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 In the context of open pit mining operations, long-term production scheduling faces 
significant challenges due to inherent uncertainties, particularly in commodity prices. 
Traditional mathematical models often adopt a single-point estimation strategy for 
commodity price, leading to suboptimal mine plans and missed production targets. The 
simultaneous effect of commodity price uncertainty on the cut-off grade and long-term 
production scheduling is less considered. This paper introduces a novel model for 
optimizing open pit mine long-term production scheduling under commodity price 
uncertainty considering a dynamic cut-off grade strategy, based on a two-stage 
Stochastic Production Programming (SPP) framework. The presented model seeks to 
identify optimal mining block sequences, maximizing total discounted cash flow while 
penalizing deviations from production targets. To illustrate the model's efficiency, it 
was implemented in a copper mine. First, the Geometric Brownian Motion (GBM) 
model is used to quantify the future commodity price. Then, both deterministic and 
SPP models were solved using GAMS software. The results showed that the practical 
NPV obtained from the SPP model is approximately 3% higher than the DPP model, 
while all constraints are satisfied. 
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1. Introduction  

The long-term production planning (LTPP) of 
open-pit mines poses a complex optimization 
problem, aiming to identify an optimum life-of-
mine (LOM) production schedule that maximizes 
the Net Present Value (NPV) while adhering to 
various technical and operational constraints. The 
primary input for LTPP is an economic block 
model, which consists of a collection of mining 
blocks representing the ore body and the 
surrounding rock. Each block is assigned a net 
economic value based on the revenue generated 
from the recoverable metal content and subtracting 
all associated operating costs, including mining, 
processing, refining, and selling costs. In 
conventional approaches, geological, financial, 
and other relevant parameters are often assumed to 
be fixed. However, in reality, these factors are 

subject to uncertainty and may vary throughout the 
mine's life. 

Among the uncertain factors, commodity prices 
play a significant role, in influencing future annual 
schedules [1–3]. Due to their high volatility, 
commodity prices are beyond the control of mine 
operators and investors [4]. Moreover, they 
directly impact income, and their effects cannot be 
mitigated through additional exploration or 
investigation efforts. Additionally, cut-off grades 
are employed as a criterion to differentiate between 
ore and waste throughout the entire orebody. The 
determination of how individual blocks should be 
processed during scheduling is influenced by the 
prevailing commodity prices. Henceforth, a new 
scheduling model based on two-stage stochastic 
programming should be developed to take into 
account commodity price scenarios with dynamic 
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corresponding cut-off grades in the mathematical 
model simultaneously. As a result, the extraction 
sequences of blocks lead to the determination of 
the optimal destination allocation for blocks. The 
LTPP problem in open pit mines can be 
categorized into deterministic and uncertainty-
based approaches [5, 6]. While deterministic 
approaches assume fixed values for input 
parameters, the reality is that these parameters are 
uncertain. This literature review explores various 
mathematical, heuristic, and meta-heuristic 
methods proposed to solve the LTPP problem. 

Deterministic approaches, such as Lagrangian 
relaxation and branch and cut, have been widely 
used by many researchers to obtain exact optimal 
solutions for the LTPP problem [7–11]. However, 
these methods suffer from limitations when applied 
to instances of realistic size. Recognizing the 
complexity of open-pit production scheduling, 
researchers have applied aggregation-
disaggregation and heuristic approaches to address 
the LTPP problem [5, 12–15]. Clustering 
techniques and heuristic algorithms have been 
utilized to reduce problem size and find near-
optimal solutions; nevertheless, optimality cannot 
be guaranteed with these approaches. Meta-
heuristic approaches, including Genetic 
Algorithms (GA), Simulated Annealing (SA), Ant 
Colony Optimization (ACO), Particle Swarm 
Optimization (PSO), Imperialist Competitive 
Algorithm (ICA), and Tabu Search (TS), have 
gained attention in solving the LTPP problem [6, 
16–21]. These algorithms do not guarantee 
optimality but can generate good solutions within a 
reasonable time frame compared to exact 
optimization methods. While deterministic 
approaches dominate commercial optimizers, the 
importance of uncertainty in mine planning 
optimization cannot be ignored. Geological 
uncertainty and commodity price uncertainty 
significantly impact the profitability of mining 
operations.  

Considerable endeavors have been dedicated to 
formulating methodologies that integrate 
geological uncertainty. Among these approaches, a 
prominent one involves minimizing deviations 
from production targets, thereby generating 
schedules that optimize Net Present Value (NPV) 
while minimizing penalties associated with failure 
to meet tonnage, grade, or quality objectives. Two-
stage stochastic programming has also been 
implemented to involve recourse actions when new 
information arrives [22, 23]. For instance, 
Tahernejad et al. (2018) explores the impact of 
grade uncertainty on the technical and financial 

