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 Mineral Resources have commonly been estimated through the kriging method that 
assigns weights to the samples based on variogram distance to the estimation point 
without considering their values.  More robust estimators such as spatial copulas are 
promising tools because they consider both distance and sample values in determining 
weights. The purpose of this study is to demonstrate the effectiveness of the Gaussian 
copulas (GC) by estimating the copper grade values in the Sungun porphyry copper 
deposit located in Iran. Performance of the method was compared to ordinary kriging 
(OK) and indicator kriging (IK) by running the Jackknife test of cross-validation. The 
metrics used in measuring performance of the methods are global accuracy and 
precision of the distribution of the estimates, error statistics, and variability for 
globally accurate and precise estimates. The case study shows advantages of GC over 
OK and IK by producing globally accurate and precise estimates with acceptable error 
statistics and variability. 
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1. Introduction 

Evaluation of mineral deposits is implemented 
based on a limited number of boreholes, that reveal 
a small portion of these deposits. Therefore, in the 
remaining parts, grade values should be estimated 
based on available samples using robust estimators. 
Ordinary kriging (OK) and indicator kriging (IK) 
are traditional methods used in estimation [1-5]. 
These methods are based on a weighted moving 
average technique, which assigns weights to local 
data regarding their distance from the estimation 
point and their spatial configuration; but sample 
values do not have any impact on the weights [6-
7]. Moreover, ordinary kriging cannot calculate 
confidence intervals for the estimates, intrinsically. 
This method gives symmetric confidence intervals 
through the application of multi-Gaussianity 
assumption and, for reaching reasonable outcomes, 
it needs prior transformation of data into normal 
distribution. Therefore, IK with the ability of 
deriving conditional cumulative distribution 
functions was developed to tackle this drawback of 

the OK. However, smoothing problem of IK is 
greater than OK and it gives estimates that are 
gathered around the mean value of variable under 
study. Another issue about the IK is associated with 
ranking order problem such that this method may 
give unacceptable probability of occurrence for 
some thresholds [8-9] and it is needed to carry out 
posterior correction [10-11]. Because of the above-
mentioned issues, application of new methods that 
tackle these problems and give reasonable 
estimates would be helpful.  

In the literature, the Gaussian copulas (GC) are 
proposed as alternatives to kriging in the estimation 
of spatially dependent variables due to their ability 
to use data configuration as well as sample values 
in assigning weights to them [12-15]. Similar to the 
IK, the Gaussian copulas allow to derive 
conditional cumulative distribution at unknown 
locations and, consequently, calculate confidence 
intervals for the estimates [16-19]. However, in 
contrast to the IK, the copula approach does not 
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have order relation violation. Moreover, spatial 
copula provides more accurate and precise 
estimates than kriging.      

In this study, the aim is to show the 
effectiveness of the GC by applying it to a data set 
obtained from the Sungun porphyry copper 
deposit, Iran. The GS is compared to OK and IK 
through running a Jackknife test and also 
estimating the whole deposit. In most studies such 
as Musafer et al. [20], Addo et al. [21] Sohrabian 
et al. [22] and Bárdossy and Hörning [23], different 
kinds of copulas, which are non-parametric 
estimators, have only been compared to OK, which 
is a linear estimator. The first novelty of the current 
study is evaluating the GC against a non-
parametric method such as IK. The second novelty 
is associated with the application of more rigorous 
statistical tests such as global accuracy and 
precision in assessing the results. 

The paper is structured as follows. Section two 
provides a brief theory on spatial estimation by GC. 
Third section gives a case study including a 
Jackknife test of cross-validation and grade 
estimation on a 3D regular mesh. The GC results 
are compared to those of OK and IK. Last section 
presents the conclusions. 

2. Methods 

This section begins giving a brief theory on the 
Gaussian copulas, which are symmetric practical 
tools in delineating dependence structure of 
variables. In its traditional form, the Gaussian 
copulas do not have distance parameter in their 
algorithm. Therefore, for geostatistical application, 
it is parameterized by distance and correlogram 
analysis in studies such as Bardossy [12], Bardossy 
and Li [13], and Atalay and Tercan [15]. The 
remaining part of this section gives steps of 
estimation through the Gaussian. Then, ordinary 

and indicator kriging methods are presented and 
some performance criteria are presented for 
evaluation of the estimation methods.  

