following corollary.

Corollary 5.15. For every x ∈ X, the x-upper set −→x is both a JNB-
subalgebra and a JNB-deductive system of (X, ∗, 1).

Proposition 5.16. Every JNB-deductive system D of (X, ∗, 1) satisfies:
(∀a, x ∈ X)(a ∈ D, a ≤ x ⇒ x ∈ D). (5.3)

Proof. Let a, x ∈ X be such that a ∈ D and a ≤ x. Then a ∗ x = 1 ∈ D by
(ds1), and so x ∈ D by (ds2). □
Definition 5.17. A nonempty subset F of X is called a JNB-filter of (X, ∗, 1)
if it satisfies:

(∀x, y ∈ X) (y ∈ F ⇒ x ∗ y ∈ F ), (5.4)
(∀x, a, b ∈ X) (a, b ∈ F ⇒ (a ∗ (b ∗ x)) ∗ x ∈ F ). (5.5)

Example 5.18. Consider the JNB-algebra (X, ∗, 1) in Example 3.3(ii). It is
routine to verify that F := {1, a, b} is a JNB-filter of (X, ∗, 1)

Lemma 5.19. Let F be a JNB-filter of (X, ∗, 1). Then
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(b1) 1 ∈ F ,
(b2) (∀x, y ∈ X) (x ∈ F ⇒ (x ∗ y) ∗ y ∈ F ),
(b3) (∀a, x ∈ X) (a ∈ F, a ≤ x ⇒ x ∈ F ),
(b4) (∀x, y, b ∈ X) (x ∗ (b ∗ y) ∈ F, b ∈ F ⇒ x ∗ y ∈ F ).

Proof. Let F be a JNB-filter of (X, ∗, 1). Then there exists x ∈ F , and
so 1 = x ∗ x ∈ F by (a2) and (5.4). Thus (b1) is valid. Let x ∈ F and
y ∈ X. Then (x ∗ y) ∗ y = 1 ∗ ((x ∗ y) ∗ y) ∈ F by (3.1), (b1) and (5.5).
Thus (b2) is valid. Let a ∈ F, x ∈ X and a ≤ x. Then a ∗ x = 1, and
so x = 1 ∗ x = (a ∗ x) ∗ x ∈ F by (3.1) and (b2). Thus (b3) is valid. Let
x, y, b ∈ X be such that x∗(b∗y) ∈ F and b ∈ F . Then x∗(b∗y) ≤ b∗(x∗y)
by (a15), which implies from (b3) that b ∗ (x ∗ y) ∈ F . Using (3.1), (a2) and
(5.5), we have

x ∗ y = 1 ∗ (x ∗ y) = ((b ∗ (x ∗ y)) ∗ (b ∗ (x ∗ y))) ∗ (x ∗ y) ∈ F

which shows that (b4) is valid. □
Lemma 5.20. If a nonempty subset F of X satisfies two conditions (b1) and
(b4), then

(∀b, x ∈ X)(b ∈ F, b ≤ x ⇒ x ∈ F ). (5.6)

Proof. Assume that F satisfies (b1) and (b4). Let b, x ∈ X be such that
b ∈ F and b ≤ x. Then 1 ∗ (b ∗ x) = b ∗ x = 1 ∈ F by (3.1) and (b1). It
follows from (3.1) and (b4) that x = 1 ∗ x ∈ F . □
Theorem 5.21. If a nonempty subset F of X satisfies two conditions (b1)
and (b4), then it is a JNB-filter of (X, ∗, 1).
Proof. Assume that F satisfies (b1) and (b4). Let x ∈ X and y ∈ F .
Then x ∗ (y ∗ y) = x ∗ 1 = 1 ∈ F by (a2), (a5) and (b1), and so x ∗ y ∈ F by
(b4). Let x ∈ X and a, b ∈ F . Then (a ∗ x) ∗ (a ∗ x) = 1 ∈ F by (a2) and
(b1), which implies from (b4) that (a ∗ x) ∗ x ∈ F . Using (a10) induces

((a ∗ x) ∗ x) ∗ ((b ∗ (a ∗ x)) ∗ (b ∗ x)) = 1,

that is, (a ∗ x) ∗ x ≤ (b ∗ (a ∗ x)) ∗ (b ∗ x). Hence (b ∗ (a ∗ x)) ∗ (b ∗ x) ∈ F
by Lemma 5.20, and thus (b ∗ (a ∗ x)) ∗ x ∈ F by (b4). Therefore F is a
JNB-filter of (X, ∗, 1). □

Let F be a JNB-filter of (X, ∗, 1). Let x, y ∈ X be such that x ∗ y ∈ F and
x ∈ F . Then

y
(3.1)
= 1 ∗ y (a2)

= ((x ∗ y) ∗ (x ∗ y)) ∗ y
(5.5)
∈ F
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which shows that F satisfies the condition (ds2). Hence we have the following
theorem.

