- Bochkarev, S. A., Lekomtsev, S. V., & Matveenko, V. P. (2022). Natural vibrations of truncated conical shells containing fluid. Mech. Solids, 57(8), 1971-1986.
- Bagheri, H., Kiani, Y., & Eslami, M. R. (2021). Free vibration of FGM conical–spherical shells. Thin-Walled Struct., 160: 107387.
- Amabili, M., & Balasubramanian, P. (2020). Nonlinear forced vibrations of laminated composite conical shells by using a refined shear deformation theory. Compos. Struct., 249: 112522.
- Chai, Q., & Wang, Y. Q. (2021). A general approach for free vibration analysis of spinning joined conical–cylindrical shells with arbitrary boundary conditions. Thin-Walled Struct., 168: 108243.
- Bakhtiari, M., Lakis, A. A., & Kerboua, Y. (2020). Nonlinear vibration of truncated conical shells: Donnell, Sanders and Nemeth theories. Int. J. Nonlinear Sci. Numer. Simul., 21(1): 83-97.
- Alimoradzadeh, M., Salehi, M., & Esfarjani, S. M. (2019). Nonlinear dynamic response of an axially functionally graded (AFG) beam resting on nonlinear elastic foundation subjected to moving load. Nonlinear Eng., 8(1): 250-260.
- Alimoradzadeh, M., Salehi, M., & Esfarjani, S. M. (2020). Nonlinear vibration analysis of axially functionally graded microbeams based on nonlinear elastic foundation using modified couple stress theory. Period. Polytech. Mech. Eng., 64(2): 97-108.
- Hashemi, S. and Jafari, A.A., (2020) An analytical solution for nonlinear vibrations analysis of functionally graded plate using modified Lindstedt–Poincare method. Int. J. Appl. Mech. 12(01): 2050003.
- Hashemi, S. and Jafari, A.A., (2021) An analytical solution for nonlinear vibration analysis of functionally graded rectangular plate in contact with fluid. Adv Appl Math Mech, 13(4): 914-941.
- Hashemi, S., Zamani, F., Eftekhari, A., Rostamiyan, Y., Khaledi, H. and Rajabi Reza Abadi, M., (2021) On the vibration of functionally graded annular plate with elastic edge supports and resting on Winkler foundation. Aust. J. Mech. Eng. (30): 1-6.
- Shadmani, M., Afsari, A., Jahedi, R., & Kazemzadeh-Parsi, M. J. (2023). Nonlinear free vibrations analysis of truncated conical shells made of bidirectional functionally graded materials. J. Vib. Control., 10775463231186197.
- Shadmani, M., Afsari, A., Jahedi, R., & Kazemzadeh-Parsi, M. J. (2024). Nonlinear free vibrational behavior of temperature-dependent two-directional functionally graded truncated cone-like shells in thermal environment. J. Vib. Control., 10775463241228742.
- Youseftabar, H., Hosseinnejad, F., Rostamiyan, Y., Seyyedi, S. M., & Rabbani, M. (2024). Effect of porosity on the nonlinear free vibrational behavior of two-directional functionally graded porous cone-shaped shells resting on elastic substrates. Mech. Based Des. Struct. Mach., 1-25.
- Babaei, M. J., & Jafari, A. A. (2024). Effect of thermal environment on the free vibration of functionally graded carbon nanotubes cylindrical-conical shell. J. Therm. Stresses, 47(1): 35-58.
- Bisheh, H. (2023). Vibration characteristics of smart laminated carbon nanotube-reinforced composite cylindrical shells resting on elastic foundations with open circuit. Struct 51: 1622-1644.
- Zhao, T., Bayat, M. J., & Asemi, K. (2024). Free vibration analysis of functionally graded multilayer hybrid composite cylindrical shell panel reinforced by GPLs and CNTs surrounded by Winkler elastic foundation. Enginee Struct., 308, 117975.
- Wu, Z., Zhang, Y., & Yao, G. (2020). Nonlinear forced vibration of functionally graded carbon nanotube reinforced composite circular cylindrical shells. Acta Mech, 231: 2497-2519.
- Uspensky, B., Avramov, K., Derevianko, I., & Maksymenko-Sheiko, K. (2024). Vibrations of cylindrical sandwich shell with fused deposition processed honeycomb core and carbon nanotubes reinforced composite faces sheets. J. Vib. Eng. Technol., 12(2): 2003-2023.
- Chakraborty, S., Singh, V., Dey, T., & Kumar, R. (2024). Influence of carbon nanotubes on stability and vibration characteristics of plates and panels in thermal environment: a review. Arch. Comput. Methods Eng., 31(1): 147-178.
- Khalaf, A. S., & Hasan, H. M. (2024). Nonlinear forced vibration of functionally graded hybrid three-phase nanocomposite toroidal shell segments reinforced by carbon nanotubes (CNTs) and graphene nanoplatelets (GPLs). Thin-Walled Struct., 111876.
- Ansari, R. and Gholami, R., 2016. Nonlinear primary resonance of third-order shear deformable functionally graded nanocomposite rectangular plates reinforced by carbon nanotubes. Compos. Struct., 154: 707-723.
- Hashemi, S. and Jafari, A.A., (2020) Nonlinear free and forced vibrations of in-plane bi-directional functionally graded rectangular plate with temperature-dependent properties. Int. J. Struct. Stab. Dyn. 20(08): 2050097.
- Allahkarami, F., Saryazdi, M.G. and Tohidi, H., (2020). Dynamic buckling analysis of bi-directional functionally graded porous truncated conical shell with different boundary conditions. Compos. Struct. 252: 112680.
- Mohammadrezazadeh, S. and Jafari, A.A., (2021) Nonlinear vibration suppression of laminated composite conical shells on elastic foundations with magnetostrictive layers. Compos. Struct. 258: 113323.
- Hashemi, S., Shahri, P.K., Beigzadeh, S., Zamani, F., Eratbeni, M.G., Mahdavi, M., Heidari, A., Khaledi, H. and Abadi, M.R.R., (2022) Nonlinear free vibration analysis of In-plane Bi-directional functionally graded plate with porosities resting on elastic foundations. Int. J. Appl. Mech. 14(01): 2150131.
- Irie, T., (1984) Natural frequencies of truncated conical shells. J. Sound Vib. 92(3): p.447.
- Li, F.M., Kishimoto, K. and Huang, W.H., (2009) The calculations of natural frequencies and forced vibration responses of conical shell using the Rayleigh–Ritz method. Mech. Res. Commun. 36(5): pp.595-602.
- Lam, K.Y. and Hua, L., (1999) On free vibration of a rotating truncated circular orthotropic conical shell. Compos. B Eng. 30(2): 135-144.
|