Geotechnical and Geochemical Analysis of Dichinama Marble in Northern Ethiopia: Quarrying Insights | ||
Journal of Mining and Environment | ||
مقاله 3، دوره 16، شماره 1، فروردین 2025، صفحه 39-56 اصل مقاله (4.64 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22044/jme.2024.14501.2724 | ||
نویسندگان | ||
Assefa Hailesilasie Wolearegay1؛ Yowhas Birhanu Amare1؛ Asmelash Abay Hagos2؛ Kassa Amare Mesfin2؛ Hagos Abraha3؛ Bereket Gebresilassie4؛ Nageswara Rao Cheepurupalli* 3؛ Yewuhalashet Fissha3، 5 | ||
1Department of Geology, College of Natural and Computational Sciences,. Adigrat University, Adigrat, Ethiopia | ||
2School Earth Science,. Mekelle University, P.O box, 231, Mekelle, Ethiopia | ||
3Faculty of Mines, Aksum Institute of Technology,. Aksum University, Aksum, Ethiopia | ||
4Faculty of Mines, Aksum Institute of Technology, Aksum University, Aksum, Ethiopia | ||
5Department of Geosciences, Geotechnology and Materials Engineering for Resources, Graduate School of International Resource Sciences, Akita University, Akita 010-0852, Japan | ||
چکیده | ||
The Dichinama area in northern Ethiopia is a potential source of dimension stone, but the quality of the marble has been a major challenge for mining operations. This research aims to evaluate the quality of dimension stone by conducting a comprehensive study involving geological mapping, geotechnical testing, and geochemical analysis. The study collected nine rock samples from three active mining sites in the Dichinama area, analyzing properties such as density, water absorption, compressive strength, flexural strength, and abrasion resistance. Additionally, ten samples were collected for geochemical analysis, focusing on parameters like calcite, CaO values, LOI, SiO2 content, and other oxide concentrations. The geotechnical tests revealed that the properties of the marble in the Dichinama area were mainly calcite, with compressive strength values ranging from 29.6 to 74.5 MPa, flexural strength from 7 to 52.5 MPa, abrasion resistance from 8.3 to 17.2, density from 2257 to 2562 kg/m3, and water absorption from 0.12 to 0.93. However, most of these parameters fell below the minimum ASTM standards for marble dimension stone. The results suggest that these inferior characteristics negatively affect the recovery and quality of the dimension stone. | ||
کلیدواژهها | ||
Marble؛ characterization؛ Quality؛ Recovery؛ Implications | ||
مراجع | ||
[1] Wassie, S. B. (2020). Natural resource degradation tendencies in Ethiopia: a review. Environmental Systems Research, 9(1), 1–29.
[2] Duan, Z. P., Jiang, S. Y., Su, H. M., Zhu, X. Y., Zou, T., & Cheng, X. Y. (2021a). Geochronological and geochemical investigations of the granites from the giant Shihuiyao Rb-(Nb-Ta-Be-Li) deposit, Inner Mongolia: Implications for magma source, magmatic evolution, and rare metal mineralization. Lithos, 400–401(April), 106415.
[3] Khan, J., Yao, H. Z., Zhao, J. H., Tahir, A., Chen, K. X., Wang, J. X., Song, F., Xu, J. Y., & Shah, I. (2024). Geochronology, geochemistry, and tectonic setting of the Neoproterozoic magmatic rocks in Pan-African basement, West Ethiopia. Ore Geology Reviews, 164, 105858.
[4] Bukhari, S. A. A., Basharat, M., Janjuhah, H. T., Mughal, M. S., Goher, A., Kontakiotis, G., & Vasilatos, C. (2023). Petrography and Geochemistry of Gahirat Marble in Relation to Geotechnical Investigation: Implications for Dimension Stone, Chitral, Northwest Pakistan. Applied Sciences (Switzerland), 13(3).
[5] Hailemariam, Y. K., Fissha, Y., & Gebretsadik, A. (2020). Determining the Recovery Rate of Dichinama Marble (Lidge Mariam) Quarry Site At Northwestern Zone, Tigrai, Ethiopia. International Journal of Engineering Applied Sciences and Technology, 5(5), 166–183.
[6] Seelow, A. (2017). Exploring Natural Stone and Building a National Identity: The Geological Exploration of Natural Stone Deposits in the Nordic Countries and the Development of a National-Romantic Architecture. Arts, 6(4), 6.