aspects of mine planning by comparing Sequential 
Gaussian Simulation (SGS) and Ordinary Kriging 
(OK) methods [24]. Armstrong et al. (2021) 
proposed an adaptive stochastic optimization 
approach for multi-period production scheduling 
under geological uncertainty in open-pit mines 
which updates the geological model each period as 
new information becomes available [25]. Jelvez et 
al. (2023) addressed a multistage methodology for 
long-term open-pit mine production planning 
under grade uncertainty. They stated that 
incorporating uncertainty helps reduce the risk of 
losses due to failure to meet production targets as 
compared with the fully deterministic case [23]. 
Most stochastic production scheduling approaches 
pose a significant computational challenge. For this 
reason, an extensive range of algorithms, 
heuristics, and metaheuristics have been developed 
to offer reasonable computation times for the 
problem of long-term production planning [17, 18, 
26]. A complete review of models and algorithms 
that have been performed in the last two decades to 
address the integration of uncertainty in mine 
planning can be found at [27–30] 

Previous research has primarily focused on 
integrating geological uncertainty, while 
commodity price uncertainty remains to be further 
investigated. Existing literature has predominantly 
focused on the application of real options to mine 
project valuations as a means of addressing 
commodity price uncertainty. Numerous scholars 
have explored the integration of commodity price 
uncertainty into long-term mine planning [1, 2, 31–
35]. However, despite these efforts, further 
research is still required in this domain. In recent 
times, several alternative approaches have emerged 
for incorporating commodity price scenarios into 
open-pit mine optimization. These approaches 
encompass reactive valuation, robust stochastic 
optimization, stochastic programming with 
recourse, and multi-criteria decision-making 
models. Each approach presents distinct 
advantages and considerations in addressing the 
challenge of commodity price uncertainty. In the 
subsequent sections, we will provide a brief 
overview of these approaches, highlighting their 
unique characteristics and implications.  

Meagher et al. (2010) employed a parametric 
minimum cut algorithm to integrate geological and 
market uncertainties into open-pit mine planning. 
In this particular approach, the selection of blocks 
as either ore or waste is determined by prioritizing 
those with a higher probability of being ore, rather 
than relying on the average amount of realizations. 
This approach may be too conservative in terms of 
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evaluating a block that has a probability higher 
than 50% of being more valuable than another 
block, but also a greater likelihood of being 
classified as waste material [2]. Kumral (2010) 
developed a robust stochastic optimization (RSO) 
model to address uncertainties in grades and 
commodity prices for long-term mine planning. 
However, this approach provides insensitive 
solutions to different uncertainty realizations and is 
applies only to a small number of realizations [36]. 
Kumral (2011) recommended two approaches 
involving a stochastic programming problem with 
recourse, and a maximin model considering 
uncertainties in financial and geo-metallurgical 
variables. Although the solution obtained from 
stochastic programming with recourse was robust, 
and a maximin problem led to extracting more 
uniform metal quantity in periods to coincide with 
mill requirements, the major limitation is applying 
three price scenarios as low, most likely, and high 
prices. Therefore, a reliability analysis should be 
integrated with the proposed planning method [37]. 
Similarly, Asad and Dimitrakopoulos (2013) 
applied Lagrangian relaxation of production 
capacity constraints to address production-phase 
design and ultimate pit limit under commodity 
price and geological uncertainties. One of the 
advantages of this approach compared to previous 
similar cases, is the consideration of the discounted 
economic value of the blocks in price realizations. 
However, the major weakness of this approach still 
lies in incorporating the average realizations for the 
integration of multiple block models [35]. 
Rahmanpour and Osanloo (2015) obtained an 
optimal solution for long-term mine production 
planning by formulating it as a multi-criteria 
decision-making problem, considering maximum 
upside potential, minimum downside risk, and 
value at risk. The noticeable capability of this 
approach is to determine the optimum extraction 
sequence and destination for each block. However, 
it is limited when applied to larger-scale cases [38]. 
Kumral and Sari (2017) proposed a fuzzy 
possibilistic MIP model for open-pit mine 
production scheduling, considering grade and 
financial uncertainties. Although, the solution 
obtained was robust, considering a triangular 
possibility distribution for all uncertain parameters 
may not always be accurate or appropriate [39]. 
Mokhtarian and Sattarvand (2016) introduced a 
novel approach for integrating commodity price 
uncertainty into long-term mine production 
planning by constructing a series of economic 
block models based on realizations from the 
commodity price distribution function. The 

