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 Failure of tailings dams is a major issue in the mining industry as it critically 
impacts the environment and life. A major cause of the failure of tailings dams is the 
unplanned depositing of tailings and the increase in saturation due to rainfall events. 
This study using numerical modelling and artificial intelligence techniques (like 
MLR, SVR, DT, RF, and XGB) aims to predict the slope stability of tailings dams to 
avoid failure. The stability of tailings dams is analysed using the finite difference 
method (FDM), which computes the factor of safety (FoS) using the shear strength 
reduction (SSR) technique. This investigation mainly focuses on the geotechnical and 
geometric parameters of the tailings dam, such as density, cohesion, friction angle, 
saturation, embankment height, slope angle and haul road width. Results of numerical 
modelling have been used for developing ML models and predicting slope stability. 
The efficiency of ML models was analysed based on the R2 and root mean square 
error (RMSE), mean squared errors (MSE), and mean absolute error (MAE). The 
XGB algorithm proved to be the most effective as it gave the highest accuracy and 
lowest RMSE value compared to other ML models. AI tool was developed based on 
the ML model results for dam slope stability prediction. The developed AI tool will 
help understand the role of saturation and geometry parameters in embankment 
stability at the initial level of investigation. 
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1. Introduction 

The tailings dam embankment structure is 
susceptible to unplanned deposition and design. It is 
designed to effectively contain and manage mine 
waste, commonly referred to as tailing material 
(iron ore waste, fly ash). The iron ore waste is 
deposited in the mine area in a tailings dam. There 
are three types of waste based on the construction 
approach: downstream, centerline, and upstream, 
that result in cost savings and efficient waste 

management [1]. In recent decades, the metal 
mining industry has faced many issues related to 
tailings dam failures. Every year up to five tailings 
dams fail worldwide [2], and the failure of tailings 
dams creates severe environmental problems and 
fatalities [3]. Tailings dam failure has seen on a 
global scale from 1915 to 2020 as shown in Figure 
1. Therefore, tailings dam stability analysis is 
essential for avoiding failure-related issues. 
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Figure 1. Statistical distribution of tailings dam failures on a global scale [4] 

In the past, numerous in-depth investigations 
have been carried out on the environmental impact, 
failure mechanism, and slope stability of tailings 
dams. The finite element method (FEM) [5] and 
limit equilibrium method (LEM) [6] have been 
employed for slope strength analysis, such as dam 
slope stability, displacement analysis [7] and 
parametric study [8]. However, it was found that 
each approach has its benefits and drawbacks. 
Therefore, there is a need for a robust and reliable 
approach for accurate stability analysis under field 
conditions. In several studies, the main reason for 
the tailings dam failure was found to be liquefaction 
[9]. Liquefaction can significantly affect the slope 
stability of tailings dams, leading to potentially 
catastrophic consequences. Examples of failure are 
Merriespruit in South Africa [10], Fundao in Brazil 
[11], Cadia Valley in Australia [12] and 
Brumadinho in Brazil [13]. Earthquakes and high-
intensity precipitation typically cause changes in the 
stress, pore water pressure and seepage, which 
cause a slope to become unstable. Numerous factors 
have contributed significantly to the failure of the 
tailings dam, including foundation failure, 
excessive precipitation, seismic liquefaction, 
seepage, inadequate freeboard, and an increase in 

the phreatic surface [14]. The primary variables 
contributing to the failure were meteorological 
conditions, especially irregular rainfall and 
snowfall. It has been found that 66% of the 
collapsed tailings dams were constructed utilising 
the upstream (U/S) type of embankment 
construction [14]. 

In recent years, machine learning (ML) 
algorithms have been widely used for field 
applications such as rock and soil slope stability 
analysis for geotechnical investigations. In Chile, 
artificial intelligence (AI) algorithms were used in 
tailings dam stability analysis [15]. The dam 
stability prediction involves different ML 
algorithms, namely multiple linear regression 
(MLR) [10], decision tree (DT) [11], random forest 
(RF) [12], support vector regression (SVR) [13] and 
extreme gradient boosting (XGB) [16], which were 
chosen for excellent performance in geotechnical 
investigation and the dam slope stability prediction 
[17].  

