
Journal of Algebraic Systems, Vol. 13(No. 3): (2025), pp 137-155.
https://doi.org/10.22044/JAS.2024.13825.1775

DEDEKIND-MACNEILLE COMPLETION OF THE ROUGH SETS
SYSTEM AS PASTING OF ROUGH APPROXIMATION LATTICES

D. Umadevi

Abstract. The pattern of embedding of rough approximation lattices defined by a
reflexive relation in its Dedekind-MacNeille completion of rough sets system is taken
up for study in this work. The reflexive relation R for which the Dedekind-MacNeille
completion of rough sets system defined by R is the pasting of its rough approximation
lattices is characterized. Some properties of the Dedekind-MacNeille completion of
rough sets system defined by a reflexive relation R are also discussed.

1. Introduction
Pawlak [15] proposed a rough set theory to deal with uncertainty caused by

lack of information. The theory starts from an approximation space (U,E),
where E is an equivalence relation that represents the indiscernibility of ob-
jects in U , with the available information. This equivalence relation was
relaxed later and the rough set was defined from the generalized approxima-
tion space (U,R), where R is the information relation derived from different
forms of information system [13, 19]. The set of all rough sets defined from
an approximation space is denoted by R∗ and is called as rough sets sys-
tem. The rough sets are represented in the form of an approximation pair
(A▼, A▲) for A ⊆ U to study its algebraic structures. The system is ordered
coordinate-wise as (A▼, A▲) ≤ (B▼, B▲) ⇔ A▼ ⊆ B▼ andA▲ ⊆ B▲. The
rough sets system together with the ordering ≤, forms a partially ordered
set (R∗,≤) which turns out into lattice-based algebraic structures for some
reflexive-based relations.

The foundations of the algebraic structures of (R∗,≤) were initially based
on an equivalence relation [2, 7, 14, 16]. Later, the ordered structure of
(R∗,≤) for various relations like quasi-order relation (reflexive and transitive)
[12], tolerance relation (reflexive and symmetric) [10] and simply reflexive
relation [9] were studied.
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Järvinen in [9] has given in general a few completions for (R∗,≤) defined
by a binary relation R that is not a lattice. He has also proposed a problem
of finding the smallest completion of the (R∗,≤) as defined by a binary
relation. The author of the current paper has given a solution to this problem
by finding the Dedekind-MacNeille completion of (R∗,≤) defined by binary
relation and has also studied the algebraic structures of this completion in
[18]. However, the reflexive condition on binary relation is considered as
necessary for many applications. Hence the rough sets defined by reflexive
relation are studied in this paper. Here, reflexive relation R is stated in the
sense that R can be any arbitrary binary relation with the least property of
it to be reflexive.

In this paper, first, it is shown that the lattice structure of rough approxima-
tions as defined by a reflexive relation R is order embedded in the Dedekind-
MacNeille completion of (R∗,≤) defined by R. Next, it is shown that the
pasting of rough approximation lattices over the common Boolean sublat-
tice is order embedded in its Dedekind-MacNeille completion of (R∗,≤). It
will be of great interest to study the lattice structure of a rough set, if it
can be obtained by just pasting its rough approximation lattices. So, with
this concept in mind, the reflexive relation R is characterized for which the
Dedekind-MacNeille completion of (R∗,≤) is obtained by simply pasting its
rough approximation lattices over the common Boolean sublattice. Further,
some of the algebraic properties of the Dedekind-MacNeille completion of
(R∗,≤) defined by a reflexive relation is analyzed.

2. Properties of Rough Approximations
In an approximation space (U,R) with R as a reflexive relation, the lower

and upper (rough) approximations of a subset A of U are defined as

A▼ = {x ∈ U |R(x) ⊆ A} (2.1)
A▲ = {x ∈ U |R(x) ∩ A ̸= ∅}

where R(x) = {y ∈ U |xRy}.

℘(U)▼ = {A▼|A ⊆ U} and ℘(U)▲ = {A▲|A ⊆ U}.
If the rough approximations of two subsets of U are equal, then it can be

said that one is roughly equal to the other and is denoted by ≡. This rough
equality (≡) relation is an equivalence relation on ℘(U), and the resulting
equivalence classes are called rough sets. The family of all rough sets of an
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approximation space (U,R) is called as rough sets system defined by R and
is denoted by R∗. That is,

R∗ = {(Y ▼, Y ▲)|Y ⊆ U}

R∗ is ordered canonically by coordinate-wise order as
(X▼, X▲) ≤ (Y ▼, Y ▲) ⇔ X▼ ⊆ Y ▼ and X▲ ⊆ Y ▲ (2.2)

Let us denote R−1(x) = {y ∈ U |yRx} and the rough approximations of
A ⊆ U with respect to inverse relation R−1 are defined as follows:

A▽ = {x ∈ U |R−1(x) ⊆ A}
A△ = {x ∈ U |R−1(x) ∩ A ̸= ∅} (2.3)

Järvinen[8] showed that the pair of mappings (▲,▽ ) and (△,▼ ) are Galois
connections on ℘(U). As a consequence of this, the following hold for all
Z ⊆ U :

Z▼△ ⊆ Z ⊆ Z△▼;Z▽▲ ⊆ Z ⊆ Z▲▽

Z▲ = Z▲▽▲, Z▽ = Z▽▲▽, Z△ = Z△▼△ and Z▼ = Z▼△▼

Z△ =
∪
y∈Z

{y}△ =
∪
y∈Z

R(y) and Z▲ =
∪
y∈Z

{y}▲ =
∪
y∈Z

R−1(y)

And, (℘(U)△,⊆) ∼= (℘(U)▼,⊆) ∼= (℘(U)▲,⊇) ∼= (℘(U)▽,⊇) also holds. The
readers can refer to the literature [3, 5, 8] for basic definitions and results in
lattice theory and rough set theory.