sampling method that has been used from the 
commodity price cumulative distribution 
function,  Median Latin hypercube sampling 
(MLHS), tends to prioritize sampling points around 
the median, which can introduce a bias towards the 
center of the distribution. indeed, it has not been 
clarified to determine the decision-making process 
for blocks with equal selection probabilities over 
multiple periods in this approach [40]. Bakhtavar 
et al. (2017) presented a chance-constrained 
programming-based model to optimize production 
strategies considering grade, metal price, and 
operational capacities (mining, processing, and 
refinery) in bimetallic deposit open-pit mines. 
According to the unrealistic assumptions 
associated with the use of chance-constrained 
programming, the results of this approach may be 
not reliable [41]. Alipour et al. (2017) and Alipour 
et al. (2020) proposed robust box counterpart and 
ellipsoidal set-based counterpart programming 
approaches, respectively, considering block 
economic value as the objective function 
coefficient and block weights and operational 
capacities (mining and processing) as constraint 
coefficients for open-pit mine production 
scheduling under uncertainty [42, 43]. Kumral and 
Asil Sari (2017) introduced an extraction 
sequencing approach incorporating financial and 
geological uncertainties by combining chance-
constrained programming and Monte Carlo 
simulation [44]. Mokhtarian and Sattarvand (2018) 
suggested a novel stochastic optimization 
procedure for long-term mine production planning 
using the imperialist competitive algorithm (ICA) 
under commodity price conditions [19]. 
Tahernejad et al. (2018) developed an approach 
based on the Information Gap Decision Theory 
(IGDT) to hedge the NPV expectation of mine 
projects against the risk associated with the 
information gap between forecasted and actual 
prices [45]. Rim'el'e et al. (2020) devised an 
algorithm for open-pit mine planning incorporating 
geological and commodity price uncertainties. 
They utilized a combination of a two-stage 
stochastic integer program and a stochastic 
dynamic programming algorithm to determine the 
optimal policy for metal production targets based 
on the evolution of commodity prices [46]. 
Shenavar et al. (2021) developed a procedure to 
evaluate the effects of the grade and price 
uncertainties simultaneously on the stope 
optimization and underground mine evaluation 
[47]. Liu et al. (2023) expanded a dynamic 
optimization method for mine production 
scheduling by incorporating fuzzy mining quantity 
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and fuzzy stripping quantity into the production 
plan, which is determined using economic time 
series prediction of production cost and coal sales 
price, combined with fuzzy structural elements 
[48]. 

According to the literature, the uncertainty in 
final product prices and geological uncertainty 
regarding the grade and tonnage of mining blocks 
are recognized as the most crucial factors 
influencing the profitability of mining operations. 
The previous research on long-term production 
planning in open-pit mines under uncertainty only 
considered price scenarios or a combination of 
price, grade, and tonnage, disregarding that price 
scenarios change the cut-offs in each period. 
Neglecting this relationship would result in 
incorrect discretization of blocks for their optimal 
destinations. Therefore, in this study, the long-term 
production planning problem is formulated 
considering commodity price scenarios and 
dynamic cut-off grades. Other variables such as 
operating costs, grade, tonnage, and geo-
metallurgical variables are assumed to be fixed. 
The subsequent sections present the stochastic 
forecasting model for quantifying commodity price 
uncertainty. Metal price scenarios are then 
generated based on the suggested stochastic 
forecasting model in section 2. A detailed 
description of the proposed novel approach is 
provided in section 3. Section 4 presents an 
application of the new model to a case study, 
exploring practical aspects and related concepts. 
The final section concludes the paper and provides 
recommendations. 

1. Methodology 

The represented methodology utilizes a 
combination of statistical analysis and stochastic 
programming to address metal price uncertainty in 
the context of stochastic mine scheduling. The 
methodology focuses specifically on copper prices 
and employs the Mean-Reverting Process (MRP) 
model to capture the mean-reverting behavior 
observed in copper price data. The MRP model is 
estimated using the Maximum Likelihood 
Estimation (MLE) method, which allows for the 
determination of the model's parameters, including 
the reversion speed and standard deviation. The 
estimated MRP model parameters provide insights 
into the behavior of copper prices and their mean-
reverting characteristics. 

To incorporate metal price uncertainties into the 
stochastic mine scheduling optimization model, a 
two-stage stochastic programming approach is 

utilized. This approach considers both geological 
uncertainty and commodity price uncertainties in 
the decision-making process. In the first stage of 
the stochastic programming model, decisions 
regarding the extraction periods of mining blocks 
are made based on available geological 
information. The objective is to determine an 
extraction schedule that maximizes the expected 
value of the objective function under uncertainty. 
In the second stage, decisions regarding the 
destinations of the blocks are formulated as 
second-stage decision variables. The optimization 
model aims to provide a life-of-mine production 
schedule that is scenario-independent concerning 
geological uncertainty but scenario-dependent to 
commodity price uncertainties and dynamic cut-off 
grades. 

The methodology also includes the generation of 
multiple scenarios for future copper prices based 
on the estimated MRP model. These scenarios 
provide insights into the range of potential copper 
price paths over a specified time horizon. 
Statistical analysis is conducted to assess the 
confidence level of the price changes within these 
scenarios. Overall, this methodology allows for the 
incorporation of metal price uncertainties into the 
stochastic mine scheduling optimization model, 
providing a more robust and adaptive approach to 
decision-making in the mining industry. 

2.1. Metal Price Uncertainty Quantification 

To quantify metal price uncertainty, the Mean-
Reverting Process (MRP) model is utilized, which 
is suitable for reverting variables like copper prices 
[49]. The MRP model is represented by the 
following equation: 

푑푃
푃

=  휅 (휇 − 푙푛푃)푑푡 + 휎푑푧  (1) 

Where P is the price of the metal, P0 is the initial 
price, κ is the reversion speed, μ is the long-term 
equilibrium log price, σ is the standard deviation, 
dz is an increment in a standard Wiener process, 
and dt is an increment of time. 

