Photocatalytic Treatment and Kinetic Study of Dye Wastewater by Synthesized ZnO Nanoparticles | ||
Journal of Mining and Environment | ||
مقاله 20، دوره 16، شماره 1، فروردین 2025، صفحه 321-369 اصل مقاله (3.34 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22044/jme.2024.14461.2717 | ||
نویسندگان | ||
Behnoosh Khataei* 1؛ Farhad Qaderi2؛ Farzad Mosavat2 | ||
1Civil and Environmental Engineering, Faculty of Geosciences Engineering, Arak University of Technology, Arak, Iran | ||
2Civil and Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran | ||
چکیده | ||
The increase in the number of factories, the industrialization of human life, and the increasing use of industrial paints have caused an increase in dye wastewater and consequent environmental pollution. Discharging wastewater containing the dyes mentioned above, which are often carcinogenic, is a severe threat to living organisms. In this research, a photocatalytic method (as an advanced oxidation method) using zinc oxide nanoparticles was investigated to treat the colored wastewater containing methylene blue. This type of nanoparticle is cheap (based on the used synthesis method), abundant and readily available, and low in toxicity. For this purpose, an evaluation of the optimal ratio between zinc acetate and polyvinylpyrrolidone for the synthesis of zinc oxide nanoparticles was carried out. Furthermore, the simultaneous decreasing and increasing effects of independent parameters (pH, irradiation time, methylene blue concentration, zinc acetate to PVP ratio) on the efficiency of the photocatalytic process and kinetic model were evaluated. The results showed that the best pollutant removal efficiency (91.7%) was obtained using the ratio of zinc acetate and polyvinylpyrrolidone equal to 33.67 in 60 minutes of irradiation time. This result shows that the lower ratio of zinc acetate to polyvinylpyrrolidone indicates higher dye removal. | ||
کلیدواژهها | ||
Photocatalyst؛ Dye Wastewater؛ Optimization؛ Kinetic؛ ZnO | ||
مراجع | ||
[1]. Kishor, R., Purchase, D., Ferreira, L., Mulla, S., Bilal, M., & Bharagava, R. (2020). Environmental and health hazards of textile industry wastewater pollutants and its treatment approaches. In C. Hussain (Ed.), Handbook of Environmental Materials Management (pp. 1-24). Springer Nature.
[2]. Islam, M., & Mostafa, M. (2018). Textile dyeing effluents and environment concerns-a review. Journal of Environmental Science and Natural Resources, 11. 144-131, (2-1).
[3]. Wang, Z., Xue, M., Huang, K., & Liu, Z. (2011). Textile dyeing wastewater treatment. Advances in treating textile effluent, 5, 91-116.
[4]. Mehra, S., Singh, M., & Chadha, P. (2021). Adverse impact of textile dyes on the aquatic environment as well as on human beings. Toxicol. Int, 28(2), 165.
[5]. Lachheb, H., Puzenat, E., Houas, A., Ksibi, M., Elaloui, E., Guillard, C., & Herrmann, J.-M. (2002). Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Applied Catalysis B: Environmental, 39(1), 75-90.
[6]. Berradi, M., Hsissou, R., Khudhair, M., Assouag, M., Cherkaoui, O., El Bachiri, A., & El Harfi, A. (2019). Textile finishing dyes and their impact on aquatic environs. Heliyon, 5, (11).
[7]. Akhtar, N., Syakir Ishak, M. I., Bhawani, S. A., & Umar, K. (2021). Various natural and anthropogenic factors responsible for water quality degradation: A review. Water, 13(19), 2660.
[8]. Hao, O. J., Kim, H., & Chiang, P.-C. (2000). Decolorization of wastewater. Critical reviews in environmental science and technology, 30(4), 449-505.
[9]. Bhargava, S. K., Tardio, J., Prasad, J., Föger, K., Akolekar, D. B., & Grocott, S. C. (2006). Wet oxidation and catalytic wet oxidation. Industrial & engineering chemistry research, 45(4), 1221-1258.
[10]. Mozia, S. (2010). Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Separation and purification technology, 73(2), 71-91.
[11]. Zhang, Q., Cheng, X., Zheng, C., Feng, X., Qiu, G., Tan, W., & Liu, F. (2011). Roles of manganese oxides in degradation of phenol under UV-Vis irradiation: adsorption, oxidation, and photocatalysis. Journal of Environmental Sciences, 23(11), 1904-1910.
[12]. Han, D.-H., Cha, S.-Y., & Yang, H.-Y. (2004). Improvement of oxidative decomposition of aqueous phenol by microwave irradiation in UV/H2O2 process and kinetic study. Water Research, 38(11), 2782-2790.
