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The most significant detrimental consequence of blasting operations is ground
vibration. This phenomenon not only causes instability in the mine walls but also
extends its destructive effects to various facilities and structures over several
kilometers. Various researchers have proposed equations for predicting Peak Particle
Velocity (PPV), which are typically based on two parameters: the charge per delay and
the distance to the blast site. However, according to different studies, the results of
blasting operations are influenced by several factors, including the blast pattern, rock
mass properties, and the type of explosives used. Since artificial intelligence
technology has not yet been fully assessed in the mining industry, this study employs
linear and nonlinear statistical models to estimate PPV at Golgohar Iron Ore Mine No.
1. To achieve this goal, 58 sets of blasting data were collected and analyzed, including
parameters such as blast hole length, burden thickness, row spacing of the blast holes,
stemming length, the number of blast holes, total explosive charge, the seismograph's
distance from the blast site, and the PPV recorded by an explosive system using a
detonating fuse. In the first stage, ground vibration was predicted using linear and
nonlinear multivariate statistical models. In the second stage, to determine the objective
function for optimizing the blast design using the shuffled frog-leaping algorithm, the
performance of the statistical models was evaluated using R?, RMSE, and MAPE
indices. The multivariate linear statistical model, with R? = 0.9247, RMSE = 9.235,
and MAPE = 12.525, was proposed and used as the objective function. Ultimately, the
results showed that the combination of the statistical model technique with the shuffled
frog-leaping algorithm could reduce PPV by up to 31%.

1. Introduction

Blasting has been used as one of the most
effective techniques in recent decades for breaking
rocks in civil and mining projects. When explosive
material detonates inside a blast hole, a significant
amount of energy is transferred as a shockwave the
ground, and gases are released into the air [1].
Approximately 30 to 35 percent of the energy
generated by blasting is used for breaking and
displacing rocks, while the remaining energy is lost
through ground vibration, air blast, and rock
ejection [2]. Numerous studies have been
conducted to examine the factors influencing
ground vibration caused by blasts. Yu Yang and
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Xiaoming Hu investigated the parameters affecting
ground vibration from blasts. Research has shown
that the maximum charge per delay, the distance
from the blast source to observation points, and
geological conditions are fundamental factors in
predicting ground vibration [3]. Arthur developed
a novel method for predicting ground vibration
resulting from blasts using Gaussian Process
Regression (GPR) [4]. Li used experimental
methods and artificial intelligence (Al) approaches
to determine the maximum particle velocity. The
correlation coefficients for these models were
0.799, 0.747, and 0.724, respectively.
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Subsequently, predictions obtained using Al
methods had higher correlation coefficients and
demonstrated  better predictive  capabilities
compared to those derived from experimental
methods [5]. Khandelwal and Singh investigated
empirical relationships for estimating ground
vibration and then compared their results using an
artificial neural network. The findings indicate that
a neural network can be an effective tool for
estimating ground vibration resulting from blasts
[6]. Singh and Roy examined the effects of ground
vibration on buildings and structures in the blast
area. According to their research, single-story
concrete structures exhibit the highest resistance to
ground vibration [7]. Dehghani and Ataiepour used
neural networks to assess the importance of each
parameter affecting ground vibration. They
subsequently developed a dimensional analysis
relationship for measuring ground vibration using
an empirical method [8]. Manjazi et al. used a
neural network as a research tool in their study on
ground vibration at the Golgohar mine. The results
indicate that two parameters, specifically the
specific charge and maximum charge, are among
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the most important factors required for predicting
ground vibration using empirical models [9].
Hasani Panah et al. employed multiple regression
and empirical models to predict ground vibration in
the Miduk copper mine [10]. Shirani and Manjazi,
in their research at the Golgohar mine, aimed to
predict and minimize ground vibration using the
GEP and COA algorithms [11]. Regam and Nima
Jah investigated ground vibration in an iron ore
mine in India using artificial neural networks [12].
Ataie and Sarcheki examined ground vibration in
limestone rocks using a genetic algorithm [13].
Various researchers have employed a range of
metaheuristic algorithms to evaluate influential
parameters, predict Peak Particle Velocity (PPV),
and analyze damages resulting from blasting
operations. These algorithms include neural
networks, genetic algorithms, ant colony
optimization algorithms, random decision trees,
particle swarm optimization, support vector
machines, and numerical simulation approaches
[14-28]. Table 1 shows recent studies on the use of
different models to predict blast-induced Peak
Particle Velocity (PPV).