3. Some Results on Dedekind-MacNeille Completion of the
Rough Sets System defined by a Reflexive relation

Generally, for every reflexive relation R, (R∗,≤) is not a lattice. Järvinen
has provided a few possible completions for (R∗,≤) defined by a binary re-
lation in [9] and has concluded the paper with an open problem stating that
”Determine the smallest completion of (R∗,≤)”. The author of the current
paper has given the solution to the problem in [18] by finding the Dedekind-
MacNeille completion of (R∗,≤). The Dedekind-MacNeille completion of the
poset (R∗,≤) is as follows

[℘(U)▼ × ℘(U)▲]′ = {(A,B) ∈ ℘(U)▼ × ℘(U)▲|A△▲ ⊆ B and
A ∩ B = B ∩ B} (3.1)

where B = {x ∈ U |R(x) = {x}}.
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The lattice operations of [℘(U)▼ × ℘(U)▲]′ are defined as follows [18] for
any index set I and {(X▼

i , Y
▲
i )}i∈I ⊆ [℘(U)▼ × ℘(U)▲]′,∧

i∈I

(X▼
i , Y

▲
i ) = (∧i∈IX

▼
i ,∧i∈IY

▲
i )

∨
i∈I

(X▼
i , Y

▲
i ) = (∨i∈IX

▼
i ,∨i∈IY

▲
i )

where ∨ and ∧ are the join and meet operations in ℘(U)▼ respectively. Sim-
ilarly, ∨ and ∧ are the join and meet operations in ℘(U)▲ respectively. Also,
the operator ∼ on [℘(U)▼ × ℘(U)▲]′, defined by ∼ (X▼, Y ▲) = (Y c▼, Xc▲),
satisfies the following properties : for (X▼, Y ▲), (V ▼,W▲) ∈ [℘(U)▼×℘(U)▲]′,

(i) ∼ [(X▼, Y ▲)
∨
(V ▼,W▲)] =∼ (X▼, Y ▲)

∧
∼ (V ▼,W▲).

(ii) ∼∼ (X▼, Y ▲) = (X▼, Y ▲).
(iii) (X▼, Y ▲)

∧
∼ (X▼, Y ▲) ≤ (V ▼,W▲)

∨
∼ (V ▼,W▲).

Let us denote the ordered structure of this completion [℘(U)▼ × ℘(U)▲]′ by
(R∗

c ,≤). From the above properties of the operator ∼, (R∗
c ,≤) is a symmetric

lattice.

Lemma 3.1. Let R be any reflexive relation on the set U . For all X ⊆ U ,

X▼ =
∪

{{x}△▼|{x}△ ⊆ X}.

Proof. For X ⊆ U , x ∈ X▼ ⇒ {x}△ = R(x) ⊆ X and always x ∈ {x}△▼. Let
y ∈ {x}△▼ and {x}△ ⊆ X, for some x ∈ U . Then,

R(y) ⊆ {x}△ ⊆ X ⇒ y ∈ X▼.

Hence X▼ =
∪
{{x}△▼|{x}△ ⊆ X}. □

We have B▼ = B, by the above Lemma 3.1 and by duality (X▼c = Xc▲),
Bc▲ = Bc. Then for any reflexive relation R on the set U and for allX ∈ ℘(U),
the following hold:

(X▲ ∩ B)▼ = X▲▼ ∩ B = X▲ ∩ B (3.2)
(X▼ ∪ Bc)▲ = X▼▲ ∪ Bc = X▼ ∪ Bc (3.3)

Lemma 3.2. Let R be any reflexive relation on the set U and (X,Y ) ∈ R∗
c.

(i) If Bc ⊆ Y , then X ∪ Bc = Y ;
(ii) If X ⊆ B, then Y ∩ B = X.
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Proof. (i) If Bc ⊆ Y . Then, Y ∪ Bc = Y . Since (X,Y ) ∈ R∗
c , by Equation

3.1, we have
X ∩ B = Y ∩ B ⇒ (X ∩ B) ∪ Bc = (Y ∩ B) ∪ Bc ⇒ X ∪ Bc = Y.

(ii) If X ⊆ B. Then, X ∩ B = X.
(X,Y ) ∈ R∗

c ⇒ X ∩ B = Y ∩ B ⇒ X = Y ∩ B.
□

In the case of reflexive relation, whether the ordered pair (B, U) is in R∗

or not cannot be determined, as there is no characterization for R∗. But
(B, U) ∈ R∗

c can be determined as B△▲ ⊆ U . Because (R∗
c ,≤) is a symmetric

lattice, ∼ (B, U) = (∅,Bc) ∈ R∗
c . Now, ((B, U)] is a principal ideal, and

[(∅,Bc)) is a principal filter of (R∗
c ,≤).

Proposition 3.3. Let R be any reflexive relation on the set U . Then
℘(U)▲ ∼= ((B, U)] and ℘(U)▼ ∼= [(∅,Bc)) in (R∗

c ,≤).

Proof. Let φ : ℘(U)▲ → ((B, U)] be defined by
φ(X▲) = ((X▲ ∩ B)▼, X▲) = (X▲ ∩ B, X▲),

by Equation (3.2). First, we prove that (X▲ ∩ B, X▲) ∈ R∗
c . Let

x ∈ (X▲∩B)△▲. Then R(x)∩ (X▲∩B)△ ̸= ∅. This implies ∃y ∈ U such that
y ∈ R(x) and y ∈ (X▲ ∩ B)△ ⇒ R−1(y) ∩ (X▲ ∩ B) ̸= ∅
⇒ ∃z ∈ U, such that z ∈ R−1(y) and z ∈ X▲ ∩ B ⇒ y ∈ R(z), z ∈ X▲ and
z ∈ B ⇒ {z} = R(z) ⊆ X and z = y ⇒ ∃y ∈ U such that y ∈ R(x) and
y ∈ X ⇒ R(x) ∩X ̸= ∅ ⇒ x ∈ X▲. Therefore (X▲ ∩ B)△▲ ⊆ X▲. Hence

(X▲ ∩ B, X▲) ∈ R∗
c and (X▲ ∩ B, X▲) ≤ (B, U).

