A Proposed New Precambrian Skarn Deposits in the Arabian Shield | ||
Journal of Mining and Environment | ||
مقاله 9، دوره 16، شماره 1، فروردین 2025، صفحه 143-159 اصل مقاله (12.31 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22044/jme.2024.14659.2769 | ||
نویسندگان | ||
Eid R. Abo-Ezz1، 2؛ El Sayed I Selim1، 2؛ Hatem Aboelkhair3، 4؛ Haytham Sehsah* 3 | ||
1Department of Physics, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia | ||
2Geophysics Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt | ||
3Faculty of Science, Geology Department, Damietta University, New Damietta City, 34517, Egypt | ||
4Center of Space Research and Applications (CSRA), Damietta University, New Damietta, Egypt | ||
چکیده | ||
The bimodal hypsometry of the Arabian-Nubian Shield in the Neoproterozoic triggered the formation of post-amalgamation marine bains in the low-stand terranes of the Arabian shield (AS). The carbonate successions in the extraordinary marine basins in the AS are intruded by granite plutons of different causative types, with major shear zones pathways. Therefore, the conditions for the formation of skarn deposits are mature at the contact of the carbonate succession with the causative granite plutons. Multidisciplinary approaches including ASTER data, Magnetic data, and geochemical data have been applied to the Murdama basin to locate the promising areas for skarn deposits. The Murdama basin has contrasting magnetic anomalies of different intensity at the contact between the Murdama limestone and the post-Murdama causative batholiths; significant magnetic anomalies exist at the contact with the Idah causative magmas. Lineaments related to the Najd fault system (NFS) exist eastward, where calc-silicate alteration-related minerals were evolved, with no clues for penetrative effect for such alteration activity along pathways related to the fracture system or at contact with the Abanat suite. Different spectral mapping techniques, including Spectral Information Divergence (SID), Spectral Angle Mapper (SAM), and Constrained Energy Minimization (CEM) confirm that the Idah suite is the predominant causative magma in the study area with highly evolved calc-silicate alteration-related minerals, such as wollastonite, garnet, and pyroxene. Meanwhile, The Idah suite has been identified as the main causative magma for other reduced skarn localities that have been recorded from the Murdama basin, i.e. the Qitan and An Nimriyah South. Alteration related mineral zones of kaolinite, chlorite, muscovite, and hematite are evolved alongside with calc-silicate minerals at the contact bewteen Idah suite, and the Murdama carbonate member. The geochemical data suggests reducing effect for the Idah suite at the contact between the Murdama carbonate succession and Idah plutons. These preliminary results of this study need detailed field investigations and geochemical explorations for the proposed skarn deposits in the Neoproterozoic molasse basins of the AS. | ||
کلیدواژهها | ||
Neoproterozoic Skarn؛ Murdama carbonate؛ Causative plutons؛ Arabian – Nubian shield؛ Redox state of the magma | ||
مراجع | ||
[1]. W.-C. Jiang, H. Li, R. Mathur, and J.-H. Wu, "Genesis of the giant Shizhuyuan W–Sn–Mo–Bi–Pb–Zn polymetallic deposit, South China: constraints from zircon geochronology and geochemistry in skarns," Ore Geology Reviews, vol. 111, p. 102980, 2019.
[2]. L. D. Meinert, "Application of skarn deposit zonation models to mineral exploration," Exploration and mining geology, vol. 6, pp. 185-208, 1997.
[3]. L. D. Meinert, "Compositional variation of igneous rocks associated with skarn deposits-chemical evidence for a genetic connection between petrogenesis and mineralization," Mineralogical Association of Canada Short Course Series, vol., vol. 23, pp. 401-418, 1995.
[4]. H. Legros, P. Lecumberri-Sanchez, V. Elongo, O. Laurent, H. Falck, E. Adlakha, et al., "Fluid evolution of the Cantung tungsten skarn, Northwest Territories, Canada: Differentiation and fluid-rock interaction," Ore Geology Reviews, vol. 127, p. 103866, 2020.
