
1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 13, No. 1, 2025, 1-10.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (h)
Journal homepage: http://jad.shahroodut.ac.ir

 Research paper

An Evaluation of New Meta-heuristics for Virtual Machine Placement

in Cloud Data Centers

 Mohsen Kiani1 and Mohammad Reza Khayyambashi2*

1. Department of Computer Science, Khansar Campus, University of Isfahan, Isfahan, Iran.

 2. Department of Software Engineering, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran.

Article Info Abstract

Article History:
Received 03 September 2024
Revised 20 December 2024

Accepted 19 January 2025

DOI:10.22044/jadm.2025.14987.2597

 The present study investigates the effectiveness of several new meta-

heuristic (MH) methods in solving virtual machine (VM) to physical

machine (PM) placement (VMP) in cloud data centers. More

specifically, Coati optimization algorithm (COA) is properly adapted

for solving VMP by introducing several operators for the phases of

the algorithm. Several emerging and classic meta-heuristics are also

included in the evaluations, including genetic algorithm, chemical

reaction optimization, Harris hawk optimization (HHO), and electron

valley optimizer (EVO). Two main parameters are included in our

evaluations, including power consumption and resource wastage. The

algorithms are evaluated in terms of their ability to reduce power

consumption and resource wastage in VMP, and also in terms of their

execution times. A set of evaluations with synthetic VMs are

performed. The results indicate that all MHs perform almost

similarly, while emerging methods (COA, HHO, EVO) have a

marginal benefit.

Keywords:
Cloud Computing, Coati

Optimization Algorithm, Cloud

Date Center, Virtual Machine

*Corresponding authot:

m.r.khayyambashi@comp.ui.ac.ir (M.

Khayyambashi).

1. Introduction

Numerous enterprises today rely on the cloud for

their required services in terms of software and

infrastructure. Cloud computing brings many

benefits such as cost reduction and scalability. At

the infrastructure level, cloud serves its users by

creating virtual machines (VMs) [1], enabled by

the virtualization technology [2, 3]. A VM can be

executed on any of the available physical machines

(PMs) in the data center of the cloud service

provider. Further, a VM provides a given level of

service for each resource (usually processing,

memory, and storage). A VM is usually created

with less resources than that of a PM. Thus, a PM

can host and run more than one VM at the same

time. Therefore, the way of assigning a set of VMs

to a set of PMs becomes a substantial problem to

solve. This problem, which is called VM to PM

placement (VMP), is proven to be NP-hard [4].

VMs provided by a cloud service provider come

into several flavors to serve users with different

resource requirements. This is also true for PMs

since PMs in a data center are not all identical.

Another aspect of the problem that increases its

difficulty is that the mapping of VMs needs the

consideration of several resource constraints (e.g.,

CPU, RAM, disk, etc.). Energy consumption of the

PMs in a data center is a main contributor to the

cost of the data center. Since any active PM

consumes energy, one main goal of a VMP method

is to minimize the number of active PMs (PMs with

at least one VM to execute), known as VM

consolidation. Then, all inactive PMs can be turned

off to reduce power consumption. Therefore, VMP

can be pictured as a bin packing problem where

VMs are the items, and PMs are the bins. Other

metrics that are used to decide the effectiveness of

a VMP method include resource utilization and

resource wastage.

To solve VMP efficiently, many heuristics and

meta-heuristic (MH) algorithms are developed by

the researchers in the area of cloud computing.

MHs have shown promising results for solving

VMP [5]. Further, several new MH algorithms

emerge every year that can be utilized to solve

mailto:m.r.khayyambashi@comp.ui.ac.ir

Khayyambashi & Kiani/ Journal of AI and Data Mining, Vol. 13, No. 1, 2025

2

VMP more optimally. Based on the no-free-lunch

(NFL) theorem [6], no MH is superior in solving

all optimization problems. This motivates us to

employ every emerging MH algorithm for solving

VMP. Therefore, the present study adopts several

newly-proposed MH algorithms for solving VMP.

The goal is to decide to what extent new meta-

heuristics can benefit VMP, in terms of

effectiveness (energy of the data center, resource

utilization, resource wastage) and execution time.

Employing an MH for solving VMP requires to

modify the algorithm for VMP by introducing a

proper solution encoding (to encode a solution to

VMP as a member of the population of the MH

algorithm) and parameter settings in the algorithm.

This is required since most MHs are first

introduced for optimizing continuous functions

while VMP is a discrete problem. Second, as each

algorithm includes a set of steps each of which

operating on the population of the algorithm to

create new members iteratively, one or more

operators should be provided for each step. One

main focus of the present study is on the latter. A

set of operators are first introduced. Then, the

operators are employed in different phases of

several MH algorithms. Further, this study adopts

a new MH, Coati optimization algorithm (COA) to

solve VMP. COA is an emerging algorithm that has

shown promising results in many optimization

problems, as it can properly balance between

exploration and exploitation in solution space.

Further, a set of proper operators are designed to

adopt COA for solving VMP. Several new and

classic MHs are also included in the evaluations.

Then, energy consumption, resource utilization,

and resource wastage of all the algorithms are

reported. Moreover, the execution time of the

algorithms are compared. Our evaluations show

that the results provided by the MHs are generally

similar yet much better than heuristics.

The rest of this paper is structured as follows. In the

next section, Section 2, a brief literature review is

given. Next, Section 3 discusses the preliminary

materials in the field of VMP and MHs. Then, in

Section 4 COA is introduced and then the

modifications and required operators for COA are

proposed so that it can be utilized for solving VMP.

Then, the algorithm of COA is presented.

Afterwards, Section 5 introduces the evaluation

settings and the obtained results. The paper is then

concluded in Section 6.

2. Related Work

There are plentiful studies in the field of VMP

using MHs [5, 7-10]. As our work focuses on

emerging MHs, here, we briefly review several

similar recent studies.

Various MHs are used to solve VMP. Two

scenarios are considered for VMP including static

[11-13] and dynamic [14, 15] VMP. The former

includes mapping a given set of VMs onto PMs,

which is modeled as a constraint optimization

problem. The latter models a more comprehensive

system and includes more parameters such as

utilization and service-level agreements.

Investigating VMP as both static and dynamic have

merits. In early stages of adopting an emerging

algorithm, a static scenario provides the ability to

examine the considered algorithms with different

VM counts, which is the focus of this study.

In [11], the authors used Ant colony system (ACS)

to deal with VMP, aiming at PM energy reduction

in the data center and significant improvements

were observed in terms of energy reduction. The

work of Duan et al. [16] is another study that used

ACS for VMP. Chemical Reaction Optimization

(CRO) is another nature-inspired algorithm which

is employed for solving VMP in [13]. Recently,

Harris Hawk Optimization (HHO) is employed for

VMP in [14]. HHO is adopted for VMP, which the

presