استخراج عدد بیبعد جهت تعیین مرز گرمایش آیروترمودینامیکی و تشعشعی دماغههای فناشونده | ||
مکانیک سازه ها و شاره ها | ||
دوره 14، شماره 1، فروردین و اردیبهشت 1403، صفحه 127-138 اصل مقاله (1.64 M) | ||
نوع مقاله: مقاله مستقل | ||
شناسه دیجیتال (DOI): 10.22044/jsfm.2024.13655.3797 | ||
نویسندگان | ||
سعدالله رستمی1؛ جاماسب پیرکندی* 2؛ مهرداد ملک زاده دیرین3 | ||
1دانشجوی دکتری مکانیک - تبدیل انرژی، دانشگاه آزاد اسلامی واحد غرب، تهران، ایران | ||
2دانشیار، مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک اشتر، تهران، ایران | ||
3استادیار، گروه مکانیک، دانشگاه آزاد اسلامی واحد غرب، تهران، ایران | ||
چکیده | ||
کاملترین روش جهت محاسبه گرمایش آیروترمودینامیکی و تشعشعی اعمال شده به دیوارهی دماغههای فناشونده ماوراءصوت، حل همزمان معادلات جریان، سنتیک واکنشهای شیمیایی، مدل احتراق در لایهی فنا شونده، مدلهای تشعشعی و آشفتگی جریان است. استفاده از این روش در گذر زمان، حجم بالایی از حافظهی محاسباتی را میطلبد. یکی از ابزارهای مؤثر جهت حل میدان جریان اطراف انواعی از دماغهها با الزامات بیان شده، کد صحه گذاری شدهی محاسبه کانتور دما و گرمایش آیرودینامیکی است. در این کد از ترکیب روشهای لایهی شوک لزج و لایهی مرزی لزج خودمتشابه با فرض شفاف بودن المانهای مخلوط لایهی شوک، استفاده شد. به دلیل بالا بودن زمان حل، کاربران این کد، استفاده از آن را جهت اهداف طراحی اولیه، منطقی نمیدانند. بنابراین، هدف از این تحقیق، تدوین عدد بیبعد با استفاده از نتایج کد مذکور و روش باکینگهام جهت تعیین مرز بین گرمایش آیروترمودینامیکی و تشعشعی به منظور کاهش زمان حل مربوط به این کد است، به گونه ای که اگر عدد بی بعد کمتر از یک باشد میتوان از گرمایش تشعشعی در مقابل گرمایش آیروترمودینامیکی صرفنظر کرد و زیربرنامهی مربوط به گرمایش تشعشعی را غیر فعال نمود. اگر عدد بی بعد بیشتر از دو باشد میتوان از گرمایش آیروترمودینامیکی در مقابل گرمایش تشعشعی صرفنظر نموده و زیربرنامهی مربوط به گرمایش آیروترمودینامیکی را غیر فعال نمود. با لحاظ نمودن این تغییرات بر روی کد زمان حل آن برای یک دماغهی با مسیر و پوشش پروازی نوعی به میزان 15 درصد کاهش می یابد. | ||
کلیدواژهها | ||
عدد بیبعد؛ کد محاسبه کانتور دمای و گرمایش آیرودینامیکی؛ گرمایشآیروترمودینامیکی؛ گرمایشتشعشعی؛ پوششپروازی | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] J. Anderson (1989) Hypersonic and High Temperature Gas Dynamics, Second Edittion, pp. 25-346, New York: ISBN:978-964-2751-04-4.
[2] M. M. Doustar, M. Mardani, F. Ghadak (2017) Aero-heating Modelling on the Ablative Noses during Flight Trajectory, Aircraft Engineering and Aerospace Tech. J., Vol. 8, No. 3, pp.52-70.
[3] A. Kumar (1980) Laminar and Turbulent Flow Solutions with Radiation and Ablation Injection for Jovian Entry, AIAA J., Vol. 12, No. 3, pp.30-41.
[4] K. Sutton (1985) Air Radiation Revisited, in Thermal Design of Aeroassisted Orbital Transfer Vehicles, AIAA Progress in Astronautics and Aernautics Series, Vol. 96, pp. 419-441.
[5] R. J. Gollan (2011) Numerical Modeling of Radiating Supraorbital Flows, The University of Queensland Brisbane 4072, Australia.
[6] D. F. Potter (2011) Modeling of radiating shock layers for atmospheric entry at Earth and Mars, Scientaa AC Abore, Vol. 34, pp. 320-341.
[7] S. Benjamin, H. Roy, H.S. Paul, T. Baumanb,and T. A. Oliver (2014) Modeling hypersonic entry with the fully-implicit Navier–Stokes (FIN-S) stabilized finite element flow solver Computers & Fluids, pp. 281–292.
[8] M. M. Doustar, M. Mardani, F. Ghadak (2016) Simulation of temperature distribution for hypersonic ablative noses during flight trajectory by space marching method, Modares Mechanical Engineering, Vol. 16, No. 12, pp. 163-174 (in Persian).
[9] M. M. Doustar, M. Mardani, F. Ghadak (2019) Investigation of the catalytic wall effect on the aerothermodynamics heating of ablative noses by space marching method, Fluid mechanic and aerodynamic J. Imam hossien Univ., Vol. 4, No. 2, pp. 40-50 (in Persian).
[10] M. M. Doustar, M. Mardani, F. Ghada (2017) Numerical simulation of radiance effects on the aerodynamic heating of ablative nose with VSL-VBLS method, Struct. Fluid J. Shahrod Univ., Vol. 5, No. 3, pp. 10-27 (in Persian).
[11] Y, Tao., Z, Wuli., Q, Han (2019) Theory of Aerodynamic heating from molecular collision analysis, J. Phys. Let. A, Vol. 384, No. 4.
[12] J, Zhang., J, Guangchen (2020) Recent advances in the application of advanced algorithms in computational dynamics technology, Int. J. a Aerospace Eng., Vol. 32, No. 5.
[13] L, Qi., L, Junhong., Z, Jingyun (2021)Thermal Environment and Aeroheating Mechanism of Protuberances of Mars Entry Capsule, J. Space Sci. Tech., Vol. 28, No. 12.
[14] R, Renane.,R, Allouche (2022) Aeroheating optimization of a hypersonic thermochemical non equilibrium around blunt body by application of opposing Jet and Blunt Spike, Hypersonic Vehicles Books.
[15] E.W. Miner, Computer User’s (1975) Guide for a Chemically Reacting Viscous Shock Layer Code, NASA CR-2551, pp.24-32.
[16] G. Irina, C. Brykina, D. Scott (1998) An Approximate Axisymmetric Viscous Shock Layer Aeroheating Method for Three-Dimensional Bodies, AIAA NASA, TM198-207890, pp.14-22.
[17] G.R. Dexygen1.6.1 (2012) Ablation Modeling of Nose Section with UDF Linkage to Fluent Software. J. Thermophys.Heat Trans., Vol. 14, No. 3, pp. 32-41.
[18] J.D. Marvin (1983) Turbulence Modeling for Computational Aerodynamics, AIAA J., Vol. 21, No. 7, pp. 941-955.
[19] Abdolahi Poor, S., Mardani, A., & Seyed ShamsTaleghani, S. A. (2016). Effects of pulsed counter flow jets on aerothermodynamics performance of a Re-Entry capsule at supersonic flow. Aero. Knoldge. Tech. J., 5(1), 55-65.
[20] Abdolahi, S., Etemadi, F., & Ebrahimi, M. (2015). Aerodynamic Heating Prediction of Flying Body Using Fluid-Solid Conjugate Heat Transfer. Space Science and Technology, 8(3). | ||
آمار تعداد مشاهده مقاله: 512 تعداد دریافت فایل اصل مقاله: 576 |