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 This investigation centers on the Qarah Tappeh copper deposit, situated in the 
northern region of West Azerbaijan province, approximately 15 kilometers 
northeast of Maku city. The primary objective of the study is to comprehensively 
examine the study area through the analysis of 253 lithogeochemical samples, and 
assessing reserves utilizing ordinary kriging, guided by subsurface data obtained 
from 14 boreholes totaling 909.2 meters. The concentration–volume (C–V) 
multifractal modeling approach was employed to estimate the deposit's reserve. The 
findings of this research project indicate an estimated 988,604 tons of the deposit 
with an average grade of 0.14%. Through the analysis of log–log plots within the 
C–V relationship, threshold values signifying various copper (Cu) concentrations 
were identified. These plots revealed a pronounced power-law correlation between 
Cu concentrations and their corresponding volumes, with arrows denoting four 
specific threshold values. Utilizing this analytical methodology, mineralized zones 
were classified into five distinct categories: high (>0.42%), above-average (0.35-
0.42%), average (0.27-0.35%), below-average (0.14-0.27%), and low (<0.14%) 
mineralized zones. 
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1. Introduction 

In an inaugural demonstration, [1] delineated 
the emergence of a fractal relationship between the 
accumulation reserve in a field and the average 
grades across its distinct components. [2] 
investigated and unveiled a fractal correlation 
between grades, element concentrations, and the 
geometric characteristics of their geochemical 
distribution. Various fractal methods, such as 
grade-area, power-spectrum-area, grade-distance, 
and grade-number methods [3-10] have been 
employed for geochemical exploration and 
anomaly detection. [11] scrutinized the correlation 
between geological models and grade-volume 
fractals, affirming the accuracy of interpretations 
based on the caliber-volume fractal model. The 
study by [12] centered on characterizing 
mineralized zones employing a grade-volume 
fractal model, specifically assessing the influence 
of simple kriging and simple multi-Gaussian 
estimation techniques on iron reserves. They 

implemented the grade-volume fractal model on 
underground data to evaluate its efficacy. 
Additionally, various researchers [13-18] have 
utilized fractal methods in their studies.  

[19] explored the geothermal potential in 
Ardabil, introducing the 'de-fractal spectral depth' 
method, which utilizes fractal analysis to analyze 
magnetic source depths from aeromagnetic data in 
the Ardebil province, revealing variable depths 
(ranging from 10.4 km to 21.1 km) and fractal 
parameters (ranging from 3.7 to 4.5). [20] delved 
into gold mineralization in Zarshuran, utilizing the 
Concentration-Area (C-A) fractal model to 
correlate gold mineralized stages with geological 
findings. [14] compared methods for geochemical 
anomaly detection, favoring the Spectrum-Area (S-
A) fractal model, which applies fractal analysis to 
geochemical data for improved anomaly 
identification, particularly effective in complex 
geological settings. [21] investigated ore grade 
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estimation and alteration zone delineation 
employing the Wavelet Neural Network (WNN), a 
methodology that integrates wavelet theory and 
Artificial Neural Network (ANN), surpassing 
Ordinary Kriging (OK) in overall accuracy. [22] 
detected iron oxide alteration zones in the Tarom 
region using satellite data and the Spectrum-Area 
(S-A) fractal model, which utilizes fractal analysis 
to delineate alteration zones based on spectral 
characteristics. Lastly, [23] mapped contamination 
around Irankuh Pb–Zn mine utilizing Principal 
Component Analysis (PCA) integrated with 
Concentration-Area (C-A) and Spectrum-Area (S-
A) fractal models, effectively identifying pollution 
anomalies by analyzing the spatial distribution of 
contaminants with fractal-based methods. 

The advent of Micromine software in (1986) 
has significantly revolutionized 3D exploration and 
design of open pit and underground mines, offering 
a comprehensive toolset for detailed project design 
and management. Noteworthy applications of 
Micromine software include  simulation of the 
economic transportation system for the Haji-Abad 
Bukan mine [24], determination of grades and 
optimal production planning for the Qalqele gold 
mine [25], and geological and block modeling 
efforts for the Qarah Qeshlaq marble deposit [26]. 