Table 1. Some studies have predicted PPV based on various models

No. of

Performance Indices The

Reference year Authors Input variables Output dataset Models best model
Qmax,Qtotal CGO-ANN CGO-ANN:
[29] 2024 Zhao et al D, VD, B, PPR, DT PPV 180 GA-ANN . R-squared=0.909 MAE=0.425
RML, £ PSO-ANN Single RMSE=0.508 MSE=0.259
a, VoD ANN USBM ) )
MIC, SD BNN, GBR BNN R-squared=0.94
[30] 2023 Fissha et al DIS,E,BIO PPV 100 KNR, DTR MSE=0.03
Bla,MI10 Mla RFR RMSE=0.17
W.R.H PSO-LSSVM PSO-LSSVM:
[31] 2023 Guo et al B ’S ’H PF PPV 50 LSSVM R-squared=0.965 MAE=1.717
> 2 0 GA-BP, BP RMSE=1.954
RSM-SVR:
RSM-SVR PSO-SVR R-squared=0.896
[32] 2023 Keshtegar et al Mc, B/S, StE, Vp, Di PPV 90 GA-SVR MAE=1.379
MLR SVR, RSM RMSE=1.619 NSE=0.686
d=0.832
GPR:
[33] 2023 Fissha et al g 183% H/B, Q PPV 140 S\Eﬁ’ DT ﬁ;‘éﬁ;j}%’l‘)'g“
MAE=0.026 RMSE=0.038
Neuro-Swarm: R-
ANN squared=0.85 MAE=1.17
[34] 2023 Armaghanietal C,DIS PPV 154 Neuro-Swarm RMSE=0.075
Neuro-Imperialism VAF (%) =90.606
a20—index=0.35
GPR:
AD, B, S R-squared=0.99
[35] 2022 Bha‘aw‘}ekar °t prs, PF PPV 101 gfﬁ’ }13\}1)/1\][1{\]3 MVRA  MSE=0.0903
a S, T, MC : R=0.9985
VAF (%) = 99.172
FR-WOA:
FR-WOA Rsquared = 0.932
[36] 2022 Heetal ]}\?'/[Sc,gllg’ ST, PF, PPV 102 FR-GWO MAE=0.188
FR-TSA RMSE=0.246
VAF (%) = 95.032
[37] 2021 Lawal et al DIS,W,p SRH PPV 100 Sgi’_:fj;ls IS{?szing\eI(Ii\I: 099
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Table 1. Cont

. No. of Performance Indices The
Reference year Authors Input variables Output dataset Models best model
R-squared=0.87
< Adjusted R-squared = 0.84
[38] 2021 Jelusi'c et al Q, DIS PPV 40 ANFIS SSE=4.67
RMSE =0.88
B, S, HD CH-H, _ _ ,
[39] 2021 Srivastava et al CH-R, ST N-BH, PPV 73 RF, SVM ﬁF' R'quiroe‘; SO'SISV'
PF Qmax,DIS “squared=o.
[40] 2020 Pantachang et al SD, DIS, AC PPV - FS -
[41] 2020 Lawall‘z‘ri‘zsebayo PF, W, DIS PPV 88 ANN R-squared=1
R-squared=0.94
[42] 2020 Yu etal g %“I?"D%Otal’T PPV 137 HHO-RF MAE=0.29
> , RMSE=0.34
BS, DIS SVM:
[43] 2020 Zhang et al ST, MC PPV 102 igl\?ASI\{/{ACHAID R-squared = 0.85 MAE = 1.17
PF, HD ’ RMSE = 1.5 VAF (%) = 84.54
. ST, BS, C R-squared=0.68
[44] 2020 Mahdiyar et al PE.D PPV 149 GEP RMSE=4.0344
BBO-ANN
PSO-ANN MPMR, .
B,S, ST ELM DIRECTANN gBO'ANi'O 088 MAE-0.022
[45] 2020 Lietal PF, W PPV 80 USBM ~squarec. :
. RMSE=0.026 RSR=0.109
RMR, D IndianStandard —
d=0.997
Ambraseys —
Hendron
. CHD DIS, GEP:
[46] 2020 Shakeri et al B.S. SP PPV 113 LMR,ANNs,GEP R-squared=0.91 RMSE=2.67
Mohammadi HD, NH ICA
[47] 2020 etal S,B,Q PPV 45 Kmeans, TOPSIS B
Ragama& R-squared=0.998
[48] 2018 Nimajeb Q, DIS PPV 14 GRNN MSE=0.0001