[13]. Veeresh, G. S., Kumar, P., & Mehrotra, I. (2005). Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: a review. Water Research, 39(1), 154-170.
[14]. Kargari, A., & Mohammadi, S. (2015). Evaluation of phenol removal from aqueous solutions by UV, RO, and UV/RO hybrid systems. Desalination and water treatment, 54(6), 1612-1620.
[15]. Khataei, B., & Ghaderi, M. (2019). Optimizing the Annealing Effect of Zn/Ac Nanoparticle Synthesis on Dye Wastewater Treatment by Combination of Ultrasonic and Photocatalytic Methods. Determinations in Nanomedicine and Nanotechnology, 1(3), 1-3.
[16]. Miranzadeh, M., Afshari, F., Khataei, B., & Kassaee, M. (2020). Adsorption and photocatalytic removal of arsenic from water by a porous and magnetic nanocomposite: Ag/TiO2/Fe3O4@ GO. Adv. J. Chem. A, 3(4), 408-421.
[17]. Ahmadi, K., Qaderi, F., Rahmaninejad, M., & Shidpour, R. (2024). Sustainable nanocomposite of PAC/Fe3O4-coated geotextile using plasma treatment technique for phenol adsorption application. Geoenergy Science and Engineering, 212882.
[18]. Yaseri, A. M., Qaderi, F., & Khataei, B. (2023). Treatment of wastewater containing hard degradable pollutants through the advanced oxidation process (ozonation). Journal of Civil and Environmental Engineering.
[19]. Khourshidi, A., & Qaderi, F. (2023). Optimization of p-nitrophenol-contaminated water by non-thermal plasma technology and ozonation by response surface method. Modares Civil Engineering journal, 23(5), 0-0.
[20]. Kakavandi, B., Rezaei Kalantary, R., Esrafili, A., Jonidi Jafari, A., & Azari, A. (2013). Isotherm, kinetic and thermodynamic of Reactive Blue 5 (RB5) dye adsorption using Fe3O4 nanoparticles and activated carbon magnetic composite. Journal of Color Science and Technology, 7(3), 237-248.
[21]. Masombaigi, H., Rezaee, A., & Nasiri, A. (2009). Photocatalytic degradation of Methylene Blue using ZnO nano-particles. Iranian Journal of Health and Environment, 2(3), 188-195.
[22]. Yu, J.-G., Zhao, X.-H., Yang, H., Chen, X.-H., Yang, Q., Yu, L.-Y., Jiang, J.-H., & Chen, X.-Q. (2014). Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Science of the Total Environment, 482, 241-251.
[23]. Chong, M. N., & Jin, B. (2012). Photocatalytic treatment of high concentration carbamazepine in synthetic hospital wastewater. Journal of Hazardous Materials, 199, 135-142.
[24]. Liu, X., Chen, Z., Chen, Z., Megharaj, M., & Naidu, R. (2013). Remediation of Direct Black G in wastewater using kaolin-supported bimetallic Fe/Ni nanoparticles. Chemical engineering journal, 223, 764-771.
[25]. Otton, J. K. (2006). Environmental aspects of produced-water salt releases in onshore and coastal petroleum-producing areas of the conterminous US-a bibliography. US Geological Survey Reston, VA, USA.
[26]. Ayati, B. (2018). Modeling of a photocatalytic baffled reactor to degrade colored wastewater using response surface methodology. Modares Civil Engineering journal, 18(1), 113-122.
[27]. Ghasemi, A. H., Zoqi, M. J., & Zanganeh Ranjbar, P. (2024). Enhanced photocatalytic degradation of methylene blue using a novel counter-rotating disc reactor. Frontiers in Chemistry, 12, 1335180.
[28]. Rabieian, M., & Qaderi, F. (2024). Optimizing Hybrid Photocatalytic-ozonation for Offshore Produced Water Treatment. Journal of Mining and Environment, 15(1), 239-259.
[29]. Ranjbar, P. Z., Ayati, B., & Ganjidoust, H. (2019). Kinetic study on photocatalytic degradation of Acid Orange 52 in a baffled reactor using TiO2 nanoparticles. Journal of Environmental Sciences, 79, 213-224.
[30]. Ranjbar, P. Z., Ayati, B., & Ganjidoust, H. (2022). Textile dye degradation in a novel photocatalytic baffled reactor using immobilised TiO2 nanoparticles. International Journal of Environment and Waste Management, 29(3), 241-261.
[31]. Kusior, A., Michalec, K., Jelen, P., & Radecka, M. (2019). Shaped Fe2O3 nanoparticles–synthesis and enhanced photocatalytic degradation towards RhB. Applied surface science, 476, 342-352.