Theorem 5.22. Every JNB-filter is a JNB-deductive system.

Corollary 5.23. If a nonempty subset F of X satisfies two conditions (b1)
and (b4), then it is a JNB-deductive system of (X, ∗, 1).

We discuss the converse of Theorem 5.22.

Theorem 5.24. Every JNB-deductive system is a JNB-filter.

Proof. Let F be a JNB-deductive system of (X, ∗, 1). If y ∈ F , then
y ∗ (x ∗ y) = 1 ∈ F by (a4) and (ds1), and hence x ∗ y ∈ F by (ds2) for
all x ∈ F . Let a, b ∈ F. Since

a ∗ ((a ∗ (b ∗ x)) ∗ (b ∗ x)) = 1 ∈ F

by (a1) and (ds1), we have (a ∗ (b ∗ x)) ∗ (b ∗ x) ∈ F by (ds2). Also, since
(a ∗ (b ∗ x)) ∗ (b ∗ x) ≤ b ∗ ((a ∗ (b ∗ x)) ∗ x)

by (a15), it follows from Proposition 5.16 that b∗ ((a∗ (b∗x))∗x) ∈ F . Thus
(a ∗ (b ∗ x)) ∗ x ∈ F by (ds2). Therefore F is a JNB-filter of (X, ∗, 1). □
Remark 5.25. Through Theorems 5.22 and 5.24, we can see that the JNB-
deductive system and the JNB-filter are coincident concepts.

We finally discuss a characterization of the JNB-filter.

Theorem 5.26. A subset F of X is a JNB-filter of (X, ∗, 1) if and only if it
satisfies (ds1) and

(∀x, a, y ∈ X)(x ∗ a ∈ F, a ∗ y ∈ F ⇒ x ∗ y ∈ F ). (5.7)

Proof. Suppose that F is a JNB-filter of (X, ∗, 1). Then F is a JNB-deductive
system of (X, ∗, 1). Hence (ds1) is valid. Let x, a, y ∈ X be such that x∗a ∈ F
and a ∗ y ∈ F . Then (a ∗ y) ∗ ((x ∗ a) ∗ (x ∗ y)) = 1 ∈ F by (a10) and (ds1).
It follows from (ds2) that x ∗ y ∈ F . Hence (5.7) is valid.

Assume that F satisfies (ds1) and (5.7). Let x, y ∈ X be such that x ∈ F
and x ∗ y ∈ F . Then 1 ∗ x = x ∈ F by (3.1), and so y = 1 ∗ y ∈ F by
(3.1) and (5.7). Hence F is a JNB-deductive system, and so a JNB-filter of
(X, ∗, 1). □
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JNB-جبرها

باندارو٣ کی. آر. و نوربهاشا٢ آر. جون١، بی. وای.

کره جینجو، گیونگسانگ، ملی دانشگاه ریاضیات، آموزش ١دانشکده

هند پرادش، آندرا باپاتلا، باپاتلا، مهندسی کالج ریاضیات، ٢دانشکده

هند پرادش، آندرا ،VIT-AP دانشگاه پیشرفته، علوم مدرسه ریاضیات، ٣دانشکده

بررسی مورد آن اساسی خواص و شده معرفی JNB-جبر خود-توزیعی، BE-جبر از تعمیمی عنوان به
ایفا BCK-جبر جمله از منطقی، جبر مطالعه در مختلفی نقش های می تواند جبر این است. گرفته قرار
خواص هستند. یکدیگر از مستقل JNB-جبر اصل سه می دهند نشان که شده ارائه مثال هایی ابتدا، کند.
مورد هستند، نیاز مورد JNB-جبرها درباره مختلف نظریه های مطالعه برای که JNB-جبرها اساسی
مرتبط ویژگی های و شده معرفی عنصر دو و یک اساس بر بالایی مجموعه های است. گرفته قرار بررسی
آن ها خواص و شده معرفی JNB-فیلتر و JNB-قیاسی سیستم نام به مفهوم دو شده اند. بررسی آن ها با
در گرفته اند. قرار بحث مورد JNB-فیلتر و JNB-قیاسی سیستم ویژگی های گرفته اند. قرار تحقیق مورد

دارند. مطابقت JNB-فیلتر و JNB-قیاسی سیستم که است شده داده نشان نهایت

JNB-فیلتر. JNB-قیاسی، سیستم بالایی، مجموعه JNB-زیرجبر، JNB-جبر، کلیدی: کلمات
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