[7] Nasuti, A., & Roberts, D. (2023). Using geophysics to follow and model the Precambrian basement terranes beneath the Caledonian nappes in Finnmark, northern Norway: A case study. Precambrian Research, 384, 106934.
[8] Asefa, M., Cao, M., He, Y., Mekonnen, E., Song, X., & Yang, J. (2020). Ethiopian vegetation types, climate and topography. Plant Diversity, 42(4), 302–311.
[9] Walle, H., Zewde, S., & Heldal, T. O. M. (2000). Building stone of central and southern Ethiopia : deposits and resource potential. Building, 175–182.
[10] Samarakoon, K. G. A. U., Chaminda, S. P., Jayawardena, C. L., Dassanayake, A. B. N., Kondage, Y. S., & Kannangara, K. A. T. T. (2023). A Review of Dimension Stone Extraction Methods. Mining, 3(3), 516–531.
[11] Revuelta, M. B. (2021). Chapter 6: Cement. In Construction Materials: Geology, Production and Applications.
[12] Macedo, D., Mori Junior, R., & Pimentel Mizusaki, A. M. (2017). Sustainability strategies for dimension stones industry based on Northwest region of Espírito Santo State, Brazil. Resources Policy, 52, 207–216.
[13] Abebe, A. H., & Gatisso, M. M. (2023). The role of indigenous knowledge regarding the history and building of the Kawo/King Amado Kella defensive wall in Wolaita, Ethiopia, including its significance and intended use. Heliyon, 9(11), e20990.
[14] Baker, R. E., Mahmud, A. S., Miller, I. F., Rajeev, M., Rasambainarivo, F., Rice, B. L., Takahashi, S., Tatem, A. J., Wagner, C. E., Wang, L. F., Wesolowski, A., & Metcalf, C. J. E. (2022). Infectious disease in an era of global change. Nature Reviews Microbiology, 20(4), 193–205.
[15] Okada, K. (2021). A Historical Overview of the Past Three Decades of Mineral Exploration Technology. Natural Resources Research, 30(4), 2839–2860.
[16] Abbate, E., Bruni, P., & Sagri, M. (2015). Geology of Ethiopia: A Review and Geomorphological Perspectives. In World Geomorphological Landscapes (Issue March 2015). https://doi.org /10.1007/978-94-017-8026-1_2
[17]. Zhang, Y., Zhang, D., Liu, K., Mo, X., Wang, S., Zhao, Z., He, X., & Yu, T. (2023). Geological Significance of Neoproterozoic Intrusive Rocks in the South Section of the Ailaoshan Orogenic Belt, SW China: Insights from Petrology, Geochemistry, and Geochronology. Minerals, 13(3).
[18]. Song, D., Xiao, W., Collins, A. S., Glorie, S., Han, C., & Li, Y. (2017). New chronological constrains on the tectonic affinity of the Alxa Block, NW China. Precambrian Research, 299, 230–243.
[19]. Qi, L., Xu, Y., Cawood, P. A., Zhang, H., Zhang, Z., & Du, Y. (2021). Implications for supercontinent reconstructions of mid-late Neoproterozoic volcanic – Sedimentary rocks from the Cathaysia Block, South China. Precambrian Research, 354, 106056.
[20]. Tadesse, S., Milesi, J. P., & Deschamps, Y. (2003). Geology and mineral potential of Ethiopia: A note on geology and mineral map of Ethiopia. Journal of African Earth Sciences, 36(4), 273–313.
[21]. Bedassa, G., Getaneh, W., & Hailu, B. (2019). Geochemical and mineralogical evidence for the supergene origin of kaolin deposits – Central Main Ethiopian Rift. Journal of African Earth Sciences, 149, 143–153.
[22]. Hamilton, M. C., Nedza, J. A., Doody, P., Bates, M. E., Bauer, N. L., Voyadgis, D. E., & Fox-Lent, C. (2016). Web-based geospatial multiple criteria decision analysis using open software and standards. International Journal of Geographical Information Science, 30(8), 1667–1686.
[23] Wahab, G. M. A., Gouda, M., & Ibrahim, G. (2019). Study of physical and mechanical properties for some of Eastern Desert dimension marble and granite utilized in building decoration. Ain Shams Engineering Journal, 10(4), 907–915.
[24]. Gacu, J. G., & Sim, A. A. M. (2022). Effect of marble microparticles as additive on the physical and mechanical properties of concrete mixes. Materials Today: Proceedings, 65, 1491–1497.