2.2. Maximum Likelihood Estimation (MLE)  

MLE is a statistical approach used to estimate the 
parameters of a given model by maximizing the 
likelihood function. In the case of the MRP model, 
the likelihood function is constructed based on the 
observed historical data of copper prices. 

The MLE method aims to find the parameter 
values that maximize the probability of observing 
the historical price data given the MRP model 
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assumptions. This estimation process allows us to 
obtain the most likely set of parameter values that 
characterize the mean-reverting behavior of copper 
prices. 

The Yuima package in the R software is 
employed for the estimation of the model's 
coefficients. The Yuima package is a 
comprehensive toolkit in R for simulating and 
analyzing stochastic differential equations (SDEs). 
It provides a wide range of functions and tools 
specifically designed for the estimation and 
analysis of stochastic processes, making it suitable 
for estimating the parameters of the MRP model. 

The parameters of the MRP model, namely κ, μ, 
and σ, are estimated using the Maximum 
Likelihood Estimation (MLE) method. The 
estimated parameters for the MRP model are κ = 
0.12 and σ = 0.281. 

Therefore, the equation of the mean reversion 
process was formulated to estimate copper price 
scenarios as follows: 

푑푃
푃

=  0.12 (8.788 − 푙푛푃)푑푡 + 0.2811푑푧     (2) 

2.3. Normalized Annual Copper Price 

Figure 1 illustrates the normalized annual copper 
price over the period 1960 to 2022 in current US 
Dollars. The nominal copper price data are 
obtained from Indexmundi [50], and inflation is 
adjusted using the US Consumer Price Index (CPI) 
data from the US Bureau of Labor Statistics (2022) 
shown in Figure 2. 

 
Figure 1. The US Consumer Price Index (CPI) [51] 

The normalization process involves indexing the 
prices to December for better comparison and 
analysis. 

 
Figure 2. Normalized copper price from 1960 to 2022 (indexed to December 2022, inflation-adjusted)) 
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According to the estimated parameters, the MRP 
model has been obtained to generate copper price 
scenarios as shown in Equation 1. The equally 
probable multiple scenarios of future copper prices 
are estimated. 

2.4. Copper Price Paths for the Next 7 Years 

Figure 3 shows twenty paths over seven years. 
Each path represents a possible scenario for future 
copper prices. The analysis at the statistical 

confidence level of at least 95% confirms the 
copper price changes between about 8000 and 
11000 US$ per ton during the next seven years. 

By analyzing the market prices of copper and 
estimating the parameters of the MRP model, we 
gain insights into the behavior of copper prices and 
their mean-reverting characteristics. These insights 
are crucial for incorporating metal price 
uncertainties into the stochastic mine scheduling 
optimization model. 

 
Figure 3. Copper price paths for the next 7 years 

2. Mathematical model 

In this section, the mathematical notation and 
formulation of the new two-stage stochastic 
production programming (SPP) are stated as 
follows: 

3.1. Indices and Sets 

i: Block index in direction x, i={1,...,I}. 
j: Block index in direction y, j={1,...,J}. 
k: Block index in direction z, k={1,...,K}. 
t: Time period index, t={1,...,T}. 
s: Scenario index, s={1,...,S}. 
ℾijk: the set of overlaying blocks that must be 
removed before mining block ijk to satisfy the 
slope constraint. 

3.2. Parameters 
I, J, K: the maximum number of blocks in each 
direction of x,y, and z, respectively. 
T: the number of periods over which blocks are 
being scheduled (periods). 

S: the number of scenarios generated to capture the 
price uncertainty. 
d1: the financial discount rate. 
d2: the risk discount rate. 
Pr ts: metal price during period t under scenario s. 
πs: the probability of occurrence of scenario s with 
equally probable occurrence, (∑πs=1). 
T(ijk) : the total weight of block ijk  
g(ijk): the average grade of block ijk. 
Re: the extraction recovery 
RT: the total metal recovery of extracted material 
sent to the mill.  
R'T: the total metal recovery of extracted material 
sent to the leach pad. 
Cw: mining cost per ton of waste. 
Cr: smelting, refining, and freight cost per ton of 
metal produced.  
Ceh: mining cost per ton of ore sent to the mill. 
Cel: mining cost per ton of ore sent to the leach pad. 
Cp: processing cost per ton of ore sent to mill. 
C´p: processing cost per ton of ore sent to the leach 
pad. 
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C´r: cost of SX-EW and cathode freight to the 
market in terms of a/per ton of metal produced. 
TEmax: the maximum weight of waste and ore 
material that can be extracted in each period 
(maximum mining capacity). 
TM min: the minimum weight of ore material that 
must be processed by the mill in each period 
(minimum processing capacity). 
TMmax: the maximum weight of ore material that 
can be processed by the mill during each period 
(maximum processing capacity). 
TLmax: the maximum weight of ore material that can 
be processed by the leach pad during each period 
(maximum leaching capacity). 