Kriging, named in honor of D. Craig, a mining 
engineer, has been a cornerstone in geostatistical 
estimation. [27] utilized ordinary kriging for 
estimating reserves in the central part of the 
northern anomaly of Ahan Chagharat, revealing an 
absence of anisotropy in iron storage across 
different directions. [28] employed normal kriging 
and index kriging methods, underscoring that the 
standard errors of index kriging were more 
intricately related to estimation errors than those of 
normal kriging. 

[29] correlated induced polarization, electrical 
resistivity, and copper grade at Abassabad copper 
mine using geophysical profiles and borehole data. 
Geostatistical methods produced two- and three-
dimensional ore distribution models. Employing 
artificial neural network and cokriging methods, 
they predicted copper ore presence, reducing 
borehole requirements by 45% and optimizing 
drilling locations for efficient exploration. 

[30] employed a hybrid methodology 
integrating drilling and IP-Rs data for mineral 
resource estimation. The analysis, utilizing 
statistical and geostatistical techniques, including 
regression, multivariate regression analysis, and 
cokriging, revealed that regression analysis of the 
correlation between IP data and copper (Cu) grade 
produced a more accurate model with minimized 

errors. This underscores the effectiveness of using 
IP data for precise Cu grade estimation in mineral 
resource assessment. 

The exploration of the McArthur lead and zinc 
mine in northern Australia in (2001) by Pearly 
demonstrated the efficacy of the inverse distance 
method and the subsequent normal greeching 
method, with the latter proving more effective. [31] 
employed geostatistics and fractals to estimate the 
reserves of the Gian Buwanat copper deposit. 
Notably, the use of normal creaking methods, 
index creaking simulation, and fractal sequential 
arc simulation revealed the superior performance 
of the fractal method in comparison to the other 
two approaches. 

[32] contributed by presenting a kinetic model 
for leaching in an ammonia environment, 
determining an activation energy of 16 kJ/mol. 
Their comparative analysis of acid and ammonia 
leaching methods for the Qarah Tappeh copper 
oxide ore favored ammonia leaching as the most 
suitable method for dissolving copper from this 
particular ore. 

[33] emphasized the significance of structural 
factors such as faults, fractures, stratigraphic 
control, and reduction conditions in the host rock 
for controlling mineralization. While proposing a 
microdiorite-composite sill intrusion as a potential 
source of copper in the Permian carbonate host 
rock, the study considered alternative scenarios, 
including the possibility of copper transportation 
by saline waters and subsequent deposition under 
favorable conditions. Microscopic and field studies 
suggested parallels with the Kipushi copper-zinc 
deposit in Congo. 

[34] focused on identifying sulfidic mineralized 
zones in the QarahTappeh (The case study of this 
research) Cu deposit in NW Iran using geo-
electrical data and fractal models. Their study 
revealed a high sulfidic mineralized zone in the 
NW area, emphasizing the effectiveness of 
multifractal modeling for optimizing mineral 
exploration operations and proposing grid drilling 
in the detailed exploration stage. 

This research undertook a comprehensive 
evaluation of anisotropic copper deposit reserves, 
employing conventional kriging, fractal analysis, 
classical triangulation, and 3D modeling through 
Micromine software. Significantly, the results 
highlighted the superior performance of fractal 
simulation in accurately simulating the low 
thickness and discontinuities of the Maku Qarah 
Tappeh copper deposit following geological 
features, surpassing the efficacy of other methods. 
This collective body of research underscores the 
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evolving methodologies in mineral exploration, 
offering valuable insights into the intricate 
dynamics of reserve estimation across diverse 
geological settings. 

2. Geological setting 

The surveyed mining region is situated in Maku 
city, within the North of the West Azerbaijan 
province, Iran (the intersection of the Alborz-
Azerbaijan structural earth zone and Urumieh-
Dokhtar Cenozoic magmatic belt). Geological 
mapping at a scale of 1:5000 reveals the presence 
of rock formations belonging to four distinct 
sedimentary sequences, originating from varying 
geological periods. These sequences, arranged 
chronologically from oldest to most recent, 
encompass the Permian, Oligocene, Lower 
Miocene, Upper Miocene, and Quaternary periods 
[35]. The principal lithological constituents of this 
deposit comprise limestone, dolomite, and diabasic 
dykes. Ore minerals encompass chalcocite, 
malachite, azorite, bornite, cuprite, and tenorite. 
The mineralization in the region is notably 
influenced by numerous faults and fractures. 
Additionally, silicification is evident within the 
deposit [34]. 