2. Case Study Introduction and Data Collection

The Gol-e-Gohar iron ore mines consist of six
anomalies located in the Kerman province, 55
kilometers southwest of Sirjan, 235 kilometers
from the center of the province, and 320 kilometers
southeast of Shiraz. Iron Ore Mine No. 1 at
Golgohar has geological reserves of approximately
313 million tons, most of which are economically
extractable. The general shape of the No. 1 reserve
is roughly elongated in the NW-SE direction. In
Figure 1, the location of the Golgohar Iron Ore
Mine No. 1 anomaly relative to other anomalies in
the Golgohar complex, transportation routes, and
satellite imagery illustrates the study area's
position. The mining method in the study mine is
open-pit, and various mining operations are carried
out simultaneously by drilling and blasting
operations to obtain suitable feed for transport to
the processing plant. The rock units in this mine
include Paleozoic metamorphic rocks, Mesozoic
and Cenozoic sedimentary rocks, and Quaternary
sediments. Drilling and blasting operations at the
Golgohar Iron Mine Number One are carried out in
a network of grids using various machines. The
diameter of the blast holes is determined based on
the type of rock, generally using diameters of 6 and
8 inches for iron ore and 8 and 10 inches for
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overburden. The explosive used in the mine is
ANFO to a depth where groundwater does not pose
a problem, and beyond that, suitable explosives
like Emulsifier are used. The design of blasting
blocks is carried out by experts using Gemcom
software, taking into account the type of rock,
bench height, and drill bit diameter. For iron ore
blasting blocks, experts use a pattern of 3x4 meters
for 6-inch diameters and 4x5 meters for 10-inch
diameters. For overburden and waste rock blasting
blocks, a 7x9 meter pattern is typically considered
for 10-inch diameters.

In this study, ground vibrations resulting from
58 blasts in the northern, northeastern, and eastern
parts of the mine were evaluated using the BMIII
seismograph manufactured by Instantel Canada, of
the BLAST MATE III type. Figure 2 illustrates the
peripheral equipment and the installation
procedure of the seismograph. Subsequently,
information related to the geometric parameters of
blast patterns such as blast hole length, burden,
spacing, stemming length, and the number of blast
holes drilled in each blast block was separately
measured for each blast. Tables 2 and 3 present the
descriptive statistical analysis and the examination
of parameters using Pearson correlation
coefficients for the dataset. Figure 3 illustrates the
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histogram of the frequency distribution of the input
and output parameters. Pearson's correlation
coefficient is a statistical tool used to determine the
type and degree of relationship between two
quantitative variables. The coefficient indicates the
strength and type (direct or inverse) of the
relationship. The range of this coefficient is
between -1 and 1, and if the correlation coefficient

{ ‘\‘\
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equals zero, it indicates no relationship between the
two variables. A positive correlation coefficient
indicates an approximate direct relationship
between the two variables, while a negative
coefficient indicates an approximate inverse

relationship. The greater the absolute value of the
correlation coefficient, the stronger the relationship
between the two variables.

Figure 1. a) Locatio of the anomaly, b) ocaﬁon of transportation routes, and c) Satellite image of Gol-e-gohar
Mine No. 1

Figure 2. a) BLAST MATE III seismograph and its peripheral equipment, b) Procedure of placement of the

sensor on the ground

1406
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Table 2. Descriptive statistics of collected data related to the geometric parameters of blasting patterns