gwlts: the cut-off grade for discretization between 
waste and leach ore under the price scenario s.; it can 
be expressed as: 

푔푤푙 =
(퐶 − 퐶 ) + 퐶′
푅 × (푃 − 퐶′ )

 (3) 

glmts: the cut-off grade for discretization between 
leach ore and mill ore under the price scenario s.; it 
can be expressed as: 

푔푙푚 =
(퐶 − 퐶 ) + (퐶 − 퐶′ )

푅 × (푃 − 퐶 ) − 푅 × (푃 − 퐶′ ) (4) 

 

푖푓

푔( ) < 푔푤푙               훾 ( ), = 1, 훼 ( ), = 훽 ( ), = 0
푔푤푙 ≤ 푔( ) < 푔푙푚      훽 ( ), = 1, 훼 ( ), = 훾 ( ), = 0
푔( ) ≥ 푔푙푚               훼 ( ), = 1, 훽 ( ), = 훾 ( ), = 0

 (5) 

 

훾 ( ), +  훼 ( ), + 훽 ( ), = 1 

∀푖, 푗, 푘, 푠 
(6) 

αt
(ijk),s , βt

(ijk),s , and γt
(ijk),s : parameters that determine 

the processing method of each block according to 

their grade and cut-offs during period t under the 
price scenario s. 
NVt

(ijk),s: the net value of block ijk under scenario s; 
that is: 

 

푁푉( ), = 훼 ( ), × 푇푅( ) 푔( ) × 푅 × (푃 − 퐶 ) − 퐶 − (푅 × 퐶 )  

(7) +훽 ( ), × 푇푅( ) 푔( ) × 푅 × (푃 − 퐶 ) − 퐶 − (푅 × 퐶 )  

−훾 ( ), × (푇푅( ) × 퐶 ) 

 
Gmin: the minimum average grade of the ore material 
to be processed by the mill during period t. 
Cl: the undiscounted cost per unit of shortage ore 
material (Mdsht

s) for the mill during period t.  
Cu: the undiscounted cost per unit of surplus 
material (Mdsut

s) for the mill during period t. 
Cu´: the undiscounted cost per unit of surplus 
material (Ldsut

s) for the leach pad during period t. 
Cl´: the undiscounted cost per unit of shortage in 
metal content sent to the mill (gdsht

s) during period 
t. 

3.3. Variables 

The decision variables to formulate the model are 
as follows:  

xt
ijk : the binary decision variable is associated with 

each block ijk for each period t as below: 
 

푥 = 1     if block ijk is mined during period t;
0     otherwise

 (8) 

Mdsut
s: a continuous variable denotes the surplus of 

ore material sent to the processing plant during 
period t if scenario s occurs. 
Mdsht

s: a continuous variable denotes the shortage 
of ore material sent to the processing plant during 
period t if scenario s occurs. 
Ldsut

s: a continuous variable measures the surplus 
of ore material sent to the leach pad during period t 
if scenario s occurs. 
gdsht

s: a continuous variable denotes the deficient 
amount of metal content sent to the processing plant 
during period t if scenario s occurs 

3.4. Objective Function 

The corresponding objective function of the 
problem depicted as follows can be expressed by: 
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푀푎푥
1
푆

1
(1 + 푑 )

푁푉 , × 푥( )

−
1

(1 + 푑 )
[(퐶 × 푀푑푠ℎ ) + (퐶 × 푀푑푠푢 ) + (퐶′ × 퐿푑푠푢 ) + (퐶′ × 푔푑푠ℎ )]  

(9) 

 
The objective function of the model is 

constructed as the maximization of the expected 
NPV of the mine minus the total cost of deviations 
from production targets. The objective function is 
formulated in two parts: part 1 represents the profit 
that can be generated if all the mined ore blocks are 
processed immediately. Part 2 consists of 
economic risk management as presented in 
Ramazan and Dimitrakopoulos (2013), and is 
added to minimize the deviations from production 
targets [52]. 

3.5. Constraint formulation 

As mentioned in the previous section, the 
constraints are considered stochastic and non-
stochastic constraints in the present model. 

3.5.1. Scenario independent constraints (first-
stage constraints): 

1. Precedence constraints: These constraints 
ensure that a block can only be extracted during 
some time period t if all of its predecessor blocks 
have been mined completely before or during 
period t as shown in Figure 4. 

푥 ≤ 푥 ∀푖푗푘   o ∈ 훤  푎푛푑 푡 (10) 

 

 
Figure 4: Sequencing rules on the removal of nine 

blocks above a given block, block 10 (right) 

2. Reserve constraint: These constraints let each 
block be mined at most once during the scheduling 
horizon. 

푥 ≤   1         ∀(푖, 푗, 푘) (11) 

3. Mining capacity constraint: The total rock 
tonnage of ore and waste blocks mined per period 
is bounded by these constraints:  

∑ ∑ ∑ 푇푅 × 푥 ≤ 푇퐸        ∀푡    (12) 

3.5.2. Scenario dependent constraints (second-
stage constraints): 

4. Mill capacity constraints: These constraints 
control the maximal and minimal amounts for the 
total ore tonnage sent to the processing plant per 
each period. 