Next, we prove φ is an order isomorphism. Let X▲, Y ▲ ∈ ℘(U)▲ such that
X▲ ⊆ Y ▲ ⇔ X▲ ∩ B ⊆ Y ▲ ∩ B

⇔ (X▲ ∩ B, X▲) ≤ (Y ▲ ∩ B, Y ▲)

⇔ φ(X▲) ≤ φ(Y ▲).

Let (X,Y ) ∈ ((B, U)] in R∗
c . This implies X ⊆ B. Then, by Lemma 3.2(ii),

we have X = Y ∩B. Therefore for every (X,Y ) ∈ ((B, U)], ∃Y ∈ ℘(U)▲ such
that φ(Y ) = (Y ∩ B, Y ) = (X,Y ). Therefore φ is an order isomorphism and
hence ℘(U)▲ ∼= ((B, U)]. Dually, we have

(Y ▼, (Y ▼ ∪ Bc)▲) = (Y ▼, Y ▼ ∪ Bc) ∈ R∗
c
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and (∅,Bc) ≤ (Y ▼, Y ▼ ∪ Bc). Therefore ψ : ℘(U)▼ → [(∅,Bc)) defined by
ψ(Y ▼) = (Y ▼, (Y ▼ ∪ Bc)▲) is order isomorphic and ℘(U)▼ ∼= [(∅,Bc)). □

Lemma 3.4. [(∅,Bc)) ∩ ((B, U)] = [(∅,Bc), (B, U)] ∼= 2B in R∗
c.

Proof. For X ⊆ B, X△ = X. Let x ∈ X△▲. This implies

x ∈ X▲ ⇒ R(x) ∩X ̸= ∅ ⇒ ∃y ∈ U such that y ∈ R(x) and y ∈ X.

Now, we have two cases:
Case (i) If y = x, then x = y ∈ X which implies x ∈ X ∪ Bc.
Case (ii) If x ̸= y, then x ∈ Bc ⇒ x ∈ X ∪ Bc.
Thus X△▲ ⊆ X ∪ Bc and (X ∪ Bc) ∩ B = X ∩ B. So, for any X ⊆ B,

(X,X ∪ Bc) ∈ [(∅,Bc), (B, U)] inR∗
c . Let us define a map

g : 2B → [(∅,Bc)) ∩ ((B, U)]

by g(X) = (X,X ∪ Bc). Let X,Y ⊆ B such that

X ⊆ Y ⇔ (X,X ∪ Bc) ≤ (Y, Y ∪ Bc) ⇔ g(X) ≤ g(Y ).

Let (X,Y ) ∈ [(∅,Bc), (B, U)] in R∗
c . Then Bc ⊆ Y , which implies Y = X ∪Bc

by Lemma 3.2(i). Now, g(X) = (X,X ∪ Bc) = (X,Y ). Therefore g is an
order isomorphism. Hence [(∅,Bc), (B, U)] ∼= 2B. □

The following illustration explains the Proposition 3.3. Let us denote the
sets like {a, b} by ab, except for U in all the following Examples.

Example 3.5. Let us consider a reflexive relation

R = {aRa, , bRb, cRc, aRb, bRc, cRa}

on a set U = {a, b, c}. Then

R∗ = {(∅, ∅), (∅, ab), (∅, bc), (∅, ac), (a, U), (b, U), (c, U), (U,U)}

and (R∗,≤) is not a lattice as shown in [9]. Here B = ∅. R∗
c is given by

R∗ ∪ {(∅, U)}. One can see in Figure 1 (d) below that ℘(U)▲ ∼= ((∅, U)] and
℘(U)▼ ∼= [(∅, U)) in (R∗

c ,≤).
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Let P be an ordered set and S ⊆ P . Then S is called Join-dense in P if,
for every element a ∈ P , there exists a subset A of S such that a = ∨A. The
dual of Join-dense is Meet-dense [5].

JRef = {(∅, {x}▲)|x ∈ U and |R(x)| ≥ 2}
∪

{({x}△▼, {x}△▲)|x ∈ U} (3.4)

Proposition 3.6. JRef is Join-dense in (R∗,≤).
Proof. Let x ∈ U . If |R(x)| ≥ 2, then {x}▼ = ∅. This implies
({x}▼, {x}▲) = (∅, {x}▲) ∈ R∗ and for all x ∈ U , ({x}△▼, {x}△▲) ∈ R∗.
Thus JRef ⊆ R∗. Let (X▼, X▲) ∈ R∗ and

A = {({x}△▼, {x}△▲)|{x}△ ⊆ X} ∪ {(∅, {x}▲)|x ∈ X & |R(x)| ≥ 2}.
Clearly, A ⊆ R∗. We have from Lemma 3.1,

∪
{{x}△▼|{x}△ ⊆ X} = X▼.

Also, we have
∪
{{x}△|{x}△ ⊆ X} ⊆ X and the upper approximation op-

erator distributes over unions. This implies
∪
{{x}△▲|{x}△ ⊆ X} ⊆ X▲.

Therefore we have∨
{({x}△▼, {x}△▲)|{x}△ ⊆ X} ≤ (X▼, X▲).

Obviously,
∨
{(∅, {x}▲)|x ∈ X & |R(x)| ≥ 2} ≤ (X▼, X▲). Hence∨

A ≤ (X▼, X▲). We claim that, (X▼, X▲) ≤
∨

A. Let x ∈ X▲. Then
there are two cases:
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Case (i) If x ∈ B, then x ∈ X▼. This implies {x}△ = R(x) ⊆ X. We
have R(x) ⊆ {x}△ which implies x ∈ {x}△▼ and x ∈ {x}△▲, {x}△ ⊆ X. Thus
({x}△▼, {x}△▲) ∈ A.