2.1. Gaussian Copula 

Copula, ܥ, is a function that delineates the 
dependence structure of variables as follows: 

:ܥ [0,1] → [0,1] (1) 

If one of the variables becomes zero, the copula 
takes zero value as well. According to Sklar [24], 
any n-variate distribution ܨ(ܼଵ, … , ܼ) can be 
represented by its margins, ܨ

(ܼ), and n-
dimensional copula, ܥ:  

,ଵܼ)ܨ … , ܼ) = ܥ ቀܨభ
(ܼଵ), … , ܨ

(ܼ)ቁ (2) 

The copula method assumes that variables 
under study are second-order stationary with 
identical margins over the study area [25]. In this 
method, by transforming the continuous variables 
into standard uniform distributions through ܷ =
ܨ

(ܼ), the copula becomes a unique function 
which does not depend on the marginal 
distributions anymore and can be expressed based 
on the mutual dependence structure: 

(ܼ)ܥ = భܨ)ܨ
ିଵ(ܼଵ), … , ܨ

ିଵ(ܼ))    (3) 

The inverse function of ith marginal distribution 
is denoted by ܨ

ିଵ(ܼ), ݅ = 1, … , ݊. The density of 
copula, ܿ, can be defined as partial derivatives as 
follows:  

,ଵݑ)ܿ … , (ݑ =
߲ݑ)ܥଵ, … , (ݑ

ଵݑ߲ … ݑ߲
 (4) 

in Equation (4), డ

డ௨
 is the partial derivatives of 

copula with respect to the nth marginal 
distribution. Then, the conditional copula takes the 
following form: 

 

)ܥ ଵݑ ∣∣  ܷଶ = ,ଶݑ … , ܷ = ݑ ) =
߲ିଵݑ)ܥଵ, … , (ݑ

ଶݑ߲ … ݑ߲
×

1
,ଶݑ)ܿ … ,  ) (5)ݑ

 
For a multivariate Gaussian case with 

correlation matrix, ܴ, Equation (3) becomes:  
(ܼ)ோܥ = ߮(߮ିଵ(ܼଵ), … , ߮ିଵ(ܼ)) (6) 

where, ߮ and ߮ିଵ are respectively multivariate 
standard normal distribution and its inverse 
function. The multivariate Gaussian density 
function, ܿோ(.), can be calculated as follows: 

 

ܿோ(ܼ) =
1

ඥ|ܴ|
ݔ݁ ቐ−

1
2 

Φିଵ(ܼଵ)
⋮

Φିଵ(ܼ)
൩

்

(ܴିଵ − (ܫ 
Φିଵ(ܼଵ)

⋮
Φିଵ(ܼ)

൩ቑ (7) 
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where the determinant of correlation matrix ܴ  is 
denoted by |ܴ|, ܫ is an ݊ × ݊ identity matrix, ܴିଵ 
is the inverse of correlation matrix, and the 
superscript T is the transpose sign. 

 
 
 

2.2. Spatial Copula  

Assume that there is a second-order stationary 
variable, ܼ , with distribution function, ܨ, sampled 
at some points, ܰ. According to the second-order 
stationary condition, the following property can be 
seen for two sets of samples separated by a vector, 
 :ࢎ

 

(ଵݔ)ܼ)ܲ < ,ଵݒ … , (ݔ)ܼ < (ݒ = ଵݔ)ܼ)ܲ + (ࢎ < ,ଵݒ … , ݔ)ܼ + (ࢎ <  ) (8)ݒ

 
where, ݒଵ, … ,   are some possible thresholdsݒ

and ܼ(ݔଵ) denotes the value of ܼ at location ݔଵ. 
Therefore, the empirical copula can be written as a 
function of distance as follows: 

 