This study aimed to develop an AI tool for 
predicting tailings dam slope stability. In the initial 
phase, 767 numerical models were solved to obtain 
the slope FoS with different slope stability affecting 
parameters such as height, slope angle, haul road 
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width, material properties, and saturation 
conditions. In addition, this investigation developed 
ML models for slope stability prediction and 
analysed the efficiency of ML models based on R2, 
RMSE, MAE and MSE. Finally, a user interface 
(UI) was developed on a web page for the dam slope 
stability prediction, which will help make a decision 
for the tailings dam slope stability. The results of 
this investigation show the significance of ML in the 
prediction and management of tailings dam 
stability.  

2. Background of Study – Mine Tailings Dam 

Figure 2 depicts the basic structure of a tailings 
dam, with H representing the height of the dam, θ 
denoting the slope angle of the embankment, and 
w indicating the width of the haul road. The 
foundation of the tailings dam is 15 m, and the 
freeboard height is 5 m.  

 
Figure 2. Schematic diagram of the tailings dam 

The width of the shell is dependent on the 
embankment height (H), slope angle (θ) and haul 
road width (w). The ratio between the height of 
compacted tailings and pond tailings is in the 
range of 7:3 to 8:2. The geotechnical parameters 
of the tailings dam are listed in Table 1, such as 

unit weight (kN/m3), cohesion (Pa), angle of 
internal friction (ϕ), shear modulus (MPa), 
Poisson ratio, porosity, and permeability (k) 
(m/sec). The scheme of the tailings dam 
embankment slope stability analysis using the 
numerical simulation and ML approaches is 
shown in Figure 3. 

Table 1. Geotechnical parameters of tailings dam [17] 
 Tailings dam embankment 
Geotechnical parameters Shell Core Pond tailings Compacted tailings Foundation soil 
Unit weight (kN/m3) 18.30 16.40 19.00 19.00 18.30 
Cohesion (Pa) 31.25 35.00 14.70 14.70 31.25 
Angle of internal friction (ϕ)  28.00 28.00 12.00 15.20 28.00 
Shear modulus (MPa) 190.25 53.56 45.64 95.39 217.35 
Poisons ratio (υ) 0.30 0.40 0.35 0.35 0.20 
Porosity (%) 0.30 0.25 0.25 0.25 0.30 
Permeability (m/sec) 1e-8 1e-10 1e-8 1e-8 1e-8 
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Figure 3. The flowchart illustrates the approach for 

the tailings dam stability prediction 

3. Numerical Modelling 

Numerical simulation has been widely used for slope 
stability analysis, such as rock slope stability [18], [19], 
mine waste dump design and stability [20], [21], [22] 
and tailings dam stability [14]. FEM and FDM are 
employed for the slope stability and deformation 
analysis. Dam slope FoS is used for the slope stability 
prediction in this investigation. FoS is essential for 
slope design and stability analysis. Rock, dump and 
tailings dam slope stability are analysed using FoS. If 
the slope stability is 1.2, then the slope will be stable 
and below 1 it indicates the unstable slope [23]. 
Therefore, this study uses the FoS for the dam slope 
stability prediction using ML models. Flac2D 
computing application was employed for the dam slope 
FoS calculation. Mohr-Coulomb constitutive failure 
criterion was used for the dam slope FoS calculation 
based on the SSR method. The SSR approach is 
employed in FoS calculations to gradually decrease the 
shear strength (cohesion and friction angle), typically 
by applying the Mohr-Coulomb failure criterion [22]. 
The SSR equations for properties like cohesion and 
internal angle of friction are: 

C ௧௥௜௔௟  =  ൬
1

F௧௥௜௔௟൰ ∗ c (1) 

φ௧௥௜௔௟ =  tanିଵ ቆ൬
1

F௧௥௜௔௟൰ tan(φ)ቇ (2) 

Where, the ܨ௧௥௜௔௟ is FoS trial for stability 
calculation, ܥ௧௥௜௔௟  and ߮௧௥௜௔௟ are gradually reduced 
values of shear strength parameters (cohesion and 
angle of friction). ܿ will be the actual cohesion 
value, and ߮ the actual internal angle of friction. 

4. Machine Learning 

Many researchers have used AI algorithms such 
as ML for slope stability prediction [24] and rock 
mass classification [25]. ML to slope stability 
prediction has positive outcomes. MLR, DT, RF, 
SVR, and XGB were used for tailings dam slope 
stability prediction. 