Case (ii) If x ∈ Bc, then |R(x)| ≥ 2 and so R(x) = {x}△ contains atleast
two elements including x. This implies {x}▼ = ∅ and x ∈ {x}▲. Thus
({x}▼, {x}▲) = (∅, {x}▲) ∈ A. Therefore, we have (X▼, X▲) ≤

∨
A. So for

every (X▼, X▲) ∈ R∗, ∃A ⊆ JRef such that (X▼, X▲) =
∨

A. Hence JRef is
Join-dense in (R∗,≤). □

Example 3.7. Consider a reflexive relation
R = {aRa, aRb, aRc, bRa, bRb, cRa, cRc, dRd}

on the set U = {a, b, c, d}. ThenR(a) = {a, b, c}, R(b) = {a, b}, R(c) = {a, c},
R(d) = {d}. The elements of the sets ℘(U)▼ and ℘(U)▲ are listed in Table
1.

Table 1. The Elements of ℘(U)▼ & ℘(U)▲

℘(U) ℘(U)▼ ℘(U)▲

∅ ∅ ∅
a ∅ abc
b ∅ ab
c ∅ ac
d d d
ab b abc
bc ∅ abc
cd d acd
ad d U
bd d abd
ac c abc
abc abc abc
bcd d U
acd cd U
abd bd U
U U U

Therefore

R∗ = R∗
c = {(∅, ∅), (U,U), (∅, ac), (∅, ab), (∅, abc), (d, d), (d, acd),

(d, abd), (d, U), (b, abc), (c, abc), (cd, U), (abc, abc), (bd, U)}.
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Here B = {d}. The Hasse diagram of all the above-mentioned sets with their
partial order is shown in Figure 2. It can be noted that ℘(U)▲ ∼= ((d, U)] and
℘(U)▼ ∼= [(∅, abc)) in (R∗

c ,≤).
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(∅, abc) (d, acd)

(b, abc)
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(bd, U)
(abc, abc) (cd, U)

(U,U)

s
s

s
s

(∅, ∅)

(R∗,≤) ∼= (R∗
c ,≤)

Figure 2.

Remark 3.8. For a reflexive relation R on U , JRef is Join-dense in (R∗,≤).
Because (R∗

c ,≤) is a completion of (R∗,≤), every non-zero element of R∗
c can

be written as a join of elements from JRef . If R is a quasi-order relation on
U , then JRef is the set of all join-irreducible elements of R∗. This was proved
by Järvinen in [11]. But for merely a reflexive relation, the elements of JRef

are not necessarily join-irreducible. It is evident from the above Example 3.7
that JRef = {(∅, abc), (∅, ab), (∅, ac), (d, d), (abc, abc), (b, abc), (c, abc)}. Here
the element (∅, abc) ∈ JRef can be obtained as the join of (∅, ab) and (∅, ac).
Similarly, the element (abc, abc) ∈ JRef also be obtained as the join of (b, abc)
and (c, abc). Hence both elements are not join-irreducible.
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4. Pasting of Rough Approximation lattices
The pasting of rough approximation lattices together over a common

Boolean sublattice and its relation to the lattice structure of rough sets sys-
tem defined by a quasi-order relation was studied in [17]. Here, the pasting
of lattices (℘(U)▲,⊆) and (℘(U)▼,⊆) together over a common Boolean sub-
lattice is studied in the generalized case of reflexive relation.

Dilworth Gluing:[1] If a non-empty filter F1 of a lattice P1 is isomorphic
to an ideal F2 of a lattice P2, let P be the union of P1 and P2 with the
elements of F1 and F2 identified via the isomorphism. P can be ordered with
the transitive closure of the union of the orders on P1 and P2. It is easy to
see that under this order P is a lattice.

A set S ⊆ P is said to be upward-closed in P , for every x ∈ P , if
s ≤ x⇒ x ∈ S, ∀s ∈ S. Similarly, a set S ⊆ P is said to be downward-closed
in P , for every x ∈ P , if x ≤ s⇒ x ∈ S, ∀s ∈ S.

Result 4.1. [1] Let (P1,≤1) and (P2,≤2) be complete lattices. Let (P,≤) be
the gluing of P1 and P2. If D = P1 ∩P2 ̸= ∅ is upward-closed in (P1,≤1) and
is downward-closed in (P2,≤2). Then D and (P,≤) are complete lattices.

Let R be a reflexive relation on a set U . If X ⊆ B. Let
x ∈ X ⇒ {x} = R(x) ⊆ X ⇒ x ∈ X▼.

Also, we have X▼ ⊆ X. Therefore X = X▼.
X ∈ ℘(B) ⇔ X ⊆ B ⇔ X = X▼ ⊆ B ⇔ X ∈ (B] in (℘(U)▼,⊆)

Therefore the principal ideal (B] = ℘(B) in (℘(U)▼,⊆) is a Boolean sub-
lattice with the least element ∅ and the greatest element B. Dually, the
principal filter [Bc) in (℘(U)▲,⊆) is also a Boolean sublattice with the least
element Bc and the greatest element U . Thus (B] ∼= [Bc) ∼= 2B.

Let the principal ideal (B] of (℘(U)▼,⊆) be glued over the principal
filter [Bc) of (℘(U)▲,⊆) [via the mappings (X▼)∗ → X▼▲ ∪ Bc and
(X▲)∗ → X▲▼∩B]. The identified elements form a Boolean lattice isomorphic
to 2B. Let this Boolean part be denoted by S = (S,⊔S,⊓S) throughout the
paper, where ⊔S and ⊓S are the join and meet operations in S respectively.