[5]. Q. Shu, Z. Chang, Y. Lai, X. Hu, H. Wu, Y. Zhang, et al., "Zircon trace elements and magma fertility: insights from porphyry (-skarn) Mo deposits in NE China," Mineralium Deposita, vol. 54, pp. 645-656, 2019.
[6]. L. Nie, G. Cai, J. Lin, F. Wang, Y. Cai, J. Fu, et al., "Constrains of physical properties and geochemical characteristics of country rock on skarn tungsten mineralization: a case study of the Longjiaoshan-Fujiashan skarn tungsten deposit in the Middle-Lower Yangtze River Metallogenic Belt," Ore Geology Reviews, p. 105032, 2022.
[7]. Z. Chang, Q. Shu, and L. Meinert, "Skarn deposits of China," Society of Economic Geologists, vol. Special Publication 22, pp. 189 - 234, 2019.
[8]. Z. Zhou, J. Mao, H. Che, H. Ouyang, and X. Ma, "Metallogeny of the Handagai skarn Fe–Cu deposit, northern Great Xing'an Range, NE China: Constraints on fluid inclusions and skarn genesis," Ore Geology Reviews, vol. 80, pp. 623-644, 2017.
[9]. L. D. Meinert, K. K. Hefton, D. Mayes, and I. Tasiran, "Geology, zonation, and fluid evolution of the Big Gossan Cu-Au skarn deposit, Ertsberg district, Irian Jaya," Economic Geology, vol. 92, pp. 509-534, 1997.
[10]. P. Johnson, A. Andresen, A. Collins, A. Fowler, H. Fritz, W. Ghebreab, et al., "Late Cryogenian–Ediacaran history of the Arabian–Nubian Shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen," Journal of African Earth Sciences, vol. 61, pp. 167-232, 2011.
[11]. P. R. Johnson, "Post-amalgamation basins of the NE Arabian shield and implications for Neoproterozoic III tectonism in the northern East African orogen," Precambrian Research, vol. 123, pp. 321-337, 2003.
[12]. P. R. Johnson, G. P. Halverson, T. M. Kusky, R. J. Stern, and V. Pease, "Volcanosedimentary basins in the Arabian-Nubian Shield: Markers of repeated exhumation and denudation in a Neoproterozoic accretionary orogen," Geosciences, vol. 3, pp. 389-445, 2013.
[13]. Z. Ahmed, "Composition of skarn grossular from Al-Madhiq area, SW Saudi Arabia," Arabian Journal for Science and Engineering. Section B: Engineering, vol. 27, pp. 3-16, 2002.
[14]. A. A. Surour and A. Moufti, "A new occurrence of garnetiferous skarn rocks in Saudi Arabia: a case study from Bahrah area, Jeddah–Makkah Al Mukaramah highway," Arabian Journal of Geosciences, vol. 4, pp. 879-897, 2011.
[15]. A. M. Moufti, "Mineralogy and Metamorphic Evolution of Jabal Ash Shumt Skarn Deposits, Saudi Arabia: An Example of Superimposed Metamorphism," Journal of King Abdulaziz University: Earth Sciences, vol. 24, 2013.
[16]. W. R. Miller and M. A. Arnold, "Results of a Geochemical Survey, Aban Al Ahmar Quadrangle, Sheet 25F, Kingdom of Saudi Arabia," US Geological Survey 2331-1258, 1988.
[17]. M. Abrams and Y. Yamaguchi, "Twenty years of ASTER contributions to lithologic mapping and mineral exploration," Remote Sensing, vol. 11, p. 1394, 2019.
[18]. T. Yajima, "ASTER data analysis applied to mineral resource exploration and geological mapping," Nagoya University: Nagoya, Japan, p. 77, 2014.
[19]. T. Cudahy, K. Okada, A. Cornelius, and R. Hewson, "Regional to prospect scale exploration for porphyry-skarn-epithermal mineralisation at Yerington, Nevada, using ASTER and airborne Hyperspectral data," CSIRO Exploration and Mining Report, 2002.