4.1. Multiple Linear Regression  

MLR is a commonly employed statistical method in 
machine learning that establishes a linear 
association between a dependent variable and 
multiple independent variables [26], [27]. Using a 
dataset with known values for both dependent and 
independent variables, the model is trained to 
estimate the coefficients that best fit the data, which 
can be used for the predictions of new data by 
putting the values of the independent variables. The 
fundamental concept of the MLR model is to get the 
best-fitting linear equation for given data sets 
(Figure 4). Most linear regressions are fitted using 
the least squares method [28]. The research 
conducted by Erzin and Cetin [29] demonstrates the 
utilisation of the multiple regression model. MLR 
has been utilised to predict slope failures and 
landslides [30], [31]. 

 
Figure 4. A schematic diagram of simple linear fitting 

[32] 

The multiple linear regression can be 
mathematically represented as: 

ܻ = ଴ߚ  ଵݔଵߚ +  ଶݔଶߚ +   + · · · ௞ݔ௞ߚ +   +  (3) ߝ 
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Where ܻ variable is dependent or predicted, the 
y-intercept determines the slope of ܻ, that is, when 
௞ݔ ,…ଶݔ ,ଵݔ  are zero, ܻ will be ߚ଴. The regression 
coefficients ߚଵ, ߚଶ, …, ߚ௞  represent the change in ܻ 
because of one-unit change in ݔଵ, ݔଶ…, ݔ௞  ௞ theߚ .
term slope coefficient pertains to all independent 
variables, ߝ term characterises the random error 
(residual) in the model. 

4.2. Decision Tree 

It is a fundamental algorithm in machine 
learning and data analysis used for classification 
and regression tasks. The DT consists of three 
nodes: root, internal, and leaf. The tree-like 
structure is used to represent the data, with core 
nodes representing decisions based on features, 

branches indicating the outcomes of those 
decisions, and leaf nodes representing class labels. 
The DT model results unveil the relative 
significance of the input parameters on the output 
parameter [33]. It is an example of a supervised 
machine learning algorithm that works by 
partitioning the input data into subsets based on the 
values of different features. The DT root node stores 
all input variables, and the internal node is 
associated with a decision function. A leaf node 
signifies the result of a specific vector input [34]. 
Pradhan [35] utilised a DT algorithm to create a 
spatial prediction model for a landslip susceptibility 
chart at Penang Hill, Malaysia. Figure 5 
demonstrates the structure of the decision tree for 
the trained dataset. 

 
Figure 5. Decision tree for the tailings dam slope FoS prediction 

4.3. Random Forest 

RF is a widely used machine learning algorithm 
for classification and regression tasks. RF is an 
algorithm that constructs many decision trees using 
various subsets of the dataset. It then aggregates the 
forecasts of these trees by calculating their average. 
The aim of this approach is to improve the 
predictive accuracy of the dataset. Each sample has 
a group of sets which is trained individually and 
independently. During the process of training, just a 
random selection of features is used instead of using 
all the features. This is done to improve the variety 
across the decision trees [36]. The random forest 
model consists of many decision trees that make 
predictions in parallel and independently. The final 

forecast is determined by voting based on the 
outcomes of all the decision trees [37]. RF can 
mitigate the problem of overfitting by randomly 
selecting both samples and their features. It is 
particularly effective in dealing with high-
dimensional data and have the ability to provide 
changeable significance scores during the decision-
making process [38], [39]. RF is commonly 
employed in industries as black box models due to 
its ability to generate precise predictions across 
diverse datasets without requiring any preparation 
[40]. Figure 6 illustrates the technique of the RF 
algorithm used in the slope stability prediction.  
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Figure 6. Illustration of random forest ML model 

4.4. Support Vector Regression 

Support vector machines (SVM) often employ 
machine learning models for forecasting decision 
boundaries and classifying data. SVM is useful for 
handling non-separable and high-dimensional data 
sets. Additionally, the related support vector 
regression (SVR) technique can be employed to 
address extrapolation and interpolation challenges. 
SVR is a machine-learning technique that is used for 
regression tasks. The SVR approach is based on the 
formulation of the Vapnik theory [41], [42], [43]. 
While the primary objective of basic regression is to 
minimise error rates, the main aim of SVR is to 
ensure that the error is contained within a 
predetermined threshold. It suggests that the SVR 
task aims to estimate the optimal value with a 
predefined margin [44]. It is used to predict a 
continuous output variable or dependent variable 
based on input features. SVR takes a different 
approach unlike conventional regression 
techniques, where a regression function that 
maintains a specific margin of error around the 
predicted values is found, rather than fitting the data 
exactly. It aims to find a hyperplane that optimally 
aligns with the data points within a continuous 
space. The procedure entails mapping input 

variables to a feature space within a high 
dimensional space, followed by the selection of the 
hyperplane that most accurately aligns with the data. 
From the scikit learn documentation [45], Figure 7 
is an example of a hyperplane constructed for 
samples on the decision boundaries. 