 

훼 ( ), × 푇푅 × 푥 − 푀푑푠푢 ≤ 푇푀           ∀ (푡, 푠) (13) 

훼 ( ), × 푇푅 × 푥 + 푀푑푠ℎ ≥ 푇푀             ∀ (푡, 푠) (14) 

 
5. Leaching capacity constraints: These 

constraints restrict the maximal amounts of ore 
tonnage sent to the leach pad per each period. 
 

훽( ), 푇푅 × 푥 − 퐿푑푠푢 ≤ 푇퐿                       ∀ (푡, 푠) (15) 
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6. Grade blending constraints: these constraints 
ensure that the average grade of the material sent to 
the mill respects a given lower bound. (Stochastic 

constraints related to grade blending are used to 
satisfy the grade requirement at the mill. This 
constraint can be expressed by: 

 

푔 − 퐺 훼( ),  × 푇푅 × 푥 + 푔푑푠ℎ ≥ 0        ∀ (푡, 푠)     (16) 

 
After defining the indices, parameters, variables, 

and objective functions, and calling the data files, 
the production planning problem was modeled in 
GAMS software using both deterministic and 
stochastic approaches. In this study, since the long-
term open-pit production planning problem 
belongs to the category of Mixed Integer 
Programming (MIP), the solver CPLEX involving 
branch-and-cut algorithm (BC) was used on the 
GAMS and 64-bit optimization routines. All 

programs were run on an Intel core i7-8550U (1.8 
GHz) with 16 GB of RAM. 

3. Case study 

The proposed model and solution approaches 
have been implemented in the Miduk copper mine. 
The case study is one of the biggest copper ore 
mine located in Kerman. The general information 
and scheduling parameters have been displayed in 
Table 1. 

Table 1. General information of the deposit and scheduling parameters 
Description values 

Number of blocks 15391 
Horizon (y) 7 

Block dimensions (m) 15×15×15 

Pit Slope Angle 45° 

Total mining capacity (Mt) 40 

Minimum of Processing/mill target capacity (Mt) 13 

Maximum of Processing/mill target capacity (Mt) 14 

Leaching capacity (Mt) 3.5 

Average/Mean grade (%) 0.4 

Copper price scenarios ($/ton) 140 

Financial discount factor (%) 10 

price discount factor (%) 10 

 
The final pit is divided into several pushbacks. 

The mined material is loaded from the mining area 
by shovels and a front-end loader and sent to the 
processing plant, leaching pad, or waste dumps 

depending on the material type. Trucks are used to 
carry material from the pit to processing stream 
flows or dumps. The location of the pits can be seen 
in Figure 5. 



Lotfi et al. Journal of Mining & Environment, Vol. 15, No. 4, 2024 

 

1500 

 
Figure 5. The layout of the Miduk copper mine on the satellite picture (Google Earth- September 2012) 

The first pushback is selected to apply the 
presented model. There are 15391 blocks within 
the first push-back. In the schedules, the total 
mining capacity of the shovel–truck fleet was 40 
million tonnes (Mt), maximum and minimum 
processing plant capacities were 14 Mt and 13 Mt 
of mill ore, and a maximum leaching capacity was 
3.5 Mt of leach ore per annum. The cut-off grades 
and corresponding schedules were produced using 
140 simulated copper price realizations obtained 
from the MRP model described in the previous 
section. To benchmark the proposed two-stage 
stochastic model, two schedules were produced; 
one using the proposed Stochastic Production 
Planning (SPP) and another one referred to as 
Deterministic Production Planning (DPP). In the 
DPP approach, the copper price was assumed to be 
US$8829/tonne and cut-off grades for 
discrimination between mill ore, leach ore, and 
waste, were assumed at 0.2% and 0.15% 
respectively. This part of the deposit would take 

about 7 years to mine considering the capacity 
constraints/operational capacities. 

4. Discussion 
5.1. Numerical results 

As mentioned before, to model the uncertainty of 
data, we applied two-stage stochastic programming 
by using a finite number of scenarios. The relevant 
probabilities of these scenarios are assumed to be 
equal to 1/S. In the current study, we utilized MRP 
to produce commodity price scenarios. Table 2 
summarizes the results of the schedules obtained 
using these two models of DPP and SPP. The term 
practical net present value refers to to the 
intersection of two models, DPP and SPP, which is 
equivalent to the first component of the objective 
function in the SPP model without considering 
penalty costs. The term theoretical net present 
value represents the sum of the first and second 
components of the objective function in the SPP 
model. 