[32]. Hu, C., Tang, Y., Jimmy, C. Y., & Wong, P. K. (2003). Photocatalytic degradation of cationic blue X-GRL adsorbed on TiO2/SiO2 photocatalyst. Applied Catalysis B: Environmental, 40(2), 131-140.
[33]. Hayat, K., Gondal, M., Khaled, M., Yamani, Z., & Ahmed, S. (2011). Laser induced photocatalytic degradation of hazardous dye (Safranin-O) using self synthesized nanocrystalline WO3. Journal of Hazardous Materials, 186(2-3), 1226-1233.
[34]. Malayeri, H. Z., Ayati, B., & Ganjidoust, H. (2014). Photocatalytic phenol degradation by immobilized nano ZnO: intermediates & key operating parameters. Water Environment Research, 86(9), 771-778.
[35]. De Lasa, H. I., Serrano, B., & Salaices, M. (2005). Photocatalytic reaction engineering (Vol. 590). Springer.
[36]. Weon, S., He, F., & Choi, W. (2019). Status and challenges in photocatalytic nanotechnology for cleaning air polluted with volatile organic compounds: visible light utilization and catalyst deactivation. Environmental Science: Nano, 6(11), 3185-3214.
[37]. Chiou, C.-H., Wu, C.-Y., & Juang, R.-S. (2008). Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process. Chemical engineering journal, 139(2), 322-329.
[38]. Gómez-Pastora, J., Dominguez, S., Bringas, E., Rivero, M. J., Ortiz, I., & Dionysiou, D. D. (2017). Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chemical engineering journal, 310, 407-427.
[39]. Liu, S.-Q. (2012). Magnetic nano-photocatalysts: preparation, structure, and application. Environmental Chemistry for a Sustainable World: Volume 1: Nanotechnology and Health Risk, 99-117.
[40]. Karimi, F., Zare, N., Jahanshahi, R., Arabpoor, Z., Ayati, A., Krivoshapkin, P., Darabi, R., Dragoi, E. N., Raja, G. G., & Fakhari, F. (2023). Natural waste-derived nano photocatalysts for azo dye degradation. Environmental Research, 117202.
[41]. Mohaghegh, N., Tasviri, M., Rahimi, E., & Gholami, M. R. (2014). Nano sized ZnO composites: Preparation, characterization and application as photocatalysts for degradation of AB92 azo dye. Materials science in semiconductor processing, 21, 167-179.
[42]. Fouda, A., Salem, S. S., Wassel, A. R., Hamza, M. F., & Shaheen, T. I. (2020). Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dye. Heliyon, 6, (9).
[43]. Padmapriya, G., Manikandan, A., Krishnasamy, V., Jaganathan, S. K., & Antony, S. A. (2016). Spinel NixZn1− xFe2O4 (0.0≤ x≤ 1.0) nano-photocatalysts: synthesis, characterization and photocatalytic degradation of methylene blue dye. Journal of Molecular Structure, 1119, 39-47.
[44]. Lops, C., Ancona, A., Di Cesare, K., Dumontel, B., Garino, N., Canavese, G., Hérnandez, S., & Cauda, V. (2019). Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro-and nano-particles of ZnO. Applied Catalysis B: Environmental, 243, 629-640.
[45]. Mahlambi, M. M., Mishra, A. K., Mishra, S. B., Krause, R. W., Mamba, B. B., & Raichur, A. M. (2012). Comparison of rhodamine B degradation under UV irradiation by two phases of titania nano-photocatalyst. Journal of thermal analysis and calorimetry, 110(2), 847-855.
[46]. Dhiman, P., Mehta, T., Kumar, A., Sharma, G., Naushad, M., Ahamad, T., & Mola, G. T. (2020). Mg0. 5NixZn0. 5-xFe2O4 spinel as a sustainable magnetic nano-photocatalyst with dopant driven band shifting and reduced recombination for visible and solar degradation of Reactive Blue-19. Advanced Powder Technology, 31(12), 4585-4597.
[47]. Samsudin, E. M., Goh, S. N., Wu, T. Y., Ling, T. T., Hamid, S. B. A., & Juan, J. C. (2015). Evaluation on the photocatalytic degradation activity of reactive blue 4 using pure anatase nano-TiO2. Sains Malaysiana, 44(7), 1011-1019.
[48]. Jeyaraj, M., Atchudan, R., Pitchaimuthu, S., Edison, T. N. J. I., & Sennu, P. (2021). Photocatalytic degradation of persistent brilliant green dye in water using CeO2/ZnO nanospheres. Process Safety and Environmental Protection, 156, 457-464.
