- Un-Habitat (2010). Solid waste management in the world's cities. Un-Habitat.
- Adeoye, G. O., Ogunsanwo. O., & Ige, O. O. (2013). Geotechnical evaluation of some soils from part of southwester Nigeria usable as liners in waste disposal landfills. Civil and Environmental Research, 3(7):107-114.
- Buekens, A. G. (1998). Solid waste management. In Environmental Management in Practice: Compartments, Stressors and Sectors (Vol.2). Routledge London and New York.
- Daramola, S. O., and Ilasanmi B. I. (2019). Geotechnical Evaluation of some Lateritis Soils from Ore, Southwestern Nigeria as Liners in Landfills. Current Journal of Applied Science and Technology, 32(1):19778:1-7.
- Broderick, G. P., & Daniel D. E. (1990). Stabilizing compacted clay against chemical attack. Journal of Geotechnical Engineering, 116 (10):1549 – 1567.
- Oeltzschner, H. (1992). Anforderin an die Geologic, Hydrogeologe und Geotechnik biem bau von deponie. Thorme-kozmiensky K. J. ed. Addichtung von Deponien und Altlasten. E. F. Verlag fur Energie und Umwelttechnik GmbH, Berlin. pp. 53 – 82.
- Daniel, D. E. (Ed.) (1993) Geotechnical Practice for Waste Disposal, Chapman and Hall.
- Benson, C. H., Zhai, H., & Wang, X. (1994). Estimating Hydraulic Conductivity of Clay Liners, Journal of Geotechnical Engineering, 120 (2):366-387.
- Rowe, R. K. (2005). Long-term performance of contaminant systems. Geotechnique, 55(9):631 – 678.
- Rowe, R. K., Quigley, R. M., & Booker, J. R. (1995). Clayey barrier systems for water disposal facilities. Chapman & Hall.
- Stern, R. T., & Shackelford, C. D. (1998). Permeation of sand-processed clay mixtures with calcium chloride solutions. Journal of Geotechnical and Geoenvironmental Engineering, 124 (3):231-241.
- Ige, O. O. (2010). Assessment of geotechnical properties of migmatite-gneiss derived residual soil from Ilorin, Southwestern Nigeria, as barrier in sanitary landfills. Continental Journal of Earth Sciences, 5 (1): 32-41.
- Fatoyinbo, I. O., Bello, A. A., Olajire, O. O., Oluwaniyi, O. E., Olabode, O. F., Aremu A. L., & Omoniyi, L. A. (2020). Municipal solid waste landfill site selection: a geotechnical and geoenvironmental-based geospatial approach. Environmental Earth Science, 79 (10):1-17.
- Omoniyi, I. O., Olufemi, O., & Abdulwahid, A. K. (2014). Geotechnical and mineralogical evaluation of some lateritic soils from Southwestern Nigeria. EJGE, 19: 301-312.
- Coulthard, J. M., and Bell, F. G. (1993). The engineering geology of the lower Lias clay at Blockley, Gloucestershire, UK. Geotechnical & Geological Engineering, 11 (3): 185-201.
- Tardy, Y. (1992). Diversity and terminology of lateritic profiles. In Developments in earth surface processes. 2: 379-405.
- Oyelami, C. A., & Van Rooy, J. L. (2016). A review of the use of lateritic soils in the construction/development of sustainable housing in Africa: A geological perspective. Journal of African Earth Science 119:226-237.
- Onyelowe Ken, C., & Okafor, F. O., (2013). Quarry dust improvement of laterite for road base. World Journal of Engineering Science.
- Adeyemi, G. O., & Wahab, K. A. (2008). Variability in the Geotechnical Properties of a Laterite Soil from South Western Nigeria. Bull Eng Geol Environ 7:579–584.
- Adebisi, N. O., Adeyemi, G. O., Olufemi, S. O., & Songca, S. P. (2013). Important properties of clay content of lateritic soils for engineering project. Journal of Geography and Geology, 5(2):99-115. http://dx.doi.org/10.5539/jgg.v5n2p99.
- Etim, R. K., Attah, I. C., & Yohanna, P. (2020). Experimental study on potential of oyster shell ash in structural strength improvement of lateritic soil for road construction. International Journal of Pavement Research and Technology, 13:341-351.