,ࢎ)௦ܥ ,ݑ (ݑ = ܲ൫ܨ൫ܼ(ݔ)൯ < ,ݑ ݔ)൫ܼܨ + ൯(ࢎ < ൯ݑ = ܥ ቀܨ൫ܼ(ݔ)൯, ݔ)൫ܼܨ +  ൯ቁ (9)(ࢎ

 
Application of copulas in geostatistical 

estimations needs considering distance parameter 
in copula models. For multivariate Gaussian 
copulas, this procedure can be done by calculating 
auto/cross-correlograms. For our case, which is a 
bivariate representation of Gaussian copulas, 
calculation of auto-correlogram of ܼ at several lags 
and fitting it with an appropriate model provides a 
helpful tool.  

By putting sample distances from the estimation 
point into the model correlogram function, 
conditional copula density for the estimation point 
can be calculated. By integrating the conditional 
density using any numerical method and 
standardizing it, the conditional distribution 
function for the estimation point can be obtained. 
This allows to calculate the mean value of variable 
at unknown location and its confidence interval at 
a significant level from the conditional distribution 
function. Please see Bardossy [12], Bardossy and 
Li [13], and Atalay and Tercan [15] for further 
reading on this subsection. 

2.3. Steps of Estimation 

Steps of estimation through spatial Gaussian 
copulas are as follows: 

I) Transform variable into standard uniform 
distribution. 

II) Calculate experimental auto/correlogram of the 
variable at several lags and fit them with an 
appropriate model. 

III) Set the number of conditioning (NCD) samples 
used in estimation. 

IV) Find conditional density function for the 
estimation point and find the conditional CDF 
through any numerical integration approach. 

V) Find the median value (or mean value) and its 
confidence interval at a significant level to be 
back transformed into the data distribution. 

2.4. Ordinary Kriging (OK) 

OK is a well-known geostatistical technique for 
estimating an unknown value at un-sampled 
location. Theoretically, it is the best linear 
minimum variance estimator using variogram 
function characterizing the spatial variability. The 
OK assigns ߣఈ , ߙ = 1,2, … , ݊ weights to the 
sample values to estimate variable of interest at the 
estimation node as follows [26]:  
 

∗ݖ (ݔ) =   (ఈݔ)ݖఈߣ


ఈୀଵ

 (10) 

 
where n is the number of conditioning data and 

ఈߣ .ݔ is the OK estimate at point (ݔ)∗ݖ  weights 
are calculated by solving the OK system of 
equations presented in the matrix form as follows: 

⎣
⎢
⎢
⎢
⎡
ଵଵߛ ଵଶߛ … ଵߛ 0
ଶଵߛ

⋮
ଵߛ
0

ଶଶߛ
⋮

ଶߛ
0

…
⋱…
0

ଶߛ
⋮

ߛ
0

0
⋮
0
1⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡

ଵߣ
ଶߣ
⋮

ߣ
⎦ߤ−

⎥
⎥
⎥
⎤

= ൦

ଵߛ
ଶߛ

⋮
ߛ
1

൪ (11) 

ߛ and ߤ  are respectively the Lagrange 
multiplier and the variogram between points i and 
j.  

Calculation of confidence intervals is not an 
intrinsic property of the OK estimator; however, 
application of multi-Gaussianity assumption 
makes it possible to estimate symmetric confidence 
intervals, ܫܥை , using the following formula: 
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ைܫܥ = (ݔ)∗ݖ ± ߷ ×  (12) ߪ

where, ߪ is the standard deviation of the errors 
calculated from kriging variance and ߷ is the 
confidence level value.  

2.5. Indicator Kriging (IK)  

The IK belongs to non-linear estimation 
methods that basically allow to derive conditional 
cumulative distribution functions (CCDF) [27].  It 
is based on transforming raw data into indicator 
values as follows:  

ఈݔ)ܫ , (ݒ = ൜1,   ݂݅ ݖ(ݔఈ) ≤ ݒ , ݅ = 1, … , ܭ
 ൠ (13)        ݁ݏ݈݁                                   ,0

where K is the number of thresholds. Multiple 
IK requires to compute indicator variograms for 
each threshold and use them in the estimation of 
the CCDFs. The mean, median, and upper and 
lower bounds of confidence interval can be 
obtained from the CCDFs.     