 
Table 2. Results of implementation of DPP and SPP model for case study 

Description DPP SPP 
Practical NPV (US$) 2,477,700,372 2,553,435,182 
Penalty costs (US$) - -131,173,491 
Theoretical NPV(US$) 2,477,700,372 2,422,261,691 
Gap (%) <2 <2 
Time (h:m:s) 52:08:40 53:40:15 
NO. Scheduled Blocks 14695 15391 
Mill Ore (ton) 97,956,337 114,153,300 
Leach Ore (ton) 7,289,494 5,413,331 
Waste (ton) 20,910,319 11,142,225 
Total (ton) 126,156,150 130,708,856 
Stripping Ratio 0.199 0.105 
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It should be noted that the objective function of 
both models is formulated based on the 
maximization of NPV, which captures the trade-
offs between production targets and associated 
costs. In the SPP model, penalty costs are explicitly 
included, in contrast to DPP models where penalty 
costs are not considered. By excluding the penalty 
costs from the results of the SPP model, the NPV 

in the SPP model will exceed that of the DPP 
model. Therefore, the SPP model provides the 
NPV value equivalent to $2,553,435,182 
representing a higher value and more accurate of 
the real-world system by considering the potential 
risks and associated penalties. Figure 6 and Figure 
7 demonstrate the block sequencing of DPP and 
SPP models. 

 
Figure 6. Block sequencing in the DPP model 

 
Figure 7. Block sequencing in the SPP model 

According to Figure 8, the tonnage of the mineral 
sent to the processing plant and leaching follows 
the trend of copper metal price changes 
appropriately, indicating the effectiveness of the 
proposed model in adapting to the conditions of 
copper price fluctuations and dynamic cut-off 
grades. In other words, as the price increases and 
consequently the dynamic cut-off grades decrease 
in the stochastic model, more blocks are sent to the 
processing plant and leaching, demonstrating the 
adaptability of the stochastic model to conditions 

of declining copper prices and increasing cut-off 
grades. In the first year of operation, the amount of 
mineral in the plant is much higher than the annual 
plant capacity limit and is close to the total annual 
extraction amount. This can be attributed to the low 
penalty cost for exceeding production capacities, as 
the risk discount rate allows for higher penalties in 
the earlier periods compared to the later periods, 
resulting in the extraction of a higher number of 
blocks to maximize the net present value. 
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Figure 8. Ore tonnage output 

As seen in Figure 9, the metal content sent to the 
mill process is higher in earlier periods than in later 
periods, meaning that the profit made by 
processing the ore will be higher. This is how the 
model reacts to the application of a discount factor 

being applied. Additionally, it shows that the risk 
of the metal content sent to the mill is smaller at the 
beginning than later as it begins to be higher in year 
5 in SPP and year 6 in the DPP model. 

 
Figure 9. Metal tonnage output 

Combined with the previous graph, this means 
that the risk is pushed to the later periods for this 
process. 
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Figure 10. Waste tonnage output 

Figure 10 exhibits the variations in waste 
tonnage over the 7-year mining operation. In the 
DPP model, regardless of price and cut-off grade 
changes, the waste materials have the highest 
amount in the first year and show an increasing 
trend over time. However, in the SPP model, 
parallel to the extraction of maximum mineral in 
the first year and to achieve a higher amount of 
metals as observed in the previous diagrams, the 

waste tonnage has the minimum amount in the first 
year and exhibits a decreasing trend over the 7-year 
mining operation. 

The cumulative cash flow diagram of the DPP 
and SPP models has been plotted in Figure 11. The 
purple dashed line represents the difference in the 
cumulative cash flows between the deterministic 
and stochastic models. 

 
Figure 11. Cumulative Cash flow output 

As observed, despite price fluctuations and 
changes in cut-off grades, the SPP model 
consistently maintains a higher level than the DPP 
model throughout the periods. Both models 
progress with almost the same slope until the fourth 
period. Due to a price decrease in the fourth period, 

the slope of the SPP diagram slightly decreases, 
and it continues with a new slope corresponding to 
a price increase in the fifth period. In contrast, the 
DPP diagram continues with the same previous 
slope, disregarding price variations. Therefore, the 
SPP model has successfully adapted to price 
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uncertainty and changes in cut-off grades, and 
throughout all periods, it has consistently exhibited 
higher cumulative cash flow values. 

5.2. Comparisons 

Based on the results of production planning using 
DPP and SPP models, the practical NPV was 
estimated to be $2,477,700,372 and 
$2,553,435,182, respectively, with a difference of 
$75,734,810 higher for the stochastic model 
compared to the deterministic model. The financial 
loss resulting from price fluctuations and changes 
in cut-offs in the SPP model was estimated to be 
$131,173,491. Indeed, examining the impact of 
copper price scenarios on the results of the DPP 
model indicates a potential financial loss of 
$46,537,702 for production planning and 
operations based on the DPP model, which will be 
incurred during project operations. 

Furthermore, the new SPP model, due to the 
prioritization of block scheduling based on price 
scenarios simultaneously with dynamic cut-offs, 
exhibits better performance and efficiency in terms 
of the selection of high-grade ore blocks. This can 
be clarified when comparing the tonnages in both 
models. Thus, based on the SPP model with a gap 
of less than 2 percent, a total of 114,153,300 tons 
of high-grade ore, 5,413,331 tons of low-grade ore, 
and 11,142,225 tons of waste material were 
extracted from the mining area, resulting in a total 
extraction of 130,708,856 tons. In the DPP model, 
out of the total 126,156,150 tons of rock extraction, 
97,956,337 tons were high-grade ore, 7,289,494 
tons were low-grade ore, and 20,910,319 tons were 
waste material. Overall, the stripping ratio in the 
SPP model was found to be 0.105, while in the DPP 
model, it was 0.199. 