- Obianyo, I. I., Mahamat, A. A., Anosike-Francis, E. N., Stanislas, T. T., Geng, Y., Onyelowe, K. C., & Soboyejo, A. B. (2021). Performance of lateritic soil stabilized with combination of bone and palm bunch ash for sustainable building applications. Cogent Engineering, 8(1), 1921673.
- Ojuri, O. O., & Oluwatuyi, O. E. (2018). Compacted sawdust ash-lime stabilised soil-based hydraulic barriers for waste containment. In: Proceedings of The Institution of Civil Engineers– Waste and Resource Management, 171(2). pp. 52–60
- Ogundipe, O. M. (2008). Road pavement failure caused by poor soil properties along Aramoko-Ilesha Highway Nigeria. Journal of Engineering & Applied Sciences, 3(3):239-241.
- Adamu, L. M., Lekdukun, M. O., Adesina, D. A., Emmanuel, A. U., Ibrah, S. O., & Adamu, N. (2024). Geology, Petrology and Geochemistry of the Basement Rocks around Ihima, Southwestern Basement Complex, Nigeria. Reading Time, 2024, 02-01.
- Ige, O. O., Ogunsanwo, O. O., & Inyang, H. I., (2010). Characterization of terrain and biotite gneiss derived laterite soils in Ilorin, Nigeria, for use in landfill barriers. Global Journal of Geological Sciences, 9(1):1-9.
- Oyinloye, A. O. (2011). Geology and geotectonic setting of the Basement Complex rocks in Southwestern Nigeria: Implications on provenance and evolution. Earth and Environmental Sciences, (978-953), 307-468.
- ASTM (2007a). D 422-63 – Standard Test Methods for Particle-Size Analysis of Soils. ASTM International, West Conshohocken, PA, pp. 1 – 8.
- ASTM (2010) D-4318 – Standard Test Methods for Liquid Limit, Plastic Limit, Plasticity Index of Soils, Annual book of ASTM standards, PA, 19428-2959 USA, Vol. 04, No. 08, pp. 32.
- ASTM (2012) D 2434–Standard Test Methods for Permeability of Granular Soils (Constant Head), ASTM International, West Conshohocken, PA, pp. 1 – 15.
- ASTM (2002) D 854-00 - Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International, West Conshohocken, PA, pp. 2.
- ASTM (2007b) D 698–Standard Test Methods for Laboratory Compaction Characteristics of Soil using Standard Effort (12,400 ft-Ibs/ft3(600 kN-m/m)). ASTM International, West Conshohocken, Pennsylvania, United States, pp. 1 – 14.
- Brown, G., & Brindley, G.W. (1980). X-ray diffraction procedures for clay mineral identification, In: Bringley, G. W., Brown, G.W.G. (Eds.), Crystal Structure of Clay Minerals and Their X-Ray Identification. Mineralogical Society, London.
- Ogunsanwo, O. (1996). Geotechnical investigation of some soils from southwestern Nigeria for use as mineral scale in waste disposal landfills. Bulletin of International Association of Engineering Geologists, Paris. 54:119 – 123.
- Skempton, A. (1953). The colloidal activity of clay. Conference of Soil mechanics, Zurich. 57 – 61.
- Murphy, R., & Garwell, E. J. (1998). Infiltration rate through landfill liners. Florida Centre For Solid and Hazardous Waste Management Report. http:www.floridacentre.org/publications.
- Mark, Y. (2002). Geology and geotechnical investigation of the proposed anterbury regional landfill Kate valley. North Canterbury Transwaste Canterbury Ltd. 147p.
- Fred, L., & Anne, J. (2005). Flawed Technology of Subtitle D. Landfill Municipal Solid Waste, 69p.
- Kabir, M. H., & Taha, T. R. (2006). Sedimentary residual soils as a hydraulic barrier in waste containment system. 2nd International Conference on Advances in Soft Soil Engineering. Technology Putrajaye, Malaysia. 894 – 904.
- Reeves, G. M., Sims, I., & Cripps, J. C. (2006). Clay Materials Used in Construction, Geological Society, London, Engineering Geology Special Publication, 21:380 – 420.
|