[20]. T.-T. Liu, Z.-W. He, X.-L. Cui, and H. Gao, "The strucuture of the model for skarn-type lead-zinc deposit based on ASTER data," Xibei Shifan Daxue Xuebao/ Journal of Northwest Normal University(Natural Science), vol. 48, pp. 100-105, 2012.
[21]. H. Moradpour, G. Rostami Paydar, A. B. Pour, K. Valizadeh Kamran, B. Feizizadeh, A. M. Muslim, et al., "Landsat-7 and ASTER remote sensing satellite imagery for identification of iron skarn mineralization in metamorphic regions," Geocarto International, vol. 37, pp. 1971-1998, 2022.
[22]. Q. Chen, Z. Zhao, J. Zhou, M. Zeng, J. Xia, T. Sun, et al., "New insights into the Pulang porphyry copper deposit in southwest China: Indication of alteration minerals detected using ASTER and WorldView-3 data," Remote Sensing, vol. 13, p. 2798, 2021.
[23]. S. Beygi, I. V. Talovina, M. Tadayon, and A. B. Pour, "Alteration and structural features mapping in Kacho-Mesqal zone, Central Iran using ASTER remote sensing data for porphyry copper exploration," International Journal of Image and Data Fusion, vol. 12, pp. 155-175, 2021.
[24]. Z. Wang, C. Zhou, and H. Qin, "Detection of hydrothermal alteration zones using ASTER data in Nimu porphyry copper deposit, south Tibet, China," Advances in Space Research, vol. 65, pp. 1818-1830, 2020.
[25]. S. Fakhari, A. Jafarirad, P. Afzal, and M. Lotfi, "Delineation of hydrothermal alteration zones for porphyry systems utilizing ASTER data in Jebal-Barez area, SE Iran," Iranian Journal of Earth Sciences, vol. 11, pp. 80-92, 2019.
[26]. B. Behbahanı, H. Haratı, P. Afzal, and M. Lotfı, "Determination of alteration zones applying fractal modeling and Spectral Feature Fitting (SFF) method in Saryazd porphyry copper system, central Iran," Bulletin of the Mineral Research and Exploration, vol. 172, pp. 1-14, 2023.
[27]. S. Rajendran and S. Nasir, "Characterization of ASTER spectral bands for mapping of alteration zones of volcanogenic massive sulphide deposits," Ore Geology Reviews, vol. 88, pp. 317-335, 2017.
[28]. B. W. Rockwell and A. H. Hofstra, "Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data—Implications for geologic mapping and mineral resource investigations in well-studied and frontier areas," Geosphere, vol. 4, pp. 218-246, 2008.
[29]. L. C. Rowan and J. C. Mars, "Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data," Remote sensing of Environment, vol. 84, pp. 350-366, 2003.
[30]. K. S. Essa, M. Munschy, M. A. Youssef, and E. E. D. A. H. Khalaf, "Aeromagnetic and radiometric data interpretation to delineate the structural elements and probable precambrian mineralization zones: A case study, Egypt," Mining, Metallurgy & Exploration, vol. 39, pp. 2461-2475, 2022.
[31]. M. Abdullahi, U. K. Singh, and R. Roshan, "Mapping magnetic lineaments and subsurface basement beneath parts of Lower Benue Trough (LBT), Nigeria: Insights from integrating gravity, magnetic and geologic data," Journal of Earth System Science, vol. 128, pp. 1-17, 2019.
[32]. A. M. Eldosouky, R. A. El-Qassas, L. T. Pham, K. Abdelrahman, M. S. Alhumimidi, A. El Bahrawy, et al., "Mapping main structures and related mineralization of the Arabian Shield (Saudi Arabia) using sharp edge detector of transformed gravity data," Minerals, vol. 12, p. 71, 2022.
[33]. H. Sehsah, A. M. Eldosouky, and L. T. Pham, "Incremental Emplacement of the Sierra Nevada Batholith Constrained by U-Pb Ages and Potential Field Data," The Journal of Geology, vol. 130, pp. 381-391, 2022.