Parameter Variable Symbol Min Mean Max Std.Error of S.t d'.
category Mean Deviation
ole-depth (m) H 6.8 12.195 17.5 0.4086 2.5842
Burden(m) B 2.8 5.565 7.5 0.2328 1.4722
Spacing (m) S 4 6.908 9.5 0.2706 1.7114
Stemming (m) Input ST 2.5 4.165 6 0.1408 0.8906
No. of holes N.H 21 43.75 77 2.577 16.297
Total charge (kg) Q 6400 20716.5 33250 1210.3 7654.63
Distance (m) DIS 62 122.13 188 5.687 35.966
PPV (mm/s) Output PPV 12 66.28 136 5.125 32.416

Table 3. Pearson correlation coefficient matrix related to the geometric parameters of blast patterns

Parameter H B S ST N Q DIS PPV
Hole depth 1
Burden 0.816 1
Spacing 0.796 0.935 1
Stemming 0.985 0.804 0.777 1
No. of holes 0.870 0.807 0.818 0.875 1
Total charge 0.855 0.892 0.867 0.860 0.902 1
Distance 0.843 0.921 0.891 0.834 0.833 0.879 1
PPV 0.876 0.889 0.890 0.868 0.901 0.909 0.918 1
12
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Figure 3. Histogram of the frequency distribution of input and output parameters.
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3. Methodology
3.1. Statistical models

Multiple Statistical Models, due to their high
interpretability and precise generalization, have
become one of the main tools for problem-solving
in various engineering fields. Linear and nonlinear
multiple regression models demonstrate the
influence of multiple variables on a dependent
variable [49, 50].

3.2. Frog Leap Algorithm
The Shuffled Frog Leap Algorithm is one of the
comprehensive optimization algorithms first

introduced in 2003 by Eusuffet al. [5S1]. The SFLA
algorithm is inspired by the social behavior of frogs
in searching for food resources. It is an evolved
version of the Stochastic Evolution Communities
(SCE) algorithm, incorporating elitism and
collective intelligence, resulting in the Frog Leap
Algorithm [52]. SFLA is a combination of Genetic
Algorithms (GA) and Particle Swarm Optimization
(PS0O), designed based on their behavioral patterns
[53]. In this algorithm, each frog has a
chromosome-like structure. The entire frog
population is divided into smaller subgroups so that
these subgroups can conduct searches in their local
environments. Each subgroup of frogs has a
representative of different types of frogs scattered
in different environments [54, 55]. On the other
hand, each frog within each subgroup is influenced
by its group members and other groups. After
several stages, information and messages, along
with local and global searches, continue until
convergence criteria are met [56]. The SFLA
algorithm demonstrates high capability in global
search and can solve various problems, including
linear, nonlinear, mixed-integer, and various other
optimization problems. An overview of the Frog
Leap Algorithm process is presented in Figure 4. In
this algorithm, the initial population of frogs is
generated randomly within the defined ranges for
the problem, as shown in Equation (1).

Xi =X +aX! - XD (1)

In this context, X; represents the position of
each member of the population, Xii the lower
bound, X, Lh the upper bound, and a a random value
between 0 and 1. Each frog represents a valid

solution to the optimization problem, and it has a
specific fitness value. The frogs are sorted in

1408

Journal of Mining & Environment, Vol. 16, No. 4, 2025

descending order based on their fitness values, and
then they are divided into several different
categories. If the initial population consists of P
frogs and is divided into m groups, the frogs are
divided into these groups based on the objective
function. After sorting, the first frog is placed in the
first group, the second frog in the second group, the
third frog in the third group, and so on, with frog m
+ 1 placed in the first group. In the end, each of the
m groups will contain n members [57, 58],
according to Relation (2).

P=mXn

)

In each set, the position of the i-th frog, denoted
by X,, is determined based on the difference
between the frog with the best fitness, represented
by Xp, and the frog with the worst fitness,
represented by X,,,, using Equation (3).

Xy = aXp — Xuw) )

Equation (3) calculates the difference between
the fitness of different frogs in the set. The new
position of the frog is obtained using Equation (4),
which D,,,, represents the maximum changes that
can be applied to the frog position. Then the
position of the frog is improved using the following
relationship according to Figure 5.