Let S ∈ S. For everyX▲ ∈ ℘(U)▲, if S ⊆ X▲, then S ∈ S ⇒ Bc ⊆ S ⊆ X▲.
Thus X▲ ∈ [Bc) implies X▲ ∈ S. Therefore S is upward-closed in (℘(U)▲,⊆).
For every X▼ ∈ ℘(U)▼, if X▼ ⊆ S, then S ∈ S ⇒ S ⊆ B which implies
X▼ ⊆ B ⇒ X▼ ∈ S. Therefore S is downward-closed in (℘(U)▼,⊆). Also,
S is always non-empty. Because, in the case of B = ∅ also, U of (℘(U)▲,⊆)
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is glued over ∅ of (℘(U)▼,⊆). Hence by Result 4.1, we have the following
proposition.

Proposition 4.2. For a reflexive relation R on U , the gluing of (℘(U)▲,⊆)
and (℘(U)▼,⊆) over S is a complete lattice.

Definition 4.3. Let L be a lattice. Let A,B, S be sublattices of L, A∩B = S,
A ∪ B = L. Let fA and fB be the embeddings of A and B respectively into
L. Then L pastes A and B together over S in notation L = Paste(A,B, S),
if whenever gA and gB are embeddings of A and B into a lattice K satisfying
xgA = xgB for all x ∈ S, then there is a homomorphism h of L into K
satisfying fAh = gA and fBh = gB.

Lemma 4.4. [4] Let C,D, and S be lattices, C ∩ D = S. On P = C ∪ D,
we define a binary relation ≤ as follows:

(i) for x, y ∈ C( and for x, y ∈ D), x ≤ y in P if and only if x ≤ y in C
(respectively, x ≤ y in D);

(ii) for x ∈ C and for y ∈ D, x ≤ y in P iff ∃s ∈ S with x ≤ s in C and
s ≤ y in D ; and dually, for y ≤ x.

Then the pasting of C and D together over S is a poset and is denoted by
P (C,D, S).

The poset P (C,D, S) may be a lattice. If L pastes C and D together over
S, then L as a poset is isomorphic to P (C,D, S), but not the converse.

In a poset (P,≤), an element b is said to cover an element a (a ≺ b) if a < b
and there exists no c with a < c < b.

Theorem 4.5. [6] Let L be a finite lattice. Let C,D, S be sublattices of L,
C ∩D = S, C ∪D = L. L pastes C and D together over S iff the following
two conditions hold:

(1) For a ∈ C and b ∈ D, if a < b, then there exists an s ∈ S satisfying
a ≤ s ≤ b; and dually.

(2) For s ∈ S, all the covers of s in L are in C or all are in D; and dually.

Every gluing is a pasting. Considering pasting as a generalized one, here
onwards the pasting of ℘(U)▲ and ℘(U)▼ together over S is discussed and is
denoted by P = P (℘(U)▲, ℘(U)▼,S). Let the ordering in P be denoted by
≤P and is defined as follows

(i) For X▲, Y ▲ ∈ ℘(U)▲, X▲ ≤P Y
▲ ⇒ X▲ ⊆ Y ▲.

(ii) For X▼, Y ▼ ∈ ℘(U)▼, X▼ ≤P Y
▼ ⇒ X▼ ⊆ Y ▼.
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(iii) For X▲ ∈ ℘(U)▲ and Y ▼ ∈ ℘(U)▼, X▲ ≤P Y ▼ ⇒ ∃S ∈ S,
such that X▲ ⊆ S∗ in ℘(U)▲ and S∗ ⊆ Y ▼ in ℘(U)▼.

Example 4.6. Consider a reflexive relation
R = {aRa, aRb, aRc, aRd, bRb, bRc, cRc, cRd, dRd}

on U = {a, b, c, d}. Then
℘(U)▼ = {∅, b, d, cd, bcd, U}, ℘(U)▲ = {∅, a, ab, abc, acd, U}

and

R∗
c = R∗ = {(∅, ∅), (U,U), (∅, a), (∅, ab), (∅, abc), (d, acd),

(d, U), (b, abc), (cd, U), (bcd, U)}.

Here B = {d}. The pasting of ℘(U)▼ and ℘(U)▲ over S shown in Figure 3,
is the same as (R∗,≤) and (R∗

c ,≤).

s
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s
s s

s s
sss

s
s

U

bcd

U

∅ ∅

b
cd

d
a

ab

abc
acd

(∅, ∅)

s s
s

s
s

ss
s
s

s(U,U)

(∅, a)

(∅, ab)

(∅, abc)

(b, abc)

(℘(U)▼,⊆) (℘(U)▲,⊆)

Figure 3.
(R∗

c ,≤) ∼= (P,≤P )

(d, U)

(cd, U)

(bcd, U)

(d, acd)

Proposition 4.7. For a reflexive relation R on U , (P,≤P ) is order embedded
in (R∗

c ,≤).

Proof. P = ℘(U)▲ ∪ ℘(U)▼ and S = (B] (∼= [Bc)). Let h : P → R∗
c be defined

by

h(A) =

{
((X▲ ∩ B)▼, X▲) ifA = X▲

(X▼, (X▼ ∪ Bc)▲) ifA = X▼

((X▲∩B)▼, X▲), (X▼, (X▼∪Bc)▲) ∈ R∗
c is already proved in Proposition 3.3.

Let A,C ∈ P such that A ≤P C. If both A and C are in (℘(U)▼,⊆) or in
(℘(U)▲,⊆), then trivially A ≤P C ⇒ h(A) ≤ h(C).
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If A = X▲ and C = Y ▼, then A ≤P C ⇔ X▲ ≤P Y ▼. Then
∃S ∈ S such that X▲ ⊆ S∗ in (℘(U)▲,⊆) and S∗ ⊆ Y ▼ in (℘(U)▼,⊆).

X▲ ⊆ S∗ in (℘(U)▲,⊆) ⇒ X▲ ⊆ S ∪ Bc

⇒ X▲ ∩ B ⊆ (S ∪ Bc) ∩ B = S ∩ B = S∗ ⊆ Y ▼.