[25] Lindawati, L., Yuliza, N. F., & Irwansyah, I. (2020). Thermal Conductivity of Some Marble Stones Available in South Aceh District. IOP Conference Series: Materials Science and Engineering, 854(1).
[26]. Wen, X., Zhou, J., Zheng, S., Yang, Z., Lu, Z., Jiang, X., Zhao, L., Yan, B., Yang, X., & Chen, T. (2024). Geochemical properties, heavy metals and soil microbial community during revegetation process in a production Pb-Zn tailings. Journal of Hazardous Materials, 463, 132809.
[27]. Gaur, N., Sarkar, A., Dutta, D., Gogoi, B. J., Dubey, R., & Dwivedi, S. K. (2022). Evaluation of water quality index and geochemical characteristics of surfacewater from Tawang India. Scientific Reports, 12(1), 1–26.
[28]. Nasuti, A., & Roberts, D. (2023b). Using geophysics to follow and model the Precambrian basement terranes beneath the Caledonian nappes in Finnmark, northern Norway: A case study. Precambrian Research, 384, 106934.
[29]. Billi, P. (2015). World Geomorphological Landscapes Landscapes and Landforms of Ethiopia. In Landscapes and Landforms of Ethiopia .
[30] Yao, W., Li, X., Xia, K., & Hokka, M. (2021). Dynamic flexural failure of rocks under hydrostatic pressure: Laboratory test and theoretical modeling. International Journal of Impact Engineering, 156, 103946. https://doi.org/10.1016/j.ijimpeng.2021.103946
[31] Cui, Y., Xu, C., Xue, L., Dong, J., & Jiang, T. (2023). Experimental study on the reasonable proportions of rock-like materials for water-induced strength degradation in rock slope model test. Scientific Reports, 13(1), 1–18.
[32] Salem, H. S. (2021). Evaluation of the Stone and Marble Industry in Palestine: environmental, geological, health, socioeconomic, cultural, and legal perspectives, in view of sustainable development. Environmental Science and Pollution Research, 28(22), 28058–28080.
[33]. Al-Bashaireh, K. (2021). Ancient white marble trade and its provenance determination. Journal of Archaeological Science: Reports, 35, 102777.
[34]. Ozer, O., Yalcin, F., Tarinc, O. K., & Yalcin, M. G. (2020). Investigation of suitability of marbles to standards with inequality expressions and statistical approach using some physical and mechanical properties. Journal of Inequalities and Applications, 2020(1).
[35]. Sariisik, G. (2012). Determining performance of marble finished products on their usage areas by a new impact-resistance test method. Journal of Testing and Evaluation, 40(6).
[36]. Deyassa, G., Kebede, S., Ayenew, T., & Kidane, T. (2014). Crystalline basement aquifers of Ethiopia: Their genesis, classification and aquifer properties. Journal of African Earth Sciences, 100, 191–202.
[37]. Lee, W. H., Lin, K. L., Chang, T. H., Ding, Y. C., & Cheng, T. W. (2020). Sustainable development and performance evaluation of marble-waste-based geopolymer concrete. Polymers, 12(9).
[38]. Jain, A. K., Jha, A. K., & Shivanshi. (2020). Geotechnical behaviour and micro-analyses of expansive soil amended with marble dust. Soils and Foundations, 60(4), 737–751.
[39]. Liu, J. bin, Zhang, Z. jian, & Leung, A. K. (2022). Mesoscopic and macroscopic investigation of a dolomitic marble subjected to thermal damage. Scientific Reports, 12(1), 1–16. https://doi.org/10.1038/s41598-022-19655-x
[40]. Li, F., Ma, X., & Lai, X. (2022). Petrography, geochemistry and genesis of dolomites in the upper Cambrian Sanshanzi Formation of the western Ordos Basin, northern China. Journal of Asian Earth Sciences, 223, 104980.
[41]. Ma, X., Huang, X., Zhang, H., Hu, X., & Feng, T. (2023). Effect of calcium aluminates on the structure evolution of CaO during the calcium looping process: A DFT study. Chemical Engineering Journal, 452(P4), 139552.
[42]. Priyadarshi Bopegedera, A. M. R. (2022). The Analysis of Dolomitic Marble: A Multifaceted Problem for General Chemistry Students. Journal of Chemical Education, 99(2), 964–974. | ||
آمار تعداد مشاهده مقاله: 367 تعداد دریافت فایل اصل مقاله: 178 |