[49]. Mahmood, K., Amara, U., Siddique, S., Usman, M., Peng, Q., Khalid, M., Hussain, A., Ajmal, M., Ahmad, A., & Sumrra, S. H. (2022). Green synthesis of Ag@ CdO nanocomposite and their application towards brilliant green dye degradation from wastewater. Journal of Nanostructure in Chemistry, 1-13.
[50]. Narayan, R. B., Goutham, R., Srikanth, B., & Gopinath, K. (2018). A novel nano-sized calcium hydroxide catalyst prepared from clam shells for the photodegradation of methyl red dye. Journal of Environmental Chemical Engineering, 6(3), 3640-3647.
[51]. Saghi, M., Shokri, A., Arastehnodeh, A., Khazaeinejad, M., & Nozari, A. (2018). The photo degradation of methyl red in aqueous solutions by α-Fe2O3/SiO2 nano photocatalyst. Journal of Nanoanalysis, 5(3), 163-170.
[52]. Welderfael, T., Pattabi, M., & Pattabi, R. M. (2016). Photocatalytic activity of Ag-N co-doped ZnO nanorods under visible and solar light irradiations for MB degradation. Journal of Water Process Engineering, 14, 117-123.
[53]. Trandafilović, L. V., Jovanović, D. J., Zhang, X., Ptasińska, S., & Dramićanin, M. (2017). Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO: Eu nanoparticles. Applied Catalysis B: Environmental, 203, 740-752.
[54]. Naresh Yadav, D., Anand Kishore, K., Bethi, B., Sonawane, S. H., & Bhagawan, D. (2018). ZnO nanophotocatalysts coupled with ceramic membrane method for treatment of Rhodamine-B dye waste water. Environment, Development and Sustainability, 20, 2065-2078.
[55]. Bayat, R., Derakhshi, P., Rahimi, R., Safekordi, A. A., & Rabbani, M. (2019). A magnetic ZnFe2O4/ZnO/perlite nanocomposite for photocatalytic degradation of organic pollutants under LED visible light irradiation. Solid State Sciences, 89, 167-171.
[56]. Chanu, L. A., Singh, W. J., Singh, K. J., & Devi, K. N. (2019). Effect of operational parameters on the photocatalytic degradation of Methylene blue dye solution using manganese doped ZnO nanoparticles. Results in Physics, 12, 1230-1237.
[57]. Aksu, Z., Ertuğrul, S., & Dönmez, G. (2010). Methylene Blue biosorption by Rhizopus arrhizus: Effect of SDS (sodium dodecylsulfate) surfactant on biosorption properties. Chemical engineering journal, 158(3), 474-481.
[58]. Schropp, R., & Madan, A. (1989). Properties of conductive zinc oxide films for transparent electrode applications prepared by rf magnetron sputtering. Journal of applied physics, 66(5), 2027-2031.
[59]. Kumar, G. A., Reddy, M. R., & Reddy, K. N. (2012). Effect of annealing on ZnO thin films grown on quartz substrate by RF magnetron sputtering. Journal of Physics: Conference Series,.
[60]. Khalegh, R., & Qaderi, F. (2019). Optimization of the effect of nanoparticle morphologies on the cost of dye wastewater treatment via ultrasonic/photocatalytic hybrid process. Applied Nanoscience, 9, 1869-1889.
[61]. Lundstedt, T., Seifert, E., Abramo, L., Thelin, B., Nyström, Å., Pettersen, J., & Bergman, R. (1998). Experimental design and optimization. Chemometrics and intelligent laboratory systems, 42(1-2), 3-40.
[62]. Molea, A., Popescu, V., Rowson, N. A., & Dinescu, A. M. (2014). Influence of pH on the formulation of TiO2 nano-crystalline powders with high photocatalytic activity. Powder technology, 253, 22-28.
[63]. Haque, M., & Muneer, M. (2007). Photodegradation of norfloxacin in aqueous suspensions of titanium dioxide. Journal of Hazardous Materials, 145(1-2), 51-57.
[64]. Selvaraj, V., Karthika, T. S., Mansiya, C., & Alagar, M. (2021). An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. Journal of Molecular Structure, 1224, 129195.
[65]. Li, H., Fei, G. T., Fang, M., Cui, P., Guo, X., Yan, P., & De Zhang, L. (2011). Synthesis of urchin-like Co3O4 hierarchical micro/nanostructures and their photocatalytic activity. Applied surface science, 257(15), 6527-6530.
[66]. Daneshvar, N., Salari, D., & Khataee, A. (2003). Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. Journal of Photochemistry and Photobiology A: Chemistry, 157(1), 111-116.
