An Experimental Model for Determination of the Entrainment in Column Flotation Based on Operation Parameters | ||
Journal of Mining and Environment | ||
مقاله 16، دوره 16، شماره 3، مرداد و شهریور 2025، صفحه 1073-1088 اصل مقاله (3.84 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22044/jme.2024.14620.2758 | ||
نویسندگان | ||
Reza Zolfaghari؛ Mohammad Karamoozian* | ||
Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran | ||
چکیده | ||
In flotation, entrainment (ENT) affects the recovery of the concentrate, and the entrainment model is often supposed to be only a function of particle size in models. Some research shows that other variables may also significantly affect ENT. In this study, some flotation experiments executed using a mixture of pure quartz as the valuable mineral and a pure magnetite sample as the gangue mineral to investigate the effects of other variables, such as solid content, airflow rate, frother, and collector dosages, on ENT. The results showed ENT varied from 0.071 to 0.851 is different, while the entrainment recovery was between 0.006 to 0.23, which means that the difference is statistically significant. ENT affected by (1) collector dosage, (2) frother dosage, (3) solid content, (4) the interaction between airflow rate and solid content and, (5) the interaction between airflow rate and frother dosage. An empirical statistical model is presented based on operational parameters. As the present models for ENT incorporate just particle size, it is not enough to predict gangue recovery in industrial applications by keeping the operating conditions constant. This novel model can predict ENT based on different operational parameters. The developed model is presented based on the particle mass by changing the operation parameters. | ||
کلیدواژهها | ||
Column flotation؛ degree of entrainment؛ water recovery؛ concentrate recovery؛ empirical model | ||
مراجع | ||
[1]. Hoang, D. H., Heitkam, S., Kupka, N., Hassanzadeh, A., Peuker, U. A., & Rudolph, M. (2019). Froth properties and entrainment in lab-scale flotation: A case of carbonaceous sedimentary phosphate ore. Chemical Engineering Research and Design, 142, 100-110.
[2]. Norori-McCormac, A., Brito-Parada, P. R., Hadler, K., Cole, K., & Cilliers, J. J. (2017). The effect of particle size distribution on froth stability in flotation. Separation and Purification Technology, 184, 240-247.
[3]. Bhambhani, T., Farinato, R., Nagaraj, D. R., & Somasundaran, P. (2023). Effect of platy gangue minerals in sulfide flotation: Part I-transport rates. Minerals Engineering, 201, 108185.
[4]. Mathe, Z. T., Harris, M. C., O'Connor, C. T., & Franzidis, J. P. (1998). Review of froth modelling in steady state flotation systems. Minerals Engineering, 11(5), 397-421.
[5]. Mathe, Z. T., Harris, M. C., & O'Connor, C. T. (2000). A review of methods to model the froth phase in non-steady state flotation systems. Minerals Engineering, 13(2), 127-140.
[6]. Wang, D., & Liu, Q. (2021). Hydrodynamics of froth flotation and its effects on fine and ultrafine mineral particle flotation: A literature review. Minerals Engineering, 173, 107220.
[7]. Azizi, A. (2017). A study on the modified flotation parameters and selectivity index in copper flotation. Particulate science and technology, 35(1), 38-44.
[8]. Vieira, A. M., & Peres, A. E. (2007). The effect of amine type, pH, and size range in the flotation of quartz. Minerals Engineering, 20(10), 1008-1013.
[9]. Vera, M. A., Mathe, Z. T., Franzidis, J. P., Harris, M. C., Manlapig, E. V., & O'Connor, C. T. (2002). The modelling of froth zone recovery in batch and continuously operated laboratory flotation cells. International Journal of Mineral Processing, 64(2-3), 135-151.
[10]. Nakhaei, F., Mosavi, M. R., Sam, A., & Vaghei, Y. (2012). Recovery and grade accurate prediction of pilot plant flotation column concentrate: Neural network and statistical techniques. International Journal of Mineral Processing, 110, 140-154.
[11]. Finch, J. A., & Dobby, G. S. (1990). Column flotation. Flotation Science and Engineering, 291-329.
[12]. Xu, M., Finch, J. A., & Uribe-Salas, A. (1991). Maximum gas and bubble surface rates in flotation columns. International journal of mineral processing, 32(3-4), 233-250.
[13]. Reddy, P. S. R., Kumar, S. G., Bhattacharyya, K. K., Sastri, S. R. S., & Narasimhan, K. S. (1988). Flotation column for fine coal beneficiation. International Journal of Mineral Processing, 24(1-2), 161-172.
[14]. Dey, S., Pani, S., Singh, R., & Paul, G. M. (2015). Response of process parameters for processing of iron ore slime using column flotation. International Journal of Mineral Processing, 140, 58-65.
[15]. YANG, C. H., XU, C. H., Mu, X. M., & ZHOU, K. J. (2009). Bubble size estimation using interfacial morphological information for mineral flotation process monitoring. Transactions of Nonferrous Metals Society of China, 19(3), 694-699.
[16]. Bouaifi, M., Hebrard, G., Bastoul, D., & Roustan, M. (2001). A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas–liquid reactors and bubble columns. Chemical engineering and processing: Process intensification, 40(2), 97-111.