 
Figure 7. Basic visualisation of support vector 

regression 

4.5. Xtreme Gradient Boosting 

XGB is a powerful and widely used machine 
learning technique that comes under the gradient 
boosting method. XGB is designed to address the 
limitations of traditional gradient boosting and has 
gained popularity for its high performance and 
effectiveness across a variety of ML tasks, including 
classification, regression, and ranking problems [46]. 
XGBoost can generate accurate predictions faster 
than random forest and almost as well as deep neural 
[47]. The model is constructed using the gradient 
boosting framework, aggregating numerous weak 
decision trees to form a powerful ensemble model. It 
uses an approach to building decision trees, where it 
evaluates all possible splits and selects the one that 
results in the greatest reduction in the loss function. 
This approach leads to better and more informed tree 
structures [48]. Zhou et al. [49] approach an XGB to 
determine slope stability. Figure 8 shows the 
schematic illustration of the XGB model. 
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Figure 8. Schematic illustration of Xtreme Gradient Boosting model 

4.6. Data Pre-processing 
In this investigation, 767 numerical models were 

solved, and FoS of tailings dam slopes were 
calculated with respective geometry parameters and 
material strength. Numerical model datasets were 
used to establish the ML models as training and 
testing datasets. The number of sample data sets 

used in ML models is enough to generate a reliable 
model for the tailings dam stability assessment. 
Many researchers have used a lesser number of 
datasets to develop ML models for slope stability 
prediction [50], [51], [52], [53], [54]. Figure 9 
illustrates the entire scheme of AI tool development 
using the slope stability datasets. 

 
Figure 9. Workflow for pre-processing the datasets and AI tool development 
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Numerical modelling software is widely used in 
geotechnical engineering to simulate the behaviour 
of slopes and FoS calculations. A total 767 
numerical models were solved for the tailings dam 
slope stability calculated using the finite difference 
solver in the Flac2D software, with Mohr-Coulomb 
failure criteria. This study mainly focuses on the 
dam geometry parameters, and its effect was 
analysed. The data extraction process from the 
numerical models involves several vital points. 

In numerical analysis, modelling input 
parameters play an essential role in the dam slope 
stability. The input parameters will be geometry, 
material properties, and loading conditions. The 
dam slope stability depends on the geometry of 
parameters and material shear strength properties. 
The outcome of dam stability will be the FoS. 

Therefore, we collect data from numerical 
modelling as input and output.  

Numerical modelling is a powerful tool for slope 
FoS calculation, stress-strain and deformation 
analysis. This study calculates the tailings dam 
slope FoS using the shear strength reduction 
method. This investigation considers the tailings 
dam geometry parameters and material shear 
strength properties for the dam slope FoS 
calculation. These data sets were used in the ML 
model's training and testing.  

767 numerical models were solved to obtain the 
slope FoS with different slope stability affecting 
parameters such as height, slope angle, haul road 
width, material properties, and saturation conditions. 
Table 2 lists the variation of the parameters in the 
numerical modelling used for the slope FoS 
calculation. 

Table 2. Parameters used in the numerical modelling 
S. no. Parameters Range 

1 Height 20 - 55 m 
2 Slope angle 25 - 41° 
3 Haul road width 10 - 18 m 
4 Cohesion 28000 - 36000 Pa 
5 Friction angle 25 - 33° 
6 Saturation of tailing material 0 - 0.8 

 
Data sets are divided into a ratio of 4:1 for training 

and testing. The correlation between the parameters is 
shown in Figure 10, using a heatmap. A correlation 
matrix visualises data that identifies the features with 
the most vital relationship with the target feature. 
Each feature in a dataset is encoded as colours, which 
serve as indicators to researchers of the relationship 
between features. 
5. Results and Discussion 
5.1. Tailings Dam Slope Stability Analysis 

In the numerical modelling, tailings dam slope FoS 
has been calculated using Mohr's-Coulomb failure 
criteria with input parameters such as density, 
cohesion, internal angle of friction, and saturation 
condition. Figure 11 shows the displacement vector of 
the dam slope under static conditions. Figure 12(a) 
and (b) show the model's simulation result, indicating 
a stable slope because the FoS is 1.45. This 
investigation considers the influence of height, slope 

angle, shear strength parameters, saturation, and haul 
road width. 