[34]. E. Abdelrahman, H. M. El-Arby, T. M. El-Arby, and K. S. Essa, "A least-squares minimization approach to depth determination from magnetic data," pure and applied geophysics, vol. 160, pp. 1259-1271, 2003.
[35]. E. Aboud, "Determination of sedimentary cover and structural trends in the Central Sinai area using gravity and magnetic data analysis," Journal of Asian Earth Sciences, vol. 43, pp. 193-206, 2012.
[36]. J. Yang, S. Liu, and X. Hu, "Inversion of high-amplitude magnetic total field anomaly: An application to the Mengku iron-ore deposit, northwest China," Scientific Reports, vol. 10, p. 11949, 2020.
[37]. M. Gobashy, M. Abdelazeem, and M. Abdrabou, "Minerals and ore deposits exploration using meta-heuristic based optimization on magnetic data," Contributions to Geophysics and Geodesy, vol. 50, pp. 161-199, 2020.
[38]. G. Martelet, E. Gloaguen, A. Døssing, E. Lima Simoes da Silva, J. Linde, and T. M. Rasmussen, "Airborne/UAV multisensor surveys enhance the geological mapping and 3d model of a pseudo-skarn deposit in Ploumanac’h, French Brittany," Minerals, vol. 11, p. 1259, 2021.
[39]. P. Gunn and M. Dentith, "Magnetic responses associated with mineral deposits," AGSO Journal of Australian Geology and Geophysics, vol. 17, pp. 145-158, 1997.
[40]. Z. Ahmed and M. M. Hariri, "Formation and mineral chemistry of a calcic skarn from Al-Madhiq, SW Saudi Arabia," Geochemistry, vol. 66, pp. 187-201, 2006.
[41]. P. L. Williams, "Reconnaissance Geology of the Samirah Quadrangle, Sheet 26/42 C, Kingdom of Saudi Arabia," US Geological Survey 2331-1258, 1984.
[42]. C. Hummel and A. O. Ankary, "Geology and mineral deposits of the Jabal ash Shumta quadrangle, Kingdom of Saudi Arabia," US Geological Survey 2331-1258, 1972.
[43]. B. Lemiere, N. Damanhori, and G. Baudet, "A Marble-Hosted Wollastonite Deposit at Bi’r Ash Shumt, Kingdom of Saudi Arabia," Earth Sciences Journal, vol. 3, pp. 129-144, 1990.
[44]. P. Nehlig, I. Salpeteur, F. Asfirane, V. Bouchot, J. Eberlé, and A. Genna, "The mineral potential of the Arabian shield: a reassessment," in Proceedings of the IUGS/UNESCO Meeting on the “Base and Precious Metal Deposits in the Arabian Shield”, Jeddah, November, 1999, pp. 12-19.
[45]. F. Robinson, J. Foden, and A. Collins, "Geochemical and isotopic constraints on island arc, synorogenic, post-orogenic and anorogenic granitoids in the Arabian Shield, Saudi Arabia," Lithos, vol. 220, pp. 97-115, 2015.
[46]. W. J. Hinze, R. R. Von Frese, R. Von Frese, and A. H. Saad, Gravity and magnetic exploration: Principles, practices, and applications: Cambridge University Press, 2013.
[47]. A. M. Eldosouky, H. Sehsah, S. O. Elkhateeb, and A. B. Pour, "Integrating aeromagnetic data and Landsat-8 imagery for detection of post-accretionary shear zones controlling hydrothermal alterations: The Allaqi-Heiani Suture zone, South Eastern Desert, Egypt," Advances in Space Research, vol. 65, pp. 1008-1024, 2020.
[48]. H. Sehsah and A. M. Eldosouky, "Neoproterozoic hybrid forearc–MOR ophiolite belts in the northern Arabian-Nubian Shield: no evidence for back-arc tectonic setting," International Geology Review, vol. 64, pp. 151-163, 2022.
