A NEW CLASS OF SMALL SUBMODULES | ||
Journal of Algebraic Systems | ||
دوره 13، شماره 3، بهمن 2025، صفحه 157-174 اصل مقاله (176.68 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22044/jas.2024.13836.1777 | ||
نویسندگان | ||
Farkhondeh Farzalipour* 1؛ Saeed Rajaee2؛ Marzieh Poyan3 | ||
1Department of Mathematics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran. | ||
2Department of Mathematics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran. | ||
3Department of Mathematics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran | ||
چکیده | ||
Let $R$ be a commutative ring with identity $1\neq 0$ and $M$ a nonzero unital $R$-module. In this paper, we introduce a new notion of submodules in $M$, namely $T$-semi-annihilator small submodules of $M$ with respect to an arbitrary submodule $T$ of $M$. A submodule $N$ of $M$ is $T$-semi-annihilator small in $M$ provide that for each submodule $X$ of $M$ with $T\subseteq N+X$ implies that ${\rm Ann}(X)\ll (T:M)$. In addition, we investigate some results concerning to this new class of submodules. Among various results, we prove that for a faithful finitely generated multiplication module $M$, the submodule $N$ of $M$ is a $T$-semi-annihilator small submodule of $M$ if and only if $(N:M)$ is a $(T:M)$-semi-annihilator small ideal of $R$. Finally, we explore the properties and the behaviour of this structure under ring homomorphism, localization, direct sums and tensor product of them with a faithfully flat $R$-module. | ||
کلیدواژهها | ||
Small submodule؛ Semi-annihilator small submodule؛ Multiplication module | ||
مراجع | ||
1. H. K. Al-Hurmuzy and B. H. Al-Bahrany, R-Annihilator-small submodules, Iraqi J. Sci., (2016), 129–133.
2. T. Amouzegar-Kalati and D. Keskin-Tütüncü, Annihilator-small submodules, Bull. Iranian Math. Soc., 39(6) (2013), 1053–1063.
3. F. W. Anderson and K. R. Fuller, Rings and categories of modules, Springer-Verlag Berlin
Heidelberg New York, 1992.
4. H. Ansari-Toroghy and F. Farshadifar, Strong comultiplication modules, CMU. J. Nat. Sci., 8(1) (2009), 105–113.
5. A. Barnard, Multiplication modules, J. Algebra, 71 (1981), 74–178.
6. R. Beyranvand and F. Moradi, Small submodules with respect to an arbitrary submodule, J. Algebra Relat. Topics, 3(2) (2015), 43–51.
7. Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra, 16 (1988), 755– 779.
8. F. Farzalipour, S. Rajaee and P. Ghiasvand, Some properties of S-semiannihilator small submodules and S-small submodules with respect to submodule, J. Math., (2024), Article ID: 5547197.
9. R. W. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
10. L. H. Helal and S. M. Yaseen, On semiannihilator supplement submodules, Iraqi J. Sci., (2020), 16–20.
11. C. P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Pauli., 33(1) (1984), 61–69.
12. R. L. McCasland and M. E. Moore, On radicals of submodules of finitely generated modules, Canad. Math. Bull., 29(1) (1986), 37–39.
13. A. Nikseresht and H. Sharif, On comultiplication and r-multiplication modules, J. Algebr. Syst., 2 (2014), 1–19.
14. S. Rajaee, S-small and S-essential submodules, J. Algebra Relat. Topics, 10(1) (2022), 1–10.
15. A. Tuganbaev, Rings Close to Regular, Kluwer Academic, 2002.
16. Y. Wang and Y. Liu, A note on comultiplication modules, Algebra Colloq., 21(1) (2014), 147–150. | ||
آمار تعداد مشاهده مقاله: 637 تعداد دریافت فایل اصل مقاله: 180 |