[67]. Mahdizadeh, F., & Aber, S. (2015). Treatment of textile wastewater under visible LED lamps using CuO/ZnO nanoparticles immobilized on scoria rocks. RSC Advances, 5(92), 75474-75482.
[68]. Thejaswini, T., Mohan, A. M., Sompalli, N. K., & Deivasigamani, P. (2019). Assessment of tailor-made mesoporous metal doped TiO2 monolithic framework as fast responsive visible light photocatalysts for environmental remediation applications. Inorganic Chemistry Communications, 110, 107593.
[69]. Nuengmatcha, P., Porrawatkul, P., Chanthai, S., Sricharoen, P., & Limchoowong, N. (2019). Enhanced photocatalytic degradation of methylene blue using Fe2O3/graphene/CuO nanocomposites under visible light. Journal of Environmental Chemical Engineering, 7(6), 103438.
[70]. Gutul, T., Rusu, E., Condur, N., Ursaki, V., Goncearenco, E., & Vlazan, P. (2014). Preparation of poly (N-vinylpyrrolidone)-stabilized ZnO colloid nanoparticles. Beilstein journal of nanotechnology, 5(1), 402-406.
[71]. Ilegbusi, O. J., & Trakhtenberg, L. (2013). Synthesis and conductometric property of sol-gel-derived ZnO/PVP nano hybrid films. Journal of materials engineering and performance, 22, 911-915.
[72]. Naveed Ul Haq, A., Nadhman, A., Ullah, I., Mustafa, G., Yasinzai, M., & Khan, I. (2017). Synthesis approaches of zinc oxide nanoparticles: the dilemma of ecotoxicity. Journal of Nanomaterials, 2017.
[73]. Akpan, U. G., & Hameed, B. H. (2009). Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. Journal of Hazardous Materials, 170(2-3), 520-529.
[74]. Kumar, A., & Pandey, G. (2017). A review on the factors affecting the photocatalytic degradation of hazardous materials. Mater. Sci. Eng. Int. J, 1(3), 1-10.
[75]. Reza, K. M., Kurny, A., & Gulshan, F. (2017). Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Applied Water Science, 7, 1569-1578.
[76]. Maki, L. K., Maleki, A., Rezaee, R., Daraei, H., & Yetilmezsoy, K. (2019). LED-activated immobilized Fe-Ce-N tri-doped TiO2 nanocatalyst on glass bed for photocatalytic degradation organic dye from aqueous solutions. Environmental Technology & Innovation, 15, 100411.
[77]. Luque-Morales, P. A., Lopez-Peraza, A., Nava-Olivas, O. J., Amaya-Parra, G., Baez-Lopez, Y. A., Orozco-Carmona, V. M., Garrafa-Galvez, H. E., & Chinchillas-Chinchillas, M. d. J. (2021). ZnO semiconductor nanoparticles and their application in photocatalytic degradation of various organic dyes. Materials, 14(24), 7537.
[78]. Rajkumar, R., Ezhumalai, G., & Gnanadesigan, M. (2021). A green approach for the synthesis of silver nanoparticles by Chlorella vulgaris and its application in photocatalytic dye degradation activity. Environmental Technology & Innovation, 21, 101282.
[79]. Pachiyappan, J., Gnanansundaram, N., Sivamani, S., Sankari, N. P. B. P., Senthilnathan, N., & Kerga, G. A. (2022). Preparation and characterization of magnesium oxide nanoparticles and its application for photocatalytic removal of rhodamine B and methylene blue dyes. Journal of Nanomaterials, 2022.
[80]. Kumar, R., Barakat, M., Al-Mur, B. A., Alseroury, F. A., & Eniola, J. O. (2020). Photocatalytic degradation of cefoxitin sodium antibiotic using novel BN/CdAl2O4 composite. Journal of Cleaner Production, 246, 119076.
[81]. Khezrianjoo, S., Lee, J., Kim, K.-H., & Kumar, V. (2019). Eco-toxicological and kinetic evaluation of TiO2 and ZnO nanophotocatalysts in degradation of organic dye. Catalysts, 9(10), 871.
[82]. Mohagheghian, A., Hooshmand Rad, S., Ayagh, K., & Shirzad-Siboni, M. (2022). Photocatalytic Removal of Acid Blue 113 Dye from Aqueous Solutions Using Zinc Oxide-Kaolin Nanocomposite under Visible Light Irradiation. Journal of Mazandaran University of Medical Sciences, 32(209), 146-162. | ||
آمار تعداد مشاهده مقاله: 233 تعداد دریافت فایل اصل مقاله: 198 |