The Permian rock units comprise a succession 
of carbonate rocks, encompassing limestone, 
dolomitic limestone, marly limestone, and 
dolomite. Moving upwards in the stratigraphic 
sequence, the Oligocene rock units consist of 
nummulitic limestone, calcareous conglomerate, 
sandy limestone, and sandstone, with 
discontinuous and angular occurrences observed 
on the Permian formations. Notably, a destruction 
complex, distinguished by its red coloration due to 
iron oxide abundance, is present on the Oligocene 
rock units, composed of sandstone, siltstone, and 
mudstone. The Upper Miocene period introduces 
rock units discontinuously overlaying older 
formations, primarily observed in the southern 
margins of the study area. Quaternary alluvial 
sediments extensively cover a substantial portion 
of the exposed rock outcrops [35]. 

Within the studied region, sporadic outcrops of 
diabase dykes are discernible, often associated with 
ore-rich areas. Initially dark gray when fresh, these 
dykes undergo alteration, manifesting hues of red, 
yellow, and orange contingent upon the formed 
compounds. Despite their modest dimensions, 

these dykes appear to exert a significant influence 
on mineralization processes. Microscopic 
examination identifies these dykes as 
predominantly of diabase type, characterized by 
coarse crystals of plagioclase and pyroxene, 
occasionally accompanied by olivine. The phytic 
texture is evident in the mineral field, with notable 
alterations, including chlorite, carbonate, and clay 
transformations [35]. 

From a tectonic perspective, the paramount 
structural features in the mapped area are faults, 
instrumental in shaping the morphological 
characteristics, inducing alteration, and influencing 
mineralization patterns. Mineralization 
examination highlights a predominant association 
with reverse faults, frequently delineating the 
boundaries between dolomitic limestone and marl 
limestone. The dolomite limestone horizons, due to 
their permeability and porosity, create a conducive 
environment for mineralization, in contrast to the 
less permeable marl horizons that impede the 
expansive spread of mineral constituents [35]. 
Figure 1 illustrates the detailed geological map, 
featuring prominent fault lines within the study 
area.  

The copper mineralization found in Qarah 
Tappeh Maku represents a relatively rare deposit 
type that is less commonly identified in other 
global locations. While extensive gold 
mineralization in carbonate rocks, such as Carlin 
and pseudo-Carlin type deposits, is quite common, 
copper mineralization in carbonate rocks is less 
frequently encountered. Specifically, the type of 
copper mineralization observed in Qarah Tappeh 
Maku occurs within carbonate horizons and 
manifests as epigenetic and strataband 
mineralizations. This mineralization closely 
resembles manto-type deposits, where the host 
rock is primarily carbonate. It is noteworthy that in 
the manto-type deposits, the host rock typically 
consists of volcanic material, distinguishing it from 
the observed copper mineralization in Qarah 
Tappeh Maku, where the exclusive host rock is 
carbonate in nature. This unique geological 
characteristic sets the copper mineralization in 
Qarah Tappeh Maku apart, contributing to its 
distinctive identity within the spectrum of global 
copper deposits. The visual depiction captures the 
outcrop scene characterized by veined and 
dispersed copper oxide mineralization within the 
mineralized area as depicted in Figure 2. 
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Figure 1. Major tectonic trends in Iran [36], location of study area (Qarah Tappeh copper deposit) in 

northwestern Iran (a), the detailed geological map (1:1000) (b), and prominent fault lines within the study area 
(c) [35]. 
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Figure 2. Vein-veinlet mineralization of copper oxide mineralization in the studied deposit within the mineralized 

area [35]. 

3. Materials and methods 

A comprehensive set of 253 lithogeochemical 
samples was employed for analysis within the 
specified region. The data collection was 
systematically conducted on a grid with 
dimensions of 90*90 meters along east-west 
profiles. Analysis of the collected data was carried 
out utilizing an ICP (Inductively Coupled Plasma) 
device, facilitated by the expertise of the [35]. 