X, = P.Xy, + X,
4)

Dmax < Xg < _Dmax

X, (new)
O

Figure S. Frog Position Improvement

If this change in position leads to the generation
of frogs with better fitness, these frogs will replace
the unfit frogs. Otherwise, a frog with superior
fitness in the entire population X, will replace X,
in Equation (3), and a new frog will be generated.
This process will continue until complete
convergence is achieved or one of the stopping
criteria is met.
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Figure 4. Overview of the Frog Leaping Algorithm Process

4. Modeling and Predicting PPV Using
Statistical Models

In this study, the aim is to build multivariable
linear and nonlinear statistical models to predict
PPV to select the best model to optimize the blast
pattern in the SPSS27 software environment.

Initially, for model construction, 70% of all data
were randomly used for model training, and the
remaining 30% were used for model testing.
Linear, logarithmic, exponential, and polynomial
statistical models with non-linear coefficients were
constructed to predict PPV according to equations
(5 to 8).

PPV = —45.212 + 1.905(L) — 0.697(B) + 3.633(S) — 1.1(ST) + 0.524(N) + 0.001(MC) + 0303(DIS) (5)

PPV = EXP[—0.442 + 0.183(L)55 + 0.001(B)*326 + 0.000005(S)°328 + 0.008(ST)°21°

6
+0.001(N)°463 4 0.219(MC) =673 + 0.059(DIS)°3°] ©)
PPV =[-313.199 + 22.983In(L) + 9.79 In(B) + 26.5921In(S) — 5.65In(ST) + 38.997 In(N) o
—1.113In(MC) + 34.149 In(DIS)]

PPV =[—0.008 + 0.098(L)°1% + 0.161(B)°253 + 0.147(S)°2% + 0.18(ST)*243 + 0.000002(N)°-222 ®)

+0.042(MC)°616 + 0.00001(DIS)*°77]
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5. Evaluation of PPV Prediction Models

To evaluate and compare the models in two
stages of training and testing, statistical indices
including the coefficient of determination (R?) in
equation (9), the root mean square error (RMSE) in
equation (10), and the mean absolute percentage
error (MAPE) in equation (11) were utilized. In
these equations, Yp,.qs and Yp..q rtepresent the
measured and predicted values, respectively, and
represent the calculated Yieqs and Yppeq
predicted mean values, and n is the number of data.

|

Zlivzl(ymeas - 7meas) (ypred - 7Pred) I

R? = 100I

Journal of Mining & Environment, Vol. 16, No. 4, 2025

6. Prediction Performance Evaluation of
Statistical Models

In this research, the prediction of PPV was
carried out using multivariate linear and nonlinear
statistical models. To evaluate and assess the
performance of the tested models and determine
the best model for optimizing the blast pattern to
minimize PPV, equations (9 to 11) were employed.
Table 4 presents the evaluation metrics of the
models in the training and testing stages.
According to the results in this table, the linear
regression model exhibits the highest accuracy,
while the logarithmic nonlinear regression has the

= — lowest accuracy in predicting PPV. Based on the
ZN (y -Y )2 (ZN Y, —-Y )2 . . . . . .
[ 2i=1(Fmeas = Vmeas)® (2i=1 Yprea = Vprea)®| analysis using the coefficient of determination in
both the training and testing phases, Figure 6
n illustrates the superiority of the linear statistica
B 2 llustrates the superiority of the 1 tatistical
i=1(ymeas Ypred) (10) ..
RMSE = n model over the other statistical models.
n |Ymeas - Ypredl 1
=1
MAPE = :meas X 100 (a1
Table 4 Evaluation indicators of training and testing of statistical models
Training Test
NO Model R? RMSE MAPE R! RMSE MAPE
1 Linear regression 0.9247 9.235 12.525 0.8828 6.564 8.806
2 Logarithmic 0.9041 10.663 22.425 0.76 9.813 13.294
3 Exponential 0.8233 19.717 39.68 0.7131 11.091 15.905
4 Polynomial with non-integer coefficients 0.9157 9.732 15.448  0.8578 6.701 9.806

7. Optimizing the Best Statistical Model for PPV
Prediction Using the Frog Leaping Algorithm

To optimize the blast pattern for minimizing
PPV in the Gol Gohar iron ore mine using the Frog
Leaping Algorithm, a need arises for an objective
function. To determine the objective function,
statistical models are employed. In essence,
statistical indicators are responsible for examining
and evaluating the objective function, aiming to

provide an appropriate model for optimization.
Once the objective function is invoked in the Frog
Leaping Algorithm, the optimization process
begins. The Frog Leaping Optimization Algorithm
has a set of control parameters that alter the
optimization process when modified. Ultimately,
after 25 program executions and 250 repetitions in
each run, the final values of these parameters and
the optimized blast pattern are obtained, as shown
in Tables 5 and 6.