By Equation (3.2), (X▲ ∩ B)▼ = X▲ ∩ B ⊆ Y ▼. Similarly from S∗ ⊆ Y ▼ in
(℘(U)▼,⊆), we have X▲ ⊆ Y ▼ ∪ Bc = (Y ▼ ∪ Bc)▲ by Equation (3.3). There-
fore ((X▲ ∩ B)▼, X▲) ≤ (Y ▼, (Y ▼ ∪ Bc)▲) ⇒ h(A) ≤ h(C).

Suppose

h(A) ≤ h(C) ⇒ ((X▲ ∩ B)▼, X▲) ≤ (Y ▼, (Y ▼ ∪ Bc)▲)

⇒ X▲ ∩ B ⊆ Y ▼ andX▲ ⊆ Y ▼ ∪ Bc.

Let S = (X▲ ∪ Bc) ⊓S (Y ▼ ∩ B). Clearly S ∈ S,

S∗ = (X▲ ∪ Bc) ∩ (Y ▼ ∩ B)∗ and S∗ = (X▲ ∪ Bc)∗ ∩ (Y ▼ ∩ B).

By assumption, X▲ ⊆ Y ▼ ∪ Bc = (Y ▼ ∩ B)∗. We have X▲ ⊆ X▲ ∪ Bc and
X▲ ⊆ (Y ▼ ∩ B)∗ in ℘(U)▲. That implies X▲ ⊆ (X▲ ∪ Bc) ∩ (Y ▼ ∩ B)∗ = S∗

in ℘(U)▲. Similarly, (X▲ ∪ Bc)∗ = X▲ ∩ B ⊆ Y ▼, by assumption. We
have, Y ▼ ∩ B ⊆ Y ▼ and (X▲ ∪ Bc)∗ ⊆ Y ▼ in ℘(U)▼, which implies
S∗ = (X▲ ∪ Bc)∗ ∩ (Y ▼ ∩ B) ⊆ Y ▼ in ℘(U)▼. Hence X▲ ≤P Y ▼ in P.
Therefore h is an order embedding and hence (P,≤P ) is order embedded in
(R∗

c ,≤). □

Example 4.8. Consider a reflexive relation
R = {aRa, aRc, bRb, bRd, cRa, cRc, cRd, dRb, dRc, dRd}

on U = {a, b, c, d}. Then
℘(U)▼ = {∅, a, b, ac, bd, U}, ℘(U)▲ = {∅, ac, bd, bcd, acd, U}

and

R∗ = R∗
c = {(∅, ∅), (U,U), (∅, ac), (∅, bd), (∅, acd), (∅, bcd), (∅, U),

(a, acd), (b, bcd), (a, U), (b, U), (ac, U), (bd, U)}.

Here B = ∅. So, S = {(∅, U)}.



150 UMADEVI

�
�� �

��

�
��

�
��

Z
ZZs s

s ss
s s

sss

ss s

s s
sss

s

s

ss
s s

s

∅

a

ac

b

bd

U

∅

ac

acd

bd

bcd

U

(∅, ∅)

(∅, ac) (∅, bd)

(∅, acd) (∅, bcd)

(a, acd) (b, bcd)
(∅, U)

(a, U) (b, U)

(ac, U) (bd, U)

(U,U)

(℘(U)▼,⊆) (℘(U)▲,⊆)

Figure 4.

(R∗
c ,≤) ∼= (R∗,≤)

It can be seen trivially from Figure 4 that the pasting of (℘(U)▲,⊆) and
(℘(U)▼,⊆) over S is order embedded in (R∗

c ,≤) ∼= (R∗,≤). But in Example
3.5, the pasting of (℘(U)▲,⊆) and (℘(U)▼,⊆) over S is order embedded in
(R∗

c ,≤), but not in (R∗,≤).

Proposition 4.9. Let R be any reflexive relation on the set U and x ∈ Bc.
Then the following are equivalent

(i) R(x) ∩R(y) ̸= ∅, ∀y ∈ Bc

(ii) Bc ⊆ {x}△▲
(iii) R∗

c = [(∅,Bc)) ∪ ((B, U)]

Proof. Let x ∈ Bc.
(i)⇒ (ii) Assume R(x) ∩ R(y) ̸= ∅, ∀y ∈ Bc holds. To show,

Bc ⊆ {x}△▲. Let y ∈ Bc. By assumption, we have
R(x) ∩R(y) ̸= ∅ ⇒ R(y) ∩ {x}△ ̸= ∅ ⇒ y ∈ {x}△▲

Therefore Bc ⊆ {x}△▲.
(ii)⇒ (iii) Assume Bc ⊆ {x}△▲. Now it is to be proved,

R∗
c = [(∅,Bc)) ∪ ((B, U)].

Since every element in R∗
c can be written as the join of elements from JRef

and [(∅,Bc)), ((B, U)] are sublattices of R∗
c . It is enough to show that

JRef ⊆ [(∅,Bc)) ∪ ((B, U)]. Always (∅, {x}▲) ∈ ((B, U)], for every x ∈ U
such that |R(x)| ≥ 2. Let x ∈ U .

Case (i) If x ∈ B, then ({x}△▼, {x}△▲) = ({x}, {x}▲) ∈ ((B, U)].
Case (ii) If x ∈ Bc, then by assumption, Bc ⊆ {x}△▲. This implies

({x}△▼, {x}△▲) ∈ [(∅,Bc)). Therefore JRef ⊆ [(∅,Bc)) ∪ ((B, U)].
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(iii)⇒ (i) Next, assume R∗
c = [(∅,Bc)) ∪ ((B, U)] and let x ∈ Bc.

To show that, R(x) ∩ R(y) ̸= ∅, ∀y ∈ Bc. We have ({x}△▼, {x}△▲) ∈ R∗
c .