[49]. H. Sehsah, A. M. Eldosouky, and A. H. El Afandy, "Unpaired ophiolite belts in the Neoproterozoic Allaqi-Heiani Suture, the Arabian-Nubian Shield: evidences from magnetic data," Journal of African Earth Sciences, vol. 156, pp. 26-34, 2019.
[50]. L. T. Pham, A. M. Eldosouky, E. Oksum, and S. A. Saada, "A new high resolution filter for source edge detection of potential field data," Geocarto International, vol. 37, pp. 3051-3068, 2022.
[51]. Geosoft, "Magmap filtering how-to guide: defining and applying filters and inverse FFT in MagMap," p. 23, 2015.
[52]. M. N. Nabighian, "The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation," Geophysics, vol. 37, pp. 507-517, 1972.
[53]. A. Salem, D. Ravat, T. J. Gamey, and K. Ushijima, "Analytic signal approach and its applicability in environmental magnetic investigations," Journal of Applied Geophysics, vol. 49, pp. 231-244, 2002.
[54]. A. Salem and D. Ravat, "A combined analytic signal and Euler method (AN-EUL) for automatic interpretation of magnetic data," Geophysics, vol. 68, pp. 1952-1961, 2003.
[55]. A. Salem, S. Williams, J. D. Fairhead, D. Ravat, and R. Smith, "Tilt-depth method: A simple depth estimation method using first-order magnetic derivatives," The leading edge, vol. 26, pp. 1502-1505, 2007.
[56]. M. Reford and J. Sumner, "Aeromagnetics," Geophysics, vol. 29, pp. 482-516, 1964.
[57]. M. T. Einaudi and D. M. Burt, "Introduction; terminology, classification, and composition of skarn deposits," Economic geology, vol. 77, pp. 745-754, 1982.
[58]. J. M. Hammarstrom, B. B. Kotlyar, T. G. Theodore, J. E. Elliott, D. A. John, J. L. Doebrich, et al., "Cu, Au, and Zn-Pb Skarn Deposits," Preliminary Compilation of Descriptive Geoenvironmental Mineral Deposit Models, US Geological Survey Open-File Report, pp. 95-831, 1995.
[59]. P. R. Whitney and J. F. Olmsted, "Rare earth element metasomatism in hydrothermal systems: The Willsboro-Lewis wollastonite ores, New York, USA," Geochimica et Cosmochimica Acta, vol. 62, pp. 2965-2977, 1998.
[60]. U. Ghosh and D. Upadhyay, "The retrograde evolution of F-rich skarns: Clues from major and trace element chemistry of garnet, scheelite, and vesuvianite from the Belka Pahar wollastonite deposit, India," Lithos, vol. 422, p. 106750, 2022.
[61]. F. Cocco, A. Attardi, M. L. Deidda, D. Fancello, A. Funedda, and S. Naitza, "Passive structural control on skarn mineralization localization: a case study from the Variscan Rosas Shear Zone (SW Sardinia, Italy)," Minerals, vol. 12, p. 272, 2022.
[62]. T. Baker and J. R. Lang, "Reconciling fluid inclusion types, fluid processes, and fluid sources in skarns: an example from the Bismark Deposit, Mexico," Mineralium Deposita, vol. 38, pp. 474-495, 2003.
[63]. P. Deb, D. Knapp, G. Marquart, C. Clauser, and E. Trumpy, "Stochastic workflows for the evaluation of Enhanced Geothermal System (EGS) potential in geothermal greenfields with sparse data: the case study of Acoculco, Mexico," Geothermics, vol. 88, p. 101879, 2020.
[64]. R. H. Sillitoe and H. F. Bonham Jr, "Sediment-hosted gold deposits: Distal products of magmatic-hydrothermal systems," Geology, vol. 18, pp. 157-161, 1990.
[65]. C. L. Ciobanu and N. J. Cook, "Skarn textures and a case study: the Ocna de Fier-Dognecea orefield, Banat, Romania," Ore Geology Reviews, vol. 24, pp. 315-370, 2004.