To supplement the lithogeochemical analysis, 
exploratory drilling through coring was 
implemented. A total of 14 boreholes were 
strategically positioned, collectively spanning a 
distance of 909.2 meters. This drilling approach 
aimed to provide a more in-depth understanding of 
the geological features and mineral composition 
within the surveyed area. 

Classical methods for reserve estimation, such 
as the section method, triangle method, and 
polygon method, rely on assumptions of mineral 
material continuity, linear thickness variability, or 
variability based on the radius of equal influence. 
These methods utilize grade and average specific 
weight for each geological unit [37]. Univariate 
statistical methods form the basis of any 
geochemical study with a statistical orientation. 
Following a pre-statistical process, both univariate 
and multivariate methods, including Pearson 
correlation, fractal analysis, and dendrogram, were 
employed. Table (1) provides descriptive statistics 
extracted from IBM SPSS (version 22), and all data 
were normalized by the Cox Box technique, before 
applying statistical methods. The normalization 
process is visually represented through qq plots and 
histograms for the copper element in Figure 3. 

Kriging, a geostatistical estimation method, 
operates on the principle of a weighted moving 

average. It enables the estimation of mineral piece 
grades using sample grades within or outside the 
piece [38]. Micromine software serves as a 
comprehensive and user-friendly tool for 3D 
exploration and design of both open pit and 
underground mines. This software's toolkit allows 
for the detailed modeling and management of all 
aspects of mining projects. Notably, [39] 
demonstrated the effective use of Micromine 
software in creating comprehensive models to 
communicate mining projects efficiently to 
stakeholders. In the subsequent analysis, the 
demarcation of the mineralized zone within the 
study area was executed using the fractal 
concentration-volume (C-V) methodology [40]. 
This model serves as a systematic framework for 
delineating discrete mineralization zones, with the 
primary objective of mapping the spatial 
distribution of major, minor, and trace element 
concentrations within the Iranian copper porphyry 
deposits, notably the Sungun and Chah-Firuzeh 
deposits. The model is defined by the ensuing 
generic expression: 

V(ρ≤υ) ∞ρ-a1; V(ρ≥υ) ∞ρ-a2 
In this context, the symbols V(ρ≤υ) and V(ρ≥υ) 

signify volumes (V) associated with concentration 
values (ρ) that are below and above designated 
contour values (υ). These contour values delineate 
the respective volumes, with a1 and a2 serving as 
exponents in the mathematical representation. 
When examining log–log plots illustrating 
concentration contours against volumes, specific 
concentration contours are identified as threshold 
values. These contours, identified as breakpoints in 
the plots, play a crucial role in segregating 
geochemical populations within the dataset [40]. 
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Table 1. Descriptive statistics of the elements in the study area. 

 Minimum Maximum Mean Std. 
Deviation Variance Skewness Kurtosis 

Ag 0.38 9.97 1.28 1.66 2.77 3.28 13.62 
Al 0.08 7.46 1.00 1.43 2.03 3.06 9.72 
As 16.60 76.86 17.69 8.13 66.03 7.42 55.00 
Be 0.28 0.61 0.30 0.06 0.00 3.53 16.34 
Ca 9.40 24.86 19.32 3.97 15.74 -1.06 0.58 
Cd 0.78 0.78 0.78 0.00 0.00 . . 
Ce 4.04 12.94 4.51 1.74 3.03 3.99 15.65 
Co 3.81 32.96 5.09 4.27 18.22 5.57 34.93 
Cr 3.76 33.48 6.59 6.24 38.96 3.30 11.46 
Cu 14.35 11908.50 2617.14 2870.56 8240101.38 1.43 1.78 
Fe 0.08 3.05 0.28 0.42 0.17 5.76 37.78 
K 0.08 3.85 0.55 0.71 0.51 3.08 10.25 
La 2.82 17.56 3.58 2.74 7.49 4.04 16.61 
Mg 6.63 10.65 8.59 0.63 0.40 0.72 3.76 
Mn 0.00 5918.15 822.30 1025.37 1051377.73 3.34 12.99 
Mo 0.76 20.51 3.32 4.07 16.53 2.88 9.84 
Na 0.20 9.72 1.61 2.04 4.14 2.79 7.35 
Ni 3.75 3.75 3.75 0.00 0.00 . . 
P 0.01 1.77 0.09 0.24 0.06 6.60 46.53 
Pb 3.77 124.22 19.33 21.88 478.78 3.09 11.05 
S 0.05 11.17 0.64 1.49 2.21 6.85 49.18 
Sb 4.33 149.37 27.40 28.70 823.54 2.51 7.36 
Sr 50.30 761.07 150.42 120.33 14480.48 3.43 13.83 
Ti 0.01 0.66 0.02 0.09 0.01 7.20 52.71 
V 3.83 173.26 29.18 22.87 523.24 4.98 30.04 
Y 3.75 18.13 4.53 2.82 7.97 3.98 15.67 
Zn 7.64 54.27 13.28 9.56 91.42 2.49 6.83 
Zr 7.64 293.91 39.52 52.36 2741.89 3.31 12.00 