The results highlight the need for implementing 
risk mitigation strategies and adopting stochastic 
planning methodologies. By incorporating the SPP 
model and considering metal market uncertainties 
and corresponding cut-offs, the project can 
enhance its ability to adapt to changing conditions 
and mitigate the risk of substantial financial losses. 

5. Conclusions 

This paper presents a novel approach to open-pit 
mine planning that addresses the commodity price 
uncertainty. Traditional production scheduling 
models often overlook the dynamic nature of 
commodity prices and their impact on cut-off 
grades, leading to suboptimal plans.  

The proposed model is constructed on a two-
stage stochastic production programming (SPP) 

framework that optimizes long-term mine 
production schedules while considering both 
commodity price uncertainty and dynamic cut-off 
grades. The key innovation of this model lies in its 
ability to its simultaneous consideration of 
dynamic cut-off grades that adapt to price 
fluctuations within various operational scenarios, 
allowing for more flexible and robust mine plans. 

The case study conducted at the Miduk copper 
mine located in Kerman, the largest province in 
southeast Iran, demonstrates the effectiveness of 
the proposed approach. By using commodity price 
scenarios generated through an MRP model, the 
SPP model outperformed the DPP model in terms 
of NPV and adaptability to changing conditions. 
The SPP model consistently maintained a higher 
level of cash flows than the DPP model, 
showcasing its ability to capture the value created 
by managing commodity price uncertainty.  

Integrating the economic factors into mine 
scheduling, such as commodity price scenarios and 
dynamically adjusting cut-off grades, enables 
mining companies to make informed decisions, 
optimize profitability, and effectively respond to 
market volatility. Further academic research in this 
domain could delve into additional uncertainty 
factors influencing mine planning and refine 
stochastic modeling techniques to enhance the 
precision and reliability of results. By expanding 
the scope of investigation, scholars can contribute 
to advancing the understanding and application of 
advanced mine planning methodologies. 
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  چکیده:

محصــول مواجه اســت.   متیدر ق ژهیبه و یذات  يهاتیعدم قطع لیبه دل یقابل توجه  يهابلندمدت با چالش  دیتول  يبند¬روباز، برنامه زمان  يکارمعدن اتیدرعمل
تراتژ ول در مدل  متیق يبرا يا¬تک نقطه  نیتخم  ياتخاذ اسـ نت  یاض ـیر  يهامحصـ ت نهیربهیغ   يهامنجر به برنامه  یسـ . در شـودیم  دیتول هدافبه ا  یابیو عدم دسـ

 نیبلندمدت کمتر مورد توجه قرار گرفته اسـت. بر ا  دیتول يزیحد و برنامه ر يارهایمحصـول بر ع   متیق   تیعدم قطع  ریهمزمان برآورد تاث  ریتأث نیش ـیپ قاتیتحق
  يمحصــول با در نظر گرفتن اســتراتژ   متیق  تیقطع مبلندمدت معدن روباز تحت عد  دیتول  يزیبرنامه ر  يســازنهیبه ينوآورانه برا  یمدل  ق،یتحق  نیاســاس در ا

ادف  دیتول  يزیرو در چارچوب برنامه  ایحد پو  يارهایع  ت. ا  هی) اراSPP(  يادو مرحله  یتصـ ده اسـ ا نیشـ ناسـ دد شـ تخراج به یتوال  ییمدل درصـ   يها بلوك يبرا نهیاسـ
آن  يسـازادهیمدل، پ ییکارآ یبررس ـ ياسـت. برا  دیانحراف از اهداف تول میجرا يسـاز¬نهیهمزمان با کم افتهی لیتنز  ینگینقد يها ¬انیجر يسـاز¬نهیش ـیب  ،یمعدن

ول در آ  متی) جهت برآورد قGBM(  یهندس ـ  یمعدن مس انجام گرفته اسـت. در ابتدا، مدل حرکت براون کیدر   يزیر¬برنامه يبرا ده اسـت.  ندهیمحصـ تفاده شـ اسـ
پس، هر دو مدل قطع ادف  یسـ تفاده از نرSPP(  یو تصـ دند. نتا  یس ـیکدنو GAMS  افزارم) با اسـ ود خالص عمل یحاک ج یوحل شـ ت که سـ  SPPدر مدل    یاتیازآن اسـ

  .است شتریب %3 باًیتقر DPPنسبت به مدل 

  ي.ادو مرحله یتصادف يزیربرنامه ا،یحد پو يارهایفلز، ع  متیق تیروباز، عدم قطع يبلند مدت، معدنکار دیتول يزیربرنامه کلمات کلیدي:

 

 

 

 

 