[66]. M. Yousefi and J. M. Hronsky, "Translation of the function of hydrothermal mineralization-related focused fluid flux into a mappable exploration criterion for mineral exploration targeting," Applied Geochemistry, vol. 149, p. 105561, 2023.
[67]. S. M. Heidari, P. Afzal, and B. Sadeghi, "Molybdenum and gold distribution variances within Iranian copper porphyry deposits," Journal of Geochemical Exploration, vol. 261, p. 107471, 2024.
[68]. P. Kianoush, N. Keshavarz Faraj Khah, P. Afzal, E. Jamshidi, A. H. Bangian Tabrizi, and A. Kadkhodaie, "Formation Pressures Determination Utilizing the Integration of Fractal and Geostatistical Modelling in a Hydrocarbon Formation of SW Iran," Journal of Analytical and Numerical Methods in Mining Engineering, 2024.
[69]. M. M. Pourgholam, P. Afzal, A. Adib, K. Rahbar, and M. Gholinejad, "Delineation of Iron alteration zones using spectrum-area fractal model and TOPSIS decision-making method in Tarom Metallogenic Zone, NW Iran," Journal of Mining and Environment, vol. 13, pp. 503-525, 2022.
[70]. M. Zamyad, P. AFZAL, M. POURKERMANI, R. NOURI, and M. R. JAFARI, "Combination of Spectral Feature Fitting (SFF) and Concentration-Number (CN) Fractal Modeling for Identification Alteration in Tirka Area, NE Iran," 2022.
[71]. K. Mostafaei, M. N. Kianpour, and M. Yousefi, "Delineation of Gold Exploration Targets based on Prospectivity Models through an Optimization Algorithm," Journal of Mining and Environment, vol. 15, pp. 597-611, 2024.
[72]. M. Saremi, S. Yousefi, and M. Yousefi, "Combination of Geochemical and Structural Data to Determine Exploration Target of Copper Hydrothermal Deposits in Feizabad District," Journal of Mining and Environment, vol. 15, pp. 1089-1101, 2024.
[73]. A. D. Ettlinger, L. D. Meinert, and G. E. Ray, "Gold skarn mineralization and fluid evolution in the Nickel Plate Deposit, British Columbia," Economic Geology, vol. 87, pp. 1541-1565, 1992.
[74]. Z. Chang and L. D. Meinert, "Zonation in skarns and the controlling factors," TUNGSTEN, FIRE AND ICE IN THE REALM OF THE ANCIENT KING, p. 35, 2009.
[75]. D. R. Cooke, C. L. Deyell, P. J. Waters, R. I. Gonzales, and K. Zaw, "Evidence for magmatic-hydrothermal fluids and ore-forming processes in epithermal and porphyry deposits of the Baguio district, Philippines," Economic Geology, vol. 106, pp. 1399-1424, 2011.
[76]. D. P. Braxton, D. R. Cooke, A. M. Ignacio, and P. J. Waters, "Geology of the Boyongan and Bayugo porphyry Cu-Au deposits: An emerging porphyry district in northeast Mindanao, Philippines," Economic Geology, vol. 113, pp. 83-131, 2018.
[77]. W. Ma, Y. Liu, Z. Yang, Z. Li, X. Zhao, and F. Fei, "Alteration, mineralization, and genesis of the Lietinggang–Leqingla Pb–Zn–Fe–Cu–Mo skarn deposit, Tibet, China," Ore Geology Reviews, vol. 90, pp. 897-912, 2017.
[78]. J. A. Fitzherbert, A. R. McKinnon, P. L. Blevin, K. Waltenberg, P. M. Downes, C. Wall, et al., "The Hera orebody: A complex distal (Au–Zn–Pb–Ag–Cu) skarn in the Cobar Basin of central New South Wales, Australia," Resource Geology, vol. 71, pp. 296-319, 2021. | ||
آمار تعداد مشاهده مقاله: 318 تعداد دریافت فایل اصل مقاله: 219 |