- Rossi, D. Barbosa, D. Firmani, A. Matinata.: Knowledge graph embedding for link prediction: A comparative analysis. ACM Transactions on Knowledge Discovery from Data (TKDD), 2021, vol. 15, pp. 1-49.
- Saxena, A. Tripathi, P. Talukdar.: Improving multi-hop question answering over knowledge graphs using knowledge base embeddings. In Proceedings of the 58th annual meeting of the association for computational linguistics, 2020.
- Liu, H. Kou, C. Yan, L. Qi.: Link prediction in paper citation network to construct paper correlation graph. In Wireless Communications and Networking, 2019, vol. 1, pp.1–12.
- Labiod, M. Nadif.: Efficient regularized spectral data embedding. Advances in Data Analysis and Classification, 2021, vol. 15, pp.99-119.
- Jagvaral, W.K. Lee, J.S. Roh, M.S. Kim, et al.: Path-based reasoning approach for knowledge graph completion using CNN-BiLSTM with attention mechanism. Expert Systems with Applications, 2020, vol. 142.
[6] Q. Zhang, R. Wang, J. Yang, L. Xue.: Knowledge graph embedding by translating in time domain space for link prediction. Knowledge-Based Systems, 2021, vol. 212.
- Chen, S. Jia, Y. Xiang.: A review: Knowledge reasoning over knowledge graph. Expert systems with applications, 2020, vol. 141.
- Ji, S. Pan, E. Cambria, P. Marttinen, et al.: A survey on knowledge graphs: Representation, acquisition, and applications. IEEE transactions on neural networks and learning systems, 2021, vol. 33, pp. 494-514.
- Wang, Y. Liu, X. Xu, Q.Z. Sheng.: Enhancing knowledge graph embedding by composite neighbors for link prediction. Computing, 2020, vol. 102, pp. 2587-2606.
- Molaei, D. Mohamadpur.: Distributed Online Pre-Processing Framework for Big Data Sentiment Analytics. Journal of AI and Data Mining, 2022, vol.10, pp.197-205.
- Lakizadeh, E. Moradizadeh.: Text sentiment classification based on separate embedding of aspect and context. Journal of AI and Data Mining, 2022, vol. 10, pp.139-149.
- Popescu, S. Polat-Erdeniz, A. Felfernig, M. Uta, et al: An overview of machine learning techniques in constraint solving. Journal of Intelligent Information Systems, 2022, vol.58, pp.91-118.
- Socher, D. Chen, C.D. Manning, et al.: Reasoning with neural tensor networks for knowledge base completion. Advances in neural information processing systems, 2013.
- Wang, Z. Mao, B. Wang, L. Guo.: Knowledge graph embedding: A survey of approaches and applications. IEEE transactions on knowledge and data engineering, 2017, vol. 29, pp.2724-2743.
- Wang, J. Zhang, J. Feng, Z. Chen, et al.: Knowledge graph embedding by translating on hyperplanes. In Proceedings of the AAAI conference on artificial intelligence, 2014, Vol. 28.
- Bordes, N. Usunier, A. Garcia-Duran, et al.: Translating embeddings for modeling multi-relational data. Advances in neural information processing systems, 2013.
- Nickel, L. Rosasco, T. Poggio.: Holographic embeddings of knowledge graphs. In Proceedings of the AAAI conference on artificial intelligence, 2016, Vol. 30.
- Trouillon, J. Welbl, S. Riedel.: Complex embeddings for simple link prediction. In International conference on machine learning, 2016, pp. 2071-2080.
- Dettmers, P. Minervini, P. Stenetorp.: Convolutional 2d knowledge graph embeddings. In Proceedings of the AAAI conference on artificial intelligence, 2018, Vol. 32.
- Q. Nguyen.: A novel embedding model for knowledge base completion based on convolutional neural network. arXiv preprint arXiv:1712.02121, 2017.
- Chen, X. Feng, L. Jiang, Q. Zhu.: State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network. Energy, 2021, vol. 227.