2.6. Performance criteria 

Performance of the methods are first assessed 
by global accuracy and precision of the distribution 
of estimates. Global accuracy is defined as the 
fraction of estimated values falling within fixed 
symmetric probability intervals derived from data.  
A probability distribution is globally accurate if the 
fraction of true values falling inside the p interval 

exceeds p for all p in [0, 1] [28-30]. Global 
precision is a measure of the narrowness of the 
distribution and is only defined for accurate 
distributions. The precision of an accurate 
distribution is measured by the closeness of the 
fraction of estimated values to p for all p in [0, 1].  

For globally accurate and precise estimates, 
summary statistics such as mean bias error (MBE), 
mean square error (MSE), degree of smoothing 
(measured by variance of the estimates) and 
conditional biasedness are considered for further 
assessment. A robust estimator has the lowest 
MBE, MSE, and conditional biasedness. 

3. Case Study  

The Sungun porphyry copper deposit, the 
second largest deposit of its type in Iran, is located 
130 km north of Tabriz (Figure 1). It is one of the 
intrusive stocks that occur within the Urmia-
Dokhtar magmatic arc. This NW-SE striking arc, 
which belongs to the Tertiary period, occurred due 
to the subduction of the Neo-Tethyan oceanic crust 
beneath the Iranian plate in late Mesozoic and early 
Cenozoic eras [31-32]. The NW part of this belt 
includes the Sungun deposit and is called the Ahar–
Jolfa (Arasbaran) zone. This zone generally 
contains Cretaceous–Cenozoic volcanic and 
sedimentary units and Cenozoic plutonic igneous 
rocks. 

 
Figure 1. The Urumia–Dokhtar magmatic arc in map of Iran [33]. 
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Monzonite/quartz-monzonite and later 
diorite/granodiorite are the major plutonic, igneous 
rocks in the west and east part of the region, 
respectively. Cretaceous limestone encompasses 
these bodies from north and east. The north and 
western parts of the deposit is characterized by the 
presence of andesitic to dacitic dykes. Ore bearing 

trachyandesitic dykes are common in the 
diorite/granodiorite unit and occur with less 
density in quartz-monzonite. A small Skarn-type 
formation occurs in the contact zone of the 
porphyritic monzonite and limestone in north-east 
edge of the stock [34-35] (Figure 2). 

 
Figure 2. A geologic map of the Sungun deposit [36]. 

Intense shattering and hydro-fracturing can be 
seen in the central part of the quartz-monzonite 
porphyry stock caused by various types of cross-
cutting vein-lets and micro-veinlets of quartz, 
quartz–sulfide, sulfides, sericite, carbonates and 
sulfates [37]. Ore-bearing hydrothermal fluids and 
sulfur with mainly magmatic origin have created 
extensive alteration zones and sulfide 
mineralization within the porphyry stock. These 
alteration zones namely potassic, phyllic, argillic, 
and propylitic can be seen from center to outside 
the stock [38]. Sulfide mineralization including 
hypogene pyrite, chalcopyrite and molybdenite has 

mainly occurred in the potassic and phyllic 
alteration zones. A thin sulfide-enriched supergene 
zone caused by weathering and leaching of the 
primary sulfide minerals covers the hypogene 
zone. 

3.1. Data Description 

Data used in this study come from core samples 
of 100 exploratory boreholes drilled in the western 
bank of the Pakhirchai river in the Sungun deposit 
and belong to Porphyry mineralization. Two-
meter-long composites were created by 
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considering the average length of the core samples.  
Regarding geological information and statistical 
analysis of Cu concentrations, the deposit was 
laterally divided into phyllic (A) and potassic (B) 
alteration zones. Figure 3 presents a location map 
of the boreholes and Table 1 gives summary 
statistics of copper grades. Due to the lack of 

connectivity in the supergene zone and its limited 
number of samples, separate geostatistical 
evaluation of supergene mineralization would not 
be helpful. Therefore, vertical zoning was not 
considered and zones A and B include both 
hypogene and supergene mineralization. 

