Integration of Airborne Geophysics Data with Fuzzy c-means Unsupervised Machine Learning Method to Predict Geological Map, Shahr-e-Babak Study Area, Southern Iran | ||
Journal of Mining and Environment | ||
مقاله 16، دوره 16، شماره 1، فروردین 2025، صفحه 273-289 اصل مقاله (5.14 M) | ||
نوع مقاله: Case Study | ||
شناسه دیجیتال (DOI): 10.22044/jme.2024.14173.2636 | ||
نویسندگان | ||
Moslem Jahantigh؛ Hamid Reza Ramazi* | ||
Department of Mining Engineering, Faculty of Mine, AmirKabir University, Tehran, Iran | ||
چکیده | ||
Fuzzy c-means (FCM) is an unsupervised machine learning algorithm. This method assists in integrating airborne geophysics data and extracting automatic geological map. This paper tries to combine airborne geophysics data consisting of aeromagnetic, potassium, and thorium layers to classify the lithological map of the Shahr-e-Babak area, a world-class porphyry area in the south of Iran. The resulting clusters with FCM show appropriate coincidence with the geological map of the study area. The clusters are adapted with high magnetic anomalies corresponding to the mafic volcanic rocks and the clusters with high radiometric signature associated with igneous rocks. The cluster is associated with low magnetic anomaly and low radioelements concentration representing sedimentary rocks. some clusters are associated with two or more lithological formations due to similar signatures of geophysics properties. The fuzzy score membership in all clusters is above 0.71 indicating a high correlation between geological signatures and multigeophysical data. This study shows geophysical signatures analyzed with the machine learning method can reveal geological units. | ||
کلیدواژهها | ||
machine learning؛ FCM؛ Shahr-e-Babak؛ airborne geophysics؛ geology map | ||
مراجع | ||
[1]. Abedi, M., Mohammadi, R., Norouzi, G.-H., & Mohammadi, M. S. M. (2016). A comprehensive VIKOR method for integration of various exploratory data in mineral potential mapping. Arabian Journal of Geosciences, 9(6): 482.
[2]. Montsion, R. M., Saumur, B. M., Acosta-Gongora, P., Gadd, M. G., Tschirhart, P., & Tschirhart, V. (2019). Knowledge-driven mineral prospectivity modelling in areas with glacial overburden: porphyry Cu exploration in Quesnellia, British Columbia, Canada. Applied Earth Science, 128(4): 181–196.
[3]. Bahri, E., Alimoradi, A., Yousefi, M. (2021). Mineral Potential Modeling of Porphyry Copper Deposits using Continuously-Weighted Spatial Evidence Layers and union Score Integration Method, Journal of Mining and Environment, 12 (3), 743-751.Davies, D. L., & Bouldin, D. W. (1979). A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2): 224–227.
[4]. Bahri, E., Alimoradi, A., Yousefi, M. (2023). Investigating the performance of continuous weighting functions in the integration of exploration data for mineral potential modeling using artificial neural networks, geometric average and fuzzy gamma operators, International Journal of Mining and Geo-Engineering, doi: 10.22059/IJMGE.2023.361593.595080.
[5]. Yuan, F., Li, X., Zhang, M., Jowitt, S. M., Jia, C., Zheng, T., & Zhou, T. (2014). Three-dimensional weights of evidence-based prospectivity modeling: A case study of the Baixiangshan mining area, Ningwu Basin, Middle and Lower Yangtze Metallogenic Belt, China. Journal of Geochemical Exploration.
[6]. Farhadi, S., Afzal, P., Boveiri Konari, M., Daneshvar Saein, L., Sadeghi, B. (2022) Combination of Machine Learning Algorithms with Concentration-Area Fractal Method for Soil Geochemical Anomaly Detection in Sediment-Hosted Irankuh Pb-Zn Deposit, Central Iran. Minerals, 12, 689.
[7]. Kumar, S., Arasada, R. C., & Rao, G. S. (2023a). Multi-Scale Potential Field Data Integration Using Fuzzy c-Means Clustering for Automated Geological Mapping of North Singhbhum Mobile Belt, Eastern Indian Craton. Minerals, 13(8): 1014.
[8]. Wang, Y., Ksienzyk, A. K., Liu, M., & Brönner, M. (2021). Multigeophysical data integration using cluster analysis: Assisting geological mapping in Trøndelag, Mid-Norway. Geophysical Journal International.
[9]. Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20: 53–65.
[10]. Paasche, H., & Eberle, D. G. (2009). Rapid integration of large airborne geophysical data suites using a fuzzy partitioning cluster algorithm: a tool for geological mapping and mineral exploration targeting. Exploration Geophysics, 40(3): 277–287.
[11]. Sun, J., & Li, Y. (2011). Geophysical inversion using petrophysical constraints with application to lithology differentiation. SEG Technical Program Expanded Abstracts.
[12]. Afzal, P., Farhadi, S., Shamseddin Meigooni, M., Boveiri Konari,M, Daneshvar Saein, L., 2022. Geochemical Anomaly Detection in the Irankuh District Using Hybrid Machine Learning Technique and Fractal Modeling. Geopersia, 12(1): 191-199 doi: 10.22059/GEOPE.2022.336072.648644.
[13]. Safari, M., Maghsoudi, A., & Pour, A. B. (2018). Application of Landsat-8 and ASTER satellite remote sensing data for porphyry copper exploration: a case study from Shahr-e-Babak, Kerman, south of Iran. Geocarto International, 33(11): 1186–1201.
[14]. Tangestani, M. H., & Moore, F. (2001). Porphyry copper potential mapping using the weights-of- evidence model in a GIS, northern Shahr-e-Babak, Iran. Australian Journal of Earth Sciences, 48(5): 695–701.
[15]. Hashemi, S. E., Gholian-Jouybari, F., & Hajiaghaei-Keshteli, M. (2023). A fuzzy c-means algorithm for optimizing data clustering. Expert Systems with Applications.
[16]. Kumar, V., Kedam, N., Sharma, K. V., Mehta, D. J., & Caloiero, T. (2023b). Advanced Machine Learning Techniques to Improve Hydrological Prediction: A Comparative Analysis of Streamflow Prediction Models. Water (Switzerland).
[17]. Calinski, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics - Theory and Methods, 3(1): 1–27.
[18]. Thorndike, R. L. (1953). Who belongs in the family? Psychometrika, 18(4): 267–276.
[19]. Davies, L., Bouldin, W. (1979). A Cluster Separation Measure". IEEE Transactions on Pattern Analysis and Machine Intelligence. PAMI-1 (2): 224–227.
[20]. Duan, X., Ma, Y., Huang, H., & Wang, B. (2022). A Novel Cluster Validity Index Based on Augmented Non-Shared Nearest Neighbors. SSRN Electronic Journal.
[21]. Duan, X., Ma, Y., Zhou, Y., Huang, H., & Wang, B. (2023). A novel cluster validity index based on augmented non-shared nearest neighbors. Expert Systems with Applications. | ||
آمار تعداد مشاهده مقاله: 120 تعداد دریافت فایل اصل مقاله: 172 |