If ({x}△▼, {x}△▲) ∈ ((B, U)], then x ∈ {x}△▼ ⊆ B ⇒ x ∈ B, which is a
contradiction to x ∈ Bc. So by assumption, ({x}△▼, {x}△▲) ∈ [(∅,Bc))

⇒ Bc ⊆ {x}△▲
⇒ y ∈ {x}△▲, ∀y ∈ Bc

⇒ R(y) ∩ {x}△ ̸= ∅, ∀y ∈ Bc

⇒ R(y) ∩R(x) ̸= ∅, ∀y ∈ Bc.

Hence Proved. □

Let the condition on R in the above proposition be defined as follows.

Definition 4.10. A reflexive relation R on U is said to be ∗-connected if for
every x, y ∈ Bc, R(x) ∩R(y) ̸= ∅.

Remark 4.11. Suppose R is not ∗-connected, then for some x ∈ Bc, ∃y ∈ Bc

such that R(x) ∩R(y) = ∅ and ({x}△▼, {x}△▲) ∈ R∗
c . But

({x}△▼, {x}△▲) ̸∈ [(∅,Bc)) ∪ ((B, U)]
by Proposition 4.9. In the same way, it can be said that

({y}△▼, {y}△▲) ̸∈ [(∅,Bc)) ∪ ((B, U)]
and ({y}△▼, {y}△▲) ∈ R∗

c . For instance, in Example 4.8 one can notice that
the elements (a, acd) and (b, bcd) of R∗

c do not belong to both ((B, U)] and
[(∅,Bc)) in R∗

c .

Theorem 4.12. If R is ∗-connected, then (P,≤P ) is order isomorphic to
(R∗

c ,≤).

Proof. It is shown in Proposition 4.7, that (P,≤P ) is order embedded in
(R∗

c ,≤). Therefore it is enough to show that the mapping h defined in
Proposition 4.7 is onto. Let (X,Y ) ∈ R∗

c . Then (X,Y ) will be in [(∅,Bc))
or in ((B, U)], by Proposition 4.9. Suppose (X,Y ) ∈ [(∅,Bc)). This implies
Bc ⊆ Y ⇒ X ∪ Bc = Y , by Lemma 3.2(i). Then for X ∈ ℘(U)▼ in P,
h(X) = (X,X ∪ Bc) = (X,Y ). Suppose (X,Y ) ∈ ((B, U)]. This implies
X ⊆ B ⇒ X = Y ∩ B, by Lemma 3.2(ii). So ∃Y ∈ ℘(U)▲ in P such that
h(Y ) = (Y ∩ B, Y ) = (X,Y ). Therefore h is onto and so h is an order
isomorphism. Hence (P,≤P ) is order isomorphic to (R∗

c ,≤). □

Theorem 4.13. Let R be any reflexive relation on a finite set U . R∗
c pastes

((B, U)] and [(∅,Bc)) together over [(∅,Bc), (B, U)] iff, R is ∗-connected.
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Proof. Assume R is ∗-connected. Then by Proposition 4.9, we have
R∗

c = ((B, U)] ∪ [(∅,Bc)) and let S′ = [(∅,Bc), (B, U)]. Let (A,B) ∈ ((B, U)]
and (C,D) ∈ [(∅,Bc)) such that (A,B) ≤ (C,D). Then A ⊆ B, Bc ⊆ D and
A ⊆ C, B ⊆ D. Let
I = (A,B ∪ Bc)

∧
(C ∩ B, D) = ((A ∩ C) ∩ B, (B ∪ Bc) ∩D) = (A,B ∪ Bc)

(where
∧

is the meet operation in R∗
c). Then obviously, I ∈ S′, (A,B) ≤ I in

((B, U)] and I ≤ (C,D) in [(∅,Bc)). Therefore for (A,B) ≤ (C,D), ∃I ∈ S′

such that (A,B) ≤ I ≤ (C,D) in R∗
c . Let (X,Y ) ∈ S′. This implies X ⊆ B

and Bc ⊆ Y . Let (A,B) ∈ R∗
c such that (A,B) is a cover of (X,Y ). That

is, (X,Y ) ≺ (A,B). Then Bc ⊆ Y ⊆ B which implies (A,B) ∈ [(∅,Bc)).
Similarly, all the covers of (X,Y ) are in [(∅,Bc)). Therefore from Theorem
4.5, we can conclude that R∗ is a pasting of ((B, U)] and [(∅,Bc)) together
over S′.

Conversely, assume R∗
c is a pasting of ((B, U)] and [(∅,Bc)) together over

S′. Then R∗
c = ((B, U)] ∪ [(∅,Bc)) which implies by Proposition 4.9, R is ∗-

connected. Hence proved. □
The following corollary can be proposed, as it is shown in Proposition 3.3

that ((B, U)] ∼= ℘(U)▲, [(∅,Bc)) ∼= ℘(U)▼ and S′ ∼= 2B ∼= S in Lemma 3.4.

Corollary 4.14. Let R be any reflexive relation on a finite set U . Then
(R∗

c ,≤) pastes the lattices (℘(U)▲,⊆) and (℘(U)▼,⊆) together over S iff, R
is ∗-connected.

Proposition 4.15. Let R be any reflexive relation on the set U . Then the
following are equivalent

(i) R(x) ⊆ R(y) or R(y) ⊆ R(x), for all x, y ∈ U
(ii) (℘(U)▼,⊆) and (℘(U)▲,⊆) are linearly ordered (Chain).
(iii) (R∗

c ,≤) is linearly ordered (Chain).

Proof. (i)⇒ (ii) Assume R(x) ⊆ R(y) or R(y) ⊆ R(x), for all x, y ∈ U holds.
Then this implies

{x}△ ⊆ {y}△ or {y}△ ⊆ {x}△, ∀x, y ∈ U
⇒ {x}△▼ ⊆ {y}△▼ or {y}△▼ ⊆ {x}△▼, ∀x, y ∈ U

All the elements in ℘(U)▼ are comparable, since every element in ℘(U)▼ is
the union of {x}△▼. So (℘(U)▼,⊆) is linearly ordered. Then by duality
(℘(U)▲,⊆) is also linearly ordered.