 

 
Figure 3. Location map of the boreholes. Blue and red dots stand for zones A and B. 

Table 1. Summary statistics of the copper grade (%). 
Zone Sample size Mean Min Max Median Skewness Kurtosis Variance 

A 2311 0.417 0.020 1.420 0.354 1.133 1.051 0.080 
B 3166 0.772 0.021 1.419 0.791 -0.127 -0.769 0.106 

 
3.2. Spatial Variability Analysis 

It should be mentioned that OK and IK were 
implemented in the Stanford Geostatistical 
Modeling Software (SGeMS) and GC was 
performed using a MATLAB code developed by 
the authors. Comparison among OK, GC, and IK 

was implemented running the Jackknife test of 
cross-validation by randomly dividing the 
composites of each zone into data and validation 
sets with statistical properties shown in Table 2. 
The data and validation sets have similar 
distributions with close mean values, skewness, 
and variances. 

Table 2. Summary statistics for the data and validation sets. 
Zone Set Sample size mean skewness Kurtosis Variance 

A data 2011 0.416 1.145 1.108 0.079 
Validation 300 0.422 1.054 0.733 0.084 

B data 2497 0.772 -0.167 -0.741 0.103 
Validation 669 0.772 -0.002 -0.870 0.116 

 
Prior to estimation through OK, GC, and IK, the 

data sets were transformed into the Gaussian 
distribution, uniform distribution, and indicator 
data, respectively. Uniform transformation was 

directly performed based on experimental data by 
sorting them from the lowest to the largest values 
and putting their ranks as their new values. 
However, one could use different symmetric or 
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asymmetric kernel density estimators to estimate 
probability distribution function and apply it in the 
transformation. In our case using kernel density 
estimators did not have any positive impact on the 
results. The methods were implemented on the 
transformed data and the OK and GC results were 
back transformed into original space using the 
inverse functions. Indicator data sets were 
generated considering 11 thresholds that 
correspond to the 2.5th, 10th, 20th, 30th, 40th, 
50th,60th, 70th, 80th, 90th and 97.5th percentiles 
of Cu grades. 

The transformed data were analyzed to describe 
the spatial dependence structure of Cu for choosing 
parameters in the Jackknife test and for estimating 

the nodes of a 3D regular mesh (12.5݉ × 12.5݉ ×
12.5݉).  For each zone, variograms of the 
normalized and indicator values were analyzed in 
downhole and horizontal directions. The 
experimental variograms of the normalized data 
showed no severe anisotropy so that the 
omnidirectional variograms were retained for 
modelling (Figure 4). The models consist of a 
nugget effect, a short-range exponential model, 
plus a long-range spherical model. Table 3 presents 
contribution and range for each structure. Note that 
Zone B shows higher short-range variability (larger 
nugget effect) and lower continuity (smaller range) 
than Zone A. 

 

 
Figure 4. Omnidirectional variograms of the normalized Cu (crosses) and fitted models (black solid line). 

Table 3. Model variogram parameters for the normalized data. 
 Nugget Structure #1 Contribution 1 Range 1(m) Structure #2 Contribution 2 Range 2(m) 

Zone A 0.05 Exponential 0.55 15 Spherical 0.40 150 
Zone B 0.1 Exponential 0.50 13 Spherical 0.40 108 

 
Variography of indicator sets showed geometric 

anisotropy with short ranges in downhole direction. 
These variograms (not shown here due to their 
large numbers) demonstrated nested structures that 
consist of a nugget effect, a short-range 
exponential model, and a long-range spherical 
model.      

For estimation through GC, omnidirectional 
correlograms of the uniform data were calculated 
(Figure 5) and fitted by suitable models with 
parameters presented in Table 4. Consistent with 
the normalized variograms, the correlogram of 
Zone B shows lower correlation at short distances 
and lower range than Zone A. 