 
Figure 10. Heatmap showing the correlation of 

parameters 
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Figure 11. Numerical modelling illustrates the displacement vector of the tailings dam slope 

 
Figure 12. Numerical modelling results of tailings dam (a) slope horizontal displacement, and (b) maximum 

shear strain increment with slope factor of safety under gravity force 

5.2. ML Model Efficiency 

Five machine learning algorithms have been applied 
for slope stability prediction. The ML model 
efficiency was analysed based on the value of MSE, 
RMSE, MAE and R2. ML model results are shown 

in Figure 13. Figure 14 shows the efficiency and 
accuracy of ML models.  

A graph between predicted and measured values 
helps to visually assess how well the predicted values 
match the actual measured values. 
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Figure 13. Charts for predicted and measured FoS results using machine learning (a) MLR Model, (b) DT 

model, (c) RF model, (d) SVR model, (e) XGB model accuracy and coefficient of determination 

Ideally, the points on the graph should align 
along a diagonal line, indicating a strong positive 
correlation between the predicted and measured 
values. This diagonal line is called the regression 
line and if the points deviate significantly from the 
regression line, it suggests a discrepancy between 
the predicted and measured values, indicating 
potential inaccuracies or errors in the prediction 
model. From the graphs, it is verified that prediction 
models are working well, and there is a good 
consistency between the measured FoS values and 
the predicted FoS values. Table 3 lists the ranking 

of ML models based on MSE, RMSE, MAE and R2. 
The XGB ML model performance is better than that 
of the other ML models. The hyperparameter 
optimisation process improved performance results 
by determining the most efficient parameters. The 
repetitive iterations necessary to train and evaluate 
models to determine the optimal values for the 
hyperparameters render this a complex task. Table 
4 illustrates the default values of the parameters 
max_depth, n_estimators, gamma, and 
learning_rate, which have been tuned. 
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Figure 14. Comparative performance metrics of ML models 

Table 3. Ranking of ML models 
Model MSE RMSE MAE R2 Rank 

MLR 0.0107 0.1037 0.0835 84.6707 4 
DT 0.0029 0.0542 0.0373 95.8111 3 
RF 0.0017 0.0416 0.0295 97.5290 2 
SVM 0.0109 0.1045 0.0836 84.4366 5 
XGB 0.0012 0.0352 0.0239 98.2292 1 

Table 4. Hyperparameter of the ML models 
Algorithm Hyper-Parameter Value 
MLR - - 

RF 

n_estimators 100 
max_depth None 
min_samples_split 2 
min_samples_leaf 1 
bootstrap True 

SVR 

C 1.0 
epsilon 0.1 
gamma scale 
kernel linear 

DT 

max_depth None 
Min Samples Split 2 
Min Samples Leaf 1 
Criterion: squared_error 

XGB 

n_estimators 1000 
learning_rate None 
max_depth 4 
subsample None 
colsample_bytree None 
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5.3. AI User Interface for Tailings dam Slope 
Stability Prediction 

A graphical user interface (GUI) was developed 
on the web page for the slope stability prediction, as 
seen in Figure 16. GUI shows the geometry 
parameters, material strength, and saturation as 
input values and FoS as output. Best fit ML model 
data is stored on the website with web security for 
the AI interface development. For GUI security, a 
unique ID and password was generated (Figure 15). 
This AI tool will require access to the internet. The 
developed AI user interface can be assessed through 
the internet, and slope stability can be predicted 

using a personal laptop and mobile (AI User 
Interface for Tailings dam Slope Stability 
Prediction). The FoS results can help determine a 
stable and unstable slope based on the dam slope. In 
the GUI background, the XGB ML algorithm was 
used for the slope stability prediction because this 
algorithm has higher efficiency than other ML 
algorithms in this study. AI tool results were 
compared with the numerical modelling results, and 
an absolute error of 0 – 3 % was obtained. Figure 17 
depicts the FoS values calculated by numerical 
modelling and predicted by the AI tool, 
respectively. 