Table 5. Parameters Used in the Frog Leaping Algorithm

Parameters Symbol Value
Nvar Number of decision variables 8
Maximum Number of Iterations Maxit 250
Number of frogs Npop 58
Npop Memeplex Memeplex size 9
Nmemeplex Memeplex number 5
Attraction value at zero distance Beta 5
Convergence coefficient Alpha 3
Absorption coefficient power Sigma 2

1410
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Figure 6. Measured and predicted PPV for training and testing datasets. (a) Using Linear regression, (b) using

Logarithmic, (c) using Exponential, (d) using with non-integer coefficients

Table 6. The optimal pattern obtained by the frog algorithm for PPV optimization

Initial value

No. Parameter Symbol Min. Max. Optimized values

1 Blast hole length (m) H 6.8 17.5 17

2 Burden (m) B 2.8 7.5 5.5

3 Spacing (m) S 4 9.5 7

4 Stemming (m) ST 2.5 6 5

5 No. of holes N 21 77 38

6 Total charge (kg) MC 6400 32250 27629

7 Distance (m) DIS 62 188 165

8 Maximum velocity (mm/s) PPV 12 136 59

1411
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Certainly, as seen in Table (4), the number of
frogs (npop) represents the count of blast patterns
collected during the execution of this research.
After determining the values of the control
parameters for the frog algorithm, the optimization
process was carried out over 250 iterations to
minimize the PPV. Figure (7) shows the
convergence of the optimal solution of the frog
algorithm. The best objective function result is
displayed after 250 iterations, with the optimal
pattern achieving the best result at iteration 50,
where PPV is 59

59.18 [

59.16 [

59.14

a
o ©
© -
= N

Best Cost
PPV(mm/s)

o
©
=}
®

59.06 [

59.04 [

59.02

100 150 200
Iteration
Figure 7. Convergence of the objective function

result by the frog algorithm for optimizing PPV

0 50 250

8. Conclusions

Blasting operations, in addition to achieving
suitable rock fragmentation, can have various
negative and undesirable effects on the
environment. If these consequences are not well-
controlled, they can lead to significant human and
financial damages. Among these effects, ground
vibration is one of the most undesirable outcomes
of blasting operations. In this study, linear and
nonlinear statistical models were developed to
predict Peak Particle Velocity (PPV). To enhance
and evaluate the models, 58 sets of data collected
from Golgohar Iron Ore Mine No. 1 were used,
including parameters such as blast hole length,
burden thickness, row spacing of blast holes,
stemming length, number of blast holes, total
explosive charge, and the distance from the
seismograph to the blast site.

1) Out of the 58 data sets, forty (40), constituting
80% of the total blasting data, were used for
building and training various prediction models,
while 18 data samples (20%) were used to
evaluate the predictive capabilities of the
developed models.

1412
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2) To compare the models and identify the best one,
several performance evaluation indices were
used, including the coefficient of determination
(R?), root mean square error (RMSE), and mean
absolute percentage error (MAPE).

(3) Based on the results, the multivariate linear

statistical model with values of R* = 0.9247,
RMSE = 9.235, and MAPE = 12525
demonstrated superior predictive capability

compared to nonlinear statistical models and can
be utilized for predicting vibration caused by
blasting in the mining industry.

4) Finally, after identifying the best predictive
model, a combination of the statistical model and
the frog-leaping algorithm was employed to
improve model performance and provide an

optimal blasting pattern to reduce PPV.

5) Based on the findings, the combination of the
statistical model and the frog-leaping algorithm
proved to be a robust method for minimizing
PPV in blasting operations. The optimized
blasting pattern specifications are: blast hole
length of 17 (m), burden 5.5 (m), spacing 7 (m),
stemming length 5 (m), number of blast holes 38,
total explosive charge of 27,629 kg, and
seismograph distance from the blast site of 165
(m). The results indicate that using the proposed
optimized pattern can reduce PPV by 31%.
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