 

  
Figure 5. Correlograms (crosses) of the uniform data for zones A and B and fitted models (black solid line). 
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Table 4. Model correlogram parameters used in copula estimations. 
 Nugget Structure #1 Contribution 1 Range 1(m) Structure #2 Contribution 2 Range 2(m) 

Zone A 0.95 Exponential -0.50 17 Exponential -0.35 100 
Zone B 0.90 Exponential -0.60 25 Spherical -0.15 90 

 
3.3. Performance Assessment by Running a 
Jackknife Test 

Performance assessment of the methods was 
implemented by running a Jackknife test and 
comparing the estimates to the observed values.  

Estimation through GC, IK, and OK methods 
was implemented choosing exactly 17 conditioning 
data. Seventeen conditioning data were chosen 
after trying different values by evaluating the 
cross-validation results of the three methods. 
Increase in the number of conditioning data (NCD) 
would result in better estimation of the mean value; 
however, it would negatively increase the 
smoothing problem. Note that the estimation 
results of the three methods were proportionally 
affected from the NCD. Search neighborhood of 
OK and IK was considered large enough to 
encompass 17 samples. Advanced search options 
such as octant search were not used in the selection 
of conditioning data. In IK, the CCDFs were 
generated considering linear relationships between 
the lower class and minimum data value and upper 
class and maximum data value with no 
extrapolation. In IK and GC methods, the e-type 
values of CCDFs were assigned as the estimated 
value. 

For global accuracy and precision assessment of 
the distribution of the estimates produced by the 
three methods the symmetric -probability 
intervals with  = 0.1 × ݅, ݅ = 1,2, … ,9 were built 

by using the actual data and computing the fraction 
of the estimated values falling inside the 
corresponding intervals. Figure 6 shows the plot of 
actual coverage against the estimated coverage for 
both zones.  

Figure 6 shows that the GC and IK estimates are 
accurate in both zones because they produce 
estimated p values exceeding actual p values. OK 
is globally accurate in zone A but not in zone B.  

Inaccuracy of the OK estimates in zone B 
results from the first two points that are slightly 
below the1:1 line. In zone A, the OK results have 
the highest degree of precision and the GC 
estimates come in the second place while IK has 
the worst performance in precision. Since global 
precision matters only for accurate estimates, 
assessing the precision of OK estimates in zone B 
does not make sense. Global precision test shows 
advantage of GC over IK due to its estimated p 
values that are close to the line of equality. 

In the second step of performance analysis, the 
summary statistics of the estimates are compared to 
that of the data. Table 5 presents the cross-
validation results of the three methods for both 
cases. IK has the lowest absolute MBE and MSE, 
followed by GC and OK. The superiority of IK 
over GC and OK can be misleading without 
considering conditional biasedness and variability 
of the estimates. 

Table 5. Cross-validation results for OK, GC and IK methods. 
Variance MSE*** MBE** Method* Zone 

0.030 0.084 -0.104 OK 
A 0.027 0.084 -0.089 GC 

0.014 0.066 -0.044 IK 

0.066 0.183 -0.173 OK 
B 0.050 0.149 -0.124 GC 

0.014 0.125 -0.073 IK 
*For a fair comparison the number of conditioning data is chosen to be 17 for all methods 

 
Figures 7 and 8 present the Q-Q plots of the 

estimated values versus real observations and the 
box plots constructed to examine the conditional 
biasedness and variability. Note that IK has a 
serious smoothing problem, and it produces nearly 
the similar grade estimates around the mean value 
of data. For example, IK estimates change around 
and at 0.38 Cu% in 0.4-0.8 Cu% range of the actual 
data in zone A and 0.65 Cu% in 0.4-1.2 Cu% range 

in zone B. The same observations can also be made 
for the box plots (Figure 8).  The smoothing 
property of IK estimates is consistent with the 
literature [39-40].  

From Table 5 and Figures 7 and 8, it is clear that 
OK produces the estimates with the highest 
variability. On the other hand, the estimates of OK 
are systematically lower, especially in zone B. This 
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bias has resulted in weak accuracy of OK in zone 
A and inaccurate estimates in zone B.  

Better performance of OK in zone A relative to 
zone B can be related to smaller nugget effect of 

the Cu variograms in this zone. The decreasing 
efficiency of OK with increasing nugget effect is 
also observed in Sohrabian [41-42].  