[17]. Shean, B. J., & Cilliers, J. J. (2011). A review of froth flotation control. International Journal of Mineral Processing, 100(3-4), 57-71.
[18]. Neethling, S. J., & Cilliers, J. J. (2002). The entrainment of gangue into a flotation froth. International Journal of Mineral Processing, 64(2-3), 123-134.
[19]. Engelbrecht, J. A., & ET, W. (1975). The effects of froth height, aeration rate, and gas precipitation on flotation.
[20]. Jowett, A. (1966). FLOTATION KINETICS.. GANGUE MINERAL CONTAMINATION OF FROTH. Brit Chem Eng, 11(5), 330-333.
[21]. Laplante, A. R., Kaya, M., & Smith, H. W. (1989). The effect of froth on flotation kinetics-A mass transfer approach. Mineral Procesing and Extractive Metallurgy Review, 5(1-4), 147-168.
[22]. Akdemir, Ü., & Sönmez, İ. (2003). Investigation of coal and ash recovery and entrainment in flotation. Fuel Processing Technology, 82(1), 1-9.
[23]. Wang, L., Peng, Y., & Runge, K. (2016). Entrainment in froth flotation: The degree of entrainment and its contributing factors. Powder Technology, 288, 202-211.
[24]. Cilek, E. C. (2009). The effect of hydrodynamic conditions on true flotation and entrainment in flotation of a complex sulphide ore. International Journal of Mineral Processing, 90(1-4), 35-44.
[25]. Wang, C., Sun, C., & Liu, Q. (2021). Entrainment of gangue minerals in froth flotation: mechanisms, models, controlling factors, and abatement techniques—a review. Mining, Metallurgy & Exploration, 38(2), 673-692.
[26]. Quintanilla, P., Neethling, S. J., & Brito-Parada, P. R. (2021). Modelling for froth flotation control: A review. Minerals Engineering, 162, 106718.
[27]. Anzoom, S. J., Bournival, G., & Ata, S. (2024). Coarse particle flotation: A review. Minerals Engineering, 206, 108499.
[28]. Yang, B., Yin, W., Zhu, Z., Wang, D., Han, H., Fu, Y., ... & Yao, J. (2019). A new model for the degree of entrainment in froth flotation based on mineral particle characteristics. Powder technology, 354, 358-368.
[29]. Zheng, X., Johnson, N. W., & Franzidis, J. P. (2006). Modelling of entrainment in industrial flotation cells: Water recovery and degree of entrainment. Minerals Engineering, 19(11), 1191-1203.
[30]. Wang, L., Peng, Y. and Runge, K., 2016. Entrainment in froth flotation: The degree of entrainment and its contributing factors. Powder Technology, 288, pp.202-211.
[31]. Wang, L., Runge, K., Peng, Y., & Vos, C. (2016). An empirical model for the degree of entrainment in froth flotation based on particle size and density. Minerals Engineering, 98, 187-193.
[32]. Vining, G. (2010). Technical advice: residual plots to check assumptions. Quality Engineering, 23(1), 105-110.
[33]. Melo, F., & Laskowski, J. S. (2007). Effect of frothers and solid particles on the rate of water transfer to froth. International Journal of Mineral Processing, 84(1-4), 33-40.
[34]. Wiese, J., & Harris, P. (2012). The effect of frother type and dosage on flotation performance in the presence of high depressant concentrations. Minerals Engineering, 36, 204-210.
[35]. Lima, N. P., de Souza Pinto, T. C., Tavares, A. C., & Sweet, J. (2016). The entrainment effect on the performance of iron ore reverse flotation. Minerals Engineering, 96, 53-58.
[36]. Wang, L., Xing, Y., & Wang, J. (2020). Mechanism of the combined effects of air rate and froth depth on entrainment factor in copper flotation. Physicochemical Problems of Mineral Processing, 56.
[37]. Ata, S. (2012). Phenomena in the froth phase of flotation—A review. International Journal of Mineral Processing, 102, 1-12.
[38]. Popli, K., Afacan, A., Liu, Q., & Prasad, V. (2018). Real-time monitoring of entrainment using fundamental models and froth images. Minerals Engineering, 124, 44-62.
[39]. Neethling, S. J., & Cilliers, J. J. (2002). The entrainment of gangue into a flotation froth. International Journal of Mineral Processing, 64(2-3), 123-134.
[40]. Yang, B., Yin, W., Zhu, Z., Wang, D., Han, H., Fu, Y., ... & Yao, J. (2019). A new model for the degree of entrainment in froth flotation based on mineral particle characteristics. Powder technology, 354, 358-368.
[41]. Amelunxen, P., LaDouceur, R., Amelunxen, R., & Young, C. (2018). A phenomenological model of entrainment and froth recovery for interpreting laboratory flotation kinetics tests. Minerals Engineering, 125, 60-65.
[42]. Kursun, H. (2017). The influence of frother types and concentrations on fine particles’ entrainment using column flotation. Separation Science and Technology, 52(4), 722-731. | ||
آمار تعداد مشاهده مقاله: 301 تعداد دریافت فایل اصل مقاله: 144 |