 

 
Figure 3. The distribution function before normalization (a), and the distribution function after the 

normalization process (b). 
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4. Results and discussion  
4.1. Multivariate techniques  

The examination of multi-element geochemical 
relationships involves the application of diverse 
multivariate statistical methods, including cluster 
analysis (dendrogram), correspondence analysis, 
discriminant analysis, factor analysis, regression 
analysis, principal component analysis, etc. [41]. In 
this statistical approach, the random errors of one 
variable can be partially mitigated by the inclusion 
of other variables. This can prove effective and 
beneficial, particularly in minimizing abnormal 
errors during data analysis and facilitating more 
realistic inferences [38]. 

Initially, the multivariate technique applied is 
factor analysis, wherein the aim is to reduce the 
number of obtained variables while retaining the 
essential information from the main variables. To 
identify a set of elements within a group, elements 
with high factor scores (typically exceeding 0.6) 
should be chosen in each column and categorized 

into a single group [38, 42]. The factor analysis of 
the range provides the following outcomes, taking 
into account Table (2): 
First Factor: K, Mn, Mo, Na, Pb, Sb, Sr, Zr, Al, Be, Ca 

Second Factor: Ce, Co, Cr, La, Ti, Y 

Third Factor: Cu, P 

Fourth Factor: S 

Fifth Factor: Be 

Sixth Factor: Mg 

Seventh Factor: V 

In the context of factor analysis, placing Cu and 
P elements in a paragenesis group indicates a 
significant association or co-occurrence between 
these elements. They tend to exhibit similar 
patterns or behaviors (paragenesis group) within 
the studied geological context. This grouping 
suggests a potential geological or mineralogical 
correlation between Cu and P in the studied area. 

Table 2. The outcomes of the factor analysis method applied to the study area 
Variable (ppm) Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 Factor 9 Factor 10 

Ag 0.31 0.15 0.18 -0.02 -0.04 0.01 -0.01 -0.91 0.07 -0.01 
Al 0.77 0.48 0.21 -0.19 -0.14 0.08 -0.20 -0.09 0.02 -0.02 
As -0.11 -0.01 -0.08 0.05 0.98 0.04 -0.01 0.03 -0.01 0.02 
Be -0.77 0.49 -0.23 0.01 0.10 0.05 -0.11 0.09 0.09 0.15 
Ca 0.86 -0.11 0.31 -0.02 -0.04 -0.10 -0.12 -0.01 -0.10 0.08 
Ce 0.18 0.96 0.09 0.07 0.00 0.03 0.00 -0.06 0.00 -0.07 
Co 0.18 0.89 0.06 -0.13 -0.02 0.16 -0.25 -0.06 0.19 -0.01 
Cr 0.47 0.71 0.04 -0.27 0.01 -0.07 -0.09 -0.19 0.24 -0.12 
Cu 0.37 0.12 0.86 -0.08 -0.05 0.08 -0.15 -0.12 0.06 -0.06 
Fe 0.40 0.59 0.25 -0.10 0.31 0.20 -0.42 0.00 0.22 0.10 
K 0.79 0.47 0.18 -0.22 -0.11 0.08 -0.13 -0.12 0.04 -0.08 
La 0.18 0.97 0.05 0.03 0.00 0.04 -0.03 -0.05 -0.01 -0.05 
Mg 0.04 -0.19 -0.10 0.07 -0.05 -0.96 0.05 0.01 0.06 0.00 
Mn 0.87 0.23 0.25 -0.15 0.00 0.11 -0.21 -0.07 -0.10 -0.04 
Mo 0.69 0.20 0.17 -0.18 -0.03 -0.09 -0.03 -0.25 0.42 -0.16 
Na 0.83 0.37 0.05 -0.23 -0.15 -0.13 -0.05 -0.15 0.04 -0.15 
P 0.35 0.10 0.74 -0.42 -0.06 0.16 -0.10 -0.12 0.08 0.06 