(ii)⇒(iii) Assume (ii) holds. Suppose (R∗
c ,≤) is not linearly ordered, then

∃(X,Y ) and (V,W ) in R∗
c such that (X,Y ) ̸≤ (V,W ) and also
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(V,W ) ̸≤ (X,Y ). This results in X ̸≤ V and V ̸≤ X or Y ̸≤ W and
W ̸≤ Y which is a contradiction to the assumption that (℘(U)▼,⊆) and
(℘(U)▲,⊆) are linearly ordered. Therefore (R∗

c ,≤) is linearly ordered.
(iii)⇒ (i) Assume (iii) holds. Then all the elements in R∗

c are comparable.
So, for any x, y ∈ U , ({x}△▼, {x}△▲) and ({y}△▼, {y}△▲) are comparable. This
implies ({x}△▼, {x}△▲) ≤ ({y}△▼, {y}△▲) or ({y}△▼, {y}△▲) ≤ ({x}△▼, {x}△▲)

⇒ {x}△▼ ⊆ {y}△▼, {x}△▲ ⊆ {y}△▲ or{y}△▼ ⊆ {x}△▼, {y}△▲ ⊆ {x}△▲
⇒ {x}△▼ ⊆ {y}△▼ or {y}△▼ ⊆ {x}△▼
⇒ {x}△▼△ ⊆ {y}△▼△ or {y}△▼△ ⊆ {x}△▼△
⇒ {x}△ ⊆ {y}△ or {y}△ ⊆ {x}△
⇒ R(x) ⊆ R(y) orR(y) ⊆ R(x),

Hence proved. □
Let the condition on R in the above proposition be defined as follows.

Definition 4.16. A reflexive relation R on U is said to be L∗- connected, if
for every x, y ∈ U , R(x) ⊆ R(y) or R(y) ⊆ R(x).

Proposition 4.17. If R is ∗-connected on a finite set U , then
|R∗

c| = 2|℘(U)▼| − 2|B|.

Proof. Assume R is ∗-connected. Since ℘(U)▼ and ℘(U)▲ are dually isomor-
phic, |℘(U)▼| = |℘(U)▲| and |S| = 2|B|. By Corollary 4.14, we can write
|R∗

c| = |℘(U)▲|+ |℘(U)▼| − |S| = 2|℘(U)▼| − 2|B|. □
Corollary 4.18. If R is ∗-connected on a finite set U and B = ∅, then
|R∗

c| = 2|℘(U)▼| − 1.

Corollary 4.19. If R is L∗-connected on a finite set U such that B ̸= ∅∅,
then |R∗

c| = 2|℘(U)▼| − 2.

5. Conclusion
Studying the algebraic structure of (R∗

c ,≤) in the more generalised case of
reflexive relation is helpful to identify the base structure of rough sets system
for any relation. This work is useful for further study on rough sets in two
approaches.

(i) It is well known that rough sets have mixed logic behavior. If the
pattern of embedding of substructures of (R∗,≤) in its Dedekind-MacNeille
completion is identified, then it can be used to study the local logical behavior
of the rough sets system based on various reflexive based relations. In this
study, we have shown the pasting of rough approximation lattices defined by
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a reflexive relation over the common Boolean sublattice is order embedded
in its Dedekind-MacNeille completion of the rough sets system. So, the local
logical behaviour of R∗

c can be analyzed, as the rough sets in the portion S
of R∗

c follow classical logic and rough sets above the portion S, and below
S in (R∗

c ,≤) follow the logic corresponding to the algebraic structures of
(℘(U)▼,⊆) and (℘(U)▲,⊆) respectively.

(ii) The main task in studying the algebraic structure of (R∗
c ,≤) defined

by any reflexive relation is to collect all the approximation pairs (A▼, A▲) for
A ⊆ U and draw the Hasse diagram of it with the ordering ≤. If there is
any simple procedure to draw the Hasse diagram of (R∗

c ,≤), then studying
the algebraic structure of it will be easy. Here, we characterized the reflexive
relation R, for which (R∗

c ,≤) defined by R is obtained by simply pasting
its rough approximation lattices over a common Boolean sublattice. By this
method, for such reflexive relations R, we can draw the Hasse diagram of
(R∗

c ,≤) defined by R from its rough approximation lattices itself.
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DEDEKIND-MACNEILLE COMPLETION OF THE ROUGH SETS SYSTEM

AS PASTING OF ROUGH APPROXIMATION LATTICES

D. UMADEVI

ناهموار تقریب  مشبکه های اتصال عنوان به ناهموار مجموعه های سیستم ددکیند-مک نیل مکمل

اومادوی دی.

هند کارناتاکا، بنگالورو، ،HKBK مهندسی کالج مهندسی، ریاضیات گروه

تعریف بازتابی رابطه یک توسط که ناهموار تقریب  مشبکه های جانشانی الگوی مقاله، این در
است. گرفته قرار بررسی مورد آن ها ناهموار مجموعه های  سیستم ددکیند-مک نیل مکمل در شده اند،
،R توسط شده تعریف ناهموار مجموعه های سیستم ددکیند-مک نیل مکمل آن برای که R بازتابی رابطه
نیل ددکیند-مک مکمل خواص از برخی می شود. مشخص است، آن ناهموار تقریب مشبکه های اتصال

می گیرند. قرار بحث مورد نیز R بازتابی رابطه یک توسط شده تعریف ناهموار مجموعه های سیستم

مشبکه ها. اتصال اجتماع-چگال، ناهموار، تقریب های ناهموار، مجموعه های سیستم کلیدی: کلمات
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