- Chen, T. Ma, C. Xiao.: Fastgcn: fast learning with graph convolutional networks via importance sampling. arXiv preprint arXiv:1801.10247, 2018.
- Cai, B. Yan, G. Mai, K. Janowicz, R. Zhu.: TransGCN: Coupling transformation assumptions with graph convolutional networks for link prediction. In Proceedings of the 10th international conference on knowledge capture, 2019, pp. 131-138.
- Lin, Z. Liu, M. Sun, Y. Liu, X. Zhu.: Learning entity and relation embeddings for knowledge graph completion. In Proceedings of the AAAI conference on artificial intelligence, 2015, Vol. 29, No. 1.
- Arora.: A survey on graph neural networks for knowledge graph completion. arXiv preprint arXiv:2007.12374, 2020.
- Chen, X. Feng, L. Jiang, Q. Zhu.: State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network. Energy, 2021, vol. 227, p.120451.
- Yu, Y. Yang, R. Zhang, Y Wu.: Knowledge embedding based graph convolutional network. In Proceedings of the web conference 2021, pp. 1619-1628.
- Shang, Y. Tang, J. Huang, J. Bi, X. He.: End-to-end structure-aware convolutional networks for knowledge base completion. In Proceedings of the AAAI conference on artificial intelligence, 2019, Vol. 33, No. 01, pp. 3060-3067.
- Liu, H. Tan, Q. Chen, G. Lin.: Ragat: Relation aware graph attention network for knowledge graph completion. IEEE Access, 2021, vol.9, pp.20840-20849.
- You, J.M. Gomes-Selman, R. Ying, et al.: Identity-aware graph neural networks. In Proceedings of the AAAI conference on artificial intelligence, 2021, Vol. 35, No. 12, pp. 10737-10745.
- Zhu, Z. Zhang, L.P. Xhonneux,: Neural bellman-ford networks: A general graph neural network framework for link prediction. Advances in Neural Information Processing Systems, 2021, vol. 34, pp.29476-29490.
- Yao, C. Mao, Y. Luo.: KG-BERT: BERT for knowledge graph completion. arXiv preprint arXiv:1909.03193, 2019.
- Perez-de-la-Cruz, G. Eslava-Gomez.: Discriminant analysis for discrete variables derived from a tree-structured graphical model. Advances in Data Analysis and Classification, 2019, vol. 13, pp.855-876.
- Jafarinejad,: Benefiting from Structured Resources to Present a Computationally Efficient Word Embedding Method. Journal of AI and Data Mining, 2022, vol.10, pp.505-514.
- L. Tesfaye.: Constrained Dominant sets and Its applications in computer vision. arXiv preprint arXiv:2002.06028, 2020.
- Hartog, H.V. Zanten.: Nonparametric Bayesian label prediction on a graph. Computational Statistics & Data Analysis, 2018, vol. 120, pp.111-131.
- W. Cunningham, J.H. Kwakkel,: Technological frontiers and embeddings: A visualization approach. In Proceedings of PICMET'14 Conference: Portland International Center for Management of Engineering and Technology; Infrastructure and Service Integration, 2014, pp. 2891-2902.
- F. Jerding, J.T. Stasko.: The information mural: A technique for displaying and navigating large information spaces. IEEE Transactions on Visualization and Computer Graphics, 1998, vol. 4, pp.257-271.
- Li, K. Korb, L. Allison.: The complexity of morality: Checking markov blanket consistency with DAGs via morality. arXiv preprint arXiv:1903.01707, 2019.
- Sherstinsky.: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 2020, vol. 404.
- Dey, F.M. Salem: Gate-variants of gated recurrent unit (GRU) neural networks. In IEEE 60th international midwest symposium on circuits and systems, 2017, pp. 1597-1600.
- Schlichtkrull, T.N. Kipf, P. Bloem, et al: Modeling relational data with graph convolutional networkss. In European semantic web conference, 2018.
- Cai, W.Y. Wang.: Kbgan: Adversarial learning for knowledge graph embeddings. arXiv preprint arXiv:1711.04071, 2017.
|