 

 
Figure 6. Global accuracy and precision test of the estimates. 

 
Figure 7. Q-Q plots of the estimates versus the real values. 

  
Figure 8. Box plots of the estimates. 
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3.4. Grade Estimation in the Copper Deposit 

Grade estimation was made at the grid nodes of 
a 3D mesh with sizes 12.5m×12.5m×12.5m in each 
zone separately by using the three methods. The 
total number of points estimated is 82,268. The 
copula, variogram, and indicator variogram 

parameters obtained from the Jackknife test were 
considered in the estimation. Figure 9 shows the 
spatial distributions of the estimates for zone A and 
zone B. It is evident that IK produces very smooth 
estimates and practically GC and OK estimates 
show similar spatial distributions. 

 

 
Figure 9. 3D maps of the estimated blocks. 

4. Conclusions 

This study compares three estimation methods, 
GC, OK and IK, using a case study in the Sungun 
copper deposit. GC and IK are basically methods 
that allow to derive the conditional cumulative 
distribution functions and any type of estimates in 
GC and IK are obtained from the cumulative 
distribution while OK directly estimates unknown 
values at un-sampled locations.  

In terms of global distribution of the estimates, 
OK can provide globally inaccurate estimates, IK 
gives accurate but imprecise estimates while GC 
produces both globally accurate and precise 
estimates.  

Cross validation study shows that OK results 
have high variability but less confidence due to 
high errors. IK generates significantly smooth 
values with the lowest errors because the estimated 
values are gathered around the mean. However, 
having the lowest MBE and MSE does not make 

sense. The GC estimates are generally reasonable 
in terms of MBE, MSE and variability. The grade 
estimation made in the copper deposit supports the 
smoothing property of the IK estimates and shows 
similar grade patterns for GC and OK. 

The case study proves that GC has advantages 
over OK and IK since it is a globally accurate and 
precise estimator and produces acceptable error 
statistics and variability. 
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  چکیده:

  نی کند، تخم  یم  نییآنها تع  ریتا نقطه برآورد بدون در نظر گرفتن مقاد  وگرامیکه وزن نمونه ها را بر اساس فاصله وار  نگیجیروش کر  قیمعمولاً از طر  یمنابع معدن
ــود. تخم یزده م ــا  يولاهایمانند کاپ  تريقو  ينگرهایش ــت، ز  يادوارکنندهیام  يابزارها  ییفض ــله و هم م رایاس ها در نظر وزن  نیینمونه را در تع ریقادآنها هم فاص

اسـت.  رانیسـونگون واقع در ا  يریمس در کانسـار مس پورف اریمقدار ع   نیتخم  قیاز طر یگاوس ـ  يها  ولایکاپ یمطالعه نشـان دادن اثربخش ـ نی.هدف از اردیگیم
اخص از طر  نگیجیو کر  یمعمول  نگیجیکر  يروش با روش ها  نیعملکرد ا نجآزمون اعتبا ياجرا  قیشـ هیمقا  فیمتقابل جک نا یرسـ ده اسـت. مع  سـ مورد    يارهایشـ

 ــ ــتفاده در بررس ــحت و دقت در توزروش نیعملکرد ا یاس ــده، آمار خطا و م نیتخم ریمقاد  عیها، ص ــحت و دقت   يدارا  يدر برآوردها  يریرپذییتغ  زانیزده ش ص
راسـر ان م  نگیجیو کر  یمولمع  نگیجیرا نسـبت به کر یگوس ـ  يولایکاپ يها  تیمز  ،ياسـت. مطالعه مورد  يسـ ده  نیتخم ج ینتا کهیدهد، بطور  یشـاخص نشـ زده شـ

 دارد. یمناسب يقابل قبول است و آمار خطا راتییو تغ يصحت و دقت سرتاسر يدارا ولایتوسط کاپ

  .يرینهشته مس پورف ،یمعمول نگیجیکر ف،یشاخص، تست جک نا نگیجیکر ،یگوس يولایکاپ کلمات کلیدي:

 

 

 

 