 
Figure 15. The flowchart shows the data storage on the webpage and user interface for FoS prediction 

 
Figure 16. AI user interface for the tailings dam slope stability prediction 
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Figure 17. Graphs show the FoS results using modelling and AI tool with the absolute error 

6. Conclusions 

This study focuses on the tailings dam stability 
aspects, and the issues faced by geotechnical 
engineers were investigated. The issues governing the 
dam slope stability consist of high computational cost, 
time consumption, and the high economic value of the 
present tools. This study used numerical modelling 
and machine learning models (MLR, SVR, RF, DT, 
and XGB) to estimate the tailings dam stability. Based 
on the results, the following points emerge: 
1. The results show that the FoS of the dam slope depends 

on the saturation, height, slope angle, haul road width, 
cohesion, and friction angle of the tailings dam. 

2. Results of ML models indicate that ensemble learning 
models (RF and XGB) perform higher than ML models 
(MLR, SVR, DT). Finally, the best-fit ML model in this 
investigation is XGB for slope stability prediction based 
on accuracy and higher performance. 

3. Developed trained ML models were further integrated 
with a GUI tool for the swift assessment of the dam 
slope stability. The developed GUI tool is user-friendly 
and does not require technical expertise to handle it.  

4. The developed AI user interface can be assessed 
through the internet, and slope stability can be predicted 
using a personal laptop and mobile. 

5. The developed AI tool will be helpful for initial level 
tailings dam slope stability analysis. However, other 
factors, such as rainfall and seismic loading, can be 
included in the developed GUI tool for future work. 
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  چکیده:

باطله،    يشـکسـت سـدها یاصـل لیاز دلا یکیگذارد.  یم  ریتأث یو زندگ سـتیز  طیبه شـدت بر مح  رایاز مسـائل مهم در صـنعت معدن اسـت ز یکیباطله    يسـدها یخراب
،  MLR(مانند   یصـنوع و هوش م يعدد  يسـازمدل  يهاکیمطالعه با اسـتفاده از تکن نیاسـت. ا  یاز حوادث بارندگ یاشـباع ناش ـ  شیبرنامه باطله و افزایرسـوب ب

SVR ،DT  ،RF  وXGBدها بیش ـ  يداریپا  ینیبشی) با هدف پ دها  يداریاز شـکسـت انجام شـده اسـت. پا يریجلوگ  يباطله برا يسـ باطله با اسـتفاده از روش  يسـ
  قی تحق  نی. اشـودیم لیتحله و  یتجز  کند،ی) محاسـبه مSSR( یکاهش مقاومت برش ـ  کی) را با اسـتفاده از تکنFoS( یمنیا بی)، که ضـرFDMتفاضـل محدود (

د باطله مانند چگال  یو هندس ـ  یکیژئوتکن  يعمدتاً بر پارامترها بندگ  ،یسـ باع، ارتفاع خاکر  هیزاو  ،یچسـ طکاك، اشـ و عرض جاده تمرکز دارد. از  بیش ـ هیزاو  ،يزیاصـ
ازمدل ج ینتا عه مدل يبرا يعدد  يسـ ت. کار بیش ـ يداریپا  ینیبشیو پ  ML  يهاتوسـ ده اسـ تفاده شـ اس   ML  يهامدل ییااسـ هیو ر R2بر اسـ مربعات    نیانگیم  شـ

ــد. الگور لیو تحل هی) تجزMAEمطلق ( يخطا  نیانگی) و مMSEمربعات خطا (  نیانگی)، مRMSEخطا ( ــت ز  نیثابت کرد که موثرتر  XGB  تمیش   نی بالاتر  رایاس
ا  سـهیرا در مقا  RMSEمقدار   نیدقت و کمتر اس نتا  ی. ابزار هوش مصـنوع دهدیارائه م  ML  يهامدل ریبا سـ سـد   بیش ـ  يداریپا  ینیبشیپ يبرا  MLمدل   ج یبر اسـ

 کند.یکمک م قاتیتحق هیدر سطح اول زیخاکر يداریاشباع و هندسه در پا يبه درك نقش پارامترها افتهیتوسعه  یتوسعه داده شد. ابزار هوش مصنوع 

  .نیماش يریادگی ،یمنیا بیضر ،يعدد يسد باطله، مدلساز يداریپا کلمات کلیدي:

 

 

 

 