Pb 0.76 0.34 -0.04 -0.02 0.22 0.16 0.08 -0.12 0.35 -0.12 
S 0.36 0.03 0.26 -0.86 -0.06 0.08 -0.04 -0.01 0.02 -0.03 

Sb 0.62 0.13 0.03 -0.04 -0.04 0.01 -0.04 -0.01 0.08 -0.75 
Sr 0.81 0.48 0.09 -0.07 0.06 -0.03 -0.11 -0.14 0.10 -0.15 
Ti 0.12 0.90 0.10 -0.14 -0.02 0.14 -0.24 -0.02 0.15 0.05 
V 0.25 0.48 0.25 -0.05 0.00 0.06 -0.78 -0.01 -0.01 -0.05 
Y 0.18 0.97 0.07 0.04 0.00 0.04 -0.02 -0.06 -0.01 -0.05 
Zn -0.02 0.45 0.52 0.00 -0.05 -0.19 -0.03 -0.12 0.61 -0.06 
Zr 0.79 0.51 0.07 -0.19 -0.09 0.06 -0.08 -0.13 0.07 -0.12 

 
In the cluster analysis method, the objective is 

to establish a criterion for classifying variables or 
samples with maximum intra-group similarity and 
inter-group difference. Using SPSS software, a 

dendrogram was generated for the geochemical 
data of the Qarah Tappeh area (Figure 4). The ward 
method was employed for clustering, and the block 
method was utilized for measuring distances. 
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Figure 4. The dendrogram obtained from the lithogeochemical data of Qarah Tappeh 

The dendrogram diagram reveals that the 
copper element falls within the same group as the 
paragenesis group of the phosphorus element. This 
clustering pattern is consistent with the results 
obtained from the factorial analysis, providing 
additional confirmation of the association between 
Cu and P in the studied geological context. 

4.2. Estimating Reserves with Micromine 
Software 

To facilitate the reserve estimation process 
using Micromine software, essential information is 
gathered, including element analysis results, 
borehole coordinates, borehole slope and length, 
and geological information. This information is 
then organized into Assay files, Collar, Geology, 
and compatible Surveys with Micromine software. 
In the Qarah Tappeh region, 14 exploratory 
boreholes, with a combined length of 909.2 meters, 
have been drilled. Figure 5 illustrates the positions 
of the drilled boreholes. 

4.3. Developing a Volumetric Model for the 
Deposit 

This geometric model, serving as a faithful 
representation of the deposit, is derived based on 
excavation data. The 3D visualization of the 
reserve utilizing this volumetric model proves to be 
highly beneficial in comprehending the geometric 
irregularities and mineral material displacements 

attributed to fault activity or other dynamic 
geological structures [39]. The extracted model of 
the study area is depicted in Figure 6.  

 
Figure 5. The position of the boreholes in the study 

area. 
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Figure 6. The volumetric model of the deposit. 

4.4. Development of a Block Model for Deposit 
Estimation 

Following the creation of the volumetric model 
of the deposit, the next step involves blocking the 
model for estimation purposes. Block dimensions 
are established considering the spacing between 
boreholes and the dimensions of the mining grid. 
Given the absence of an established extraction grid 
for the range in this project and the irregular 
spacing of the boreholes, block dimensions have 
been varied to accommodate the variations in the 
extent of the ranges. The extracted block model is 
depicted in Figure 7. 

 
 
 
 

4.5. Development of a Triangulation (classic) 
Model for Deposit Estimation 

The triangulation method is applied in cases 
where irregular boreholes have identified stratified 
deposits. This approach proves effective when the 
positioning of boreholes intersecting the mineral 
can be represented on a horizontal plane or a plane 
with a gentle slope. In this scenario, the midpoint 
of the mineral's length in each borehole is plotted 
on a map. At these plotted points, details such as 
average vertical thickness and other mineral 
characteristics are recorded. Subsequently, these 
points are interconnected to form triangles (see 
Figure 8, Table 3, 4). The deposit is then 
subdivided into prisms with the triangles as their 
base. The volume of these prisms is calculated, and 
by multiplying this volume by the average specific 
gravity, the ore reserve is determined [43]. 

 
Figure 7. The block model of the deposit 

 
Figure 8. The formation of triangles around 

exploratory boreholes. 
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Table 3. Borehole Characteristics Employed in the Triangulation Method 

Number Drilled  
borehole code 

The average thickness of 
the mineral 

Cu grade 
(%) 

A BHGT43 24 0.1 
B BHGT26 40 0.15 
C BHGT41 26 0.08 
D BHGT38 48 0.04 
E BHGT28 73.5 0.14 
F BHGT45 22 1.97 
G BHGT24 71.8 0.32 
H BHGT36 74 0.13 
I BHGT50 62 0.02 
J BHGT48 80 0.02 
K BHGT30 84.6 0.16 
L BHGT22 92 0.32 
M BHGT34 65.5 0.13 
N BHGT21 74 0.11 

Table 4. The results of reserve calculation by classical method 
P(ton) gm (%) W(ton) V(m3) S(m2) Tringle 
14.3 0.11 12999 4701 173 ABC 
233.3 0.45 51200 18517 448 BFE 
54.4 0.13 41324 14945 355 BCE 
43.4 0.1 43712 15809 355 CED 
154.2 0.47 32813 11867 233 FGE 
118.3 0.2 59671 21581 326 GEH 
59.4 0.11 54079 19558 331 EDH 
27.8 0.07 39846 14411 259 DHI 
108.8 0.2 54409 19678 283 GHK 
192.7 0.26 74136 26812 357 GKL 
278.3 0.53 52522 18991 336 FGL 
168.6 0.21 80303 290475 397 KLM 
56.12 0.11 51019 18453 283 KHJ 
33.9 0.06 56607 20473 314 HIJ 
56.2 0.1 56278 20354 293 KJM 
136.1 0.2 68065 24618 353 LMN 

1390.6 0.293    SUM 
 
4.6. Block Estimation in Kriging: Examining the 
Copper Grade Distribution 

Kriging, a geostatistical estimation technique, 
encompasses point and block estimation. In the 
block estimation mode, the simulation involves 
estimating numerous points and subsequently 
calculating their integral. This method is typically 
employed in the final stages of assessing the 
storage of available information in a deposit, 
allowing for a block-by-block estimation of the 
deposit [39]. The block model illustrating the 
distribution of copper grades is depicted in Figure 
9. Blocks with a light whitish color signify grades 
less than 0.14, those between 0.14 and 0.186, while 
green portions indicate grades ranging from 0.186 
to 0.255. The red spectrum denotes grades from 

0.255 to 0.347, and black signifies grades ranging 
from 0.347 to 0.37, as well as grades higher than 
0.37.  

Utilizing Ordinary Kriging methods on the 3D 
models of the deposit, volumes corresponding to 
various copper (Cu) grades were computed to 
establish a C–V fractal model. Threshold values 
indicative of different Cu concentrations was 
identified in the log–log plots of C–V, revealing a 
power-law relationship between Cu concentrations 
and corresponding volumes. The log–log plots 
feature arrows indicating four specific threshold 
values. Employing this method, mineralized zones 
were classified into five distinct categories: high, 
above-average, average, below-average, and low 
mineralized zones, as visually represented in 
Figure 10.  
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Figure 9. Block model of copper grade dispersion by geostatistical method (ordinary kriging) 

 
Figure 10. The C–V log–log plot for Cu concentration (a), and the separation of mineralized zones based on the 

thresholds extracted from the C–V fractal model by ordinary kriging (b). 
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5. Conclusions 

The study focuses on mining highly variable 
vein deposits in the Qarah Tappeh area. It 
emphasizes the importance of careful estimation of 
total reserves and grade distribution to minimize 
risks. The study utilizes exploratory data from 
Qarah Tappeh's excavations, employing 3D 
modeling with Micromine software and ordinary 
kriging to assess copper reserves. Additionally, the 
C-V fractal method is applied to separate 
mineralized zones and determine grade ranges in 
the deposit. Overall, the aim is to enhance accuracy 
and reduce potential mistakes in mining operations. 

The estimation plans unveiled an anisotropic 
and scattered mineralization process in the region, 
with varying characteristics among different zones. 
Some areas showed thick, high-grade veins, while 
others featured veins with low thickness or grade. 
The results from the normal kriging estimation 
method indicate a volume of 418114.8 m3, tonnage 
of 988604 tons, and a grade of 0.26%.  

Given that the Qarah Tappeh copper mine lacks 
a high copper reserve and grade, the continuation 
of mining and exploitation in this area may not be 
economically viable. Identifying areas prone to 
new mineralization in the region is crucial. 

Threshold values representing different copper 
(Cu) concentrations were identified through 
analysis of the log–log plots of the C–V 
relationship. The plots revealed a discernible 
power-law relationship between Cu concentrations 
and their corresponding volumes. Four specific 
threshold values are indicated by arrows in the log–
log plots. Using this analytical approach, 
mineralized zones were categorized into five 
distinct classes: high (>0.42%), above-average 
(0.35-0.42%), average (0.27-0.35%), below-
average (0.14-0.27%), and low (<0.14%) 
mineralized zones. 
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  چکیده:

تان آذربا يبر رو قیتحق نیا ار مس قره تپه واقع در شـمال اسـ له تقر یغرب جانیکانسـ تان ماکو متمرکز اسـت. هدف    يلومتریک  15 یبیو در فاصـ هرسـ رق شـ مال شـ شـ
  تی هدا  ،یمعمول  نگیجیاز کر هبا اسـتفاد ریذخا یابیو ارز  ،ییایمیتوژئوش ـینمونه ل  253 لیو تحل هیتجز  قیجامع منطقه مورد مطالعه از طر یمطالعه، بررس ـ نیا یاصـل

سـپرده مورد    رهیذخ  نیتخم ي) براC-Vحجم (-غلظت  یچندفراکتال  يسـازمدل کردیمتر اسـت. رو  909.2گمانه به طول    14آمده از  دسـتبه  یرسـطحیز  يهاداده
  ينمودارها  لیو تحل هیتجز  قیدرصـد اسـت. از طر  0.14متوسـط   اریتن کانسـار با ع   988604از برآورد  یحاک  یقاتیپروژه تحق نیا  يها افتهیاسـتفاده قرار گرفت.  

تانه نشـان دهنده غلظت ها  ری، مقادC-Vدر رابطه   سـتمیورود به س ـ غلظت   نیرا ب  یقانون-يقو  یهمبسـتگ کینمودارها    نیشـد. ا ییمختلف مس (مس) شـناسـا  يآسـ
ان م  ییهاها با فلشمس و حجم متناظر آن تفاده از ا  دهند،یکه چهار مقدار آسـتانه خاص را نشـ ان دادند. با اسـ به پنج دسـته  یمعدن يپهنه ها  ،یلیروش تحل نینشـ

ا د زیمتمـ الا (  يطبقـه بنـ ــدنـد: بـ الاتر از م٪0.42>شـ ــط ٪0.42-0.35(  نیانگی ـ)، بـ ــط    ری)، ز٪0.35-0.27()، متوسـ ا) و زون٪ 0.27-0.14(متوسـ دن   يهـ   یکم معـ
)>0.14%.(  

  کانسار مس قره تپه. ن،یکرومیم ،یمعمول نگیجیکر ره،یذخ نیفراکتال، تخم کلمات کلیدي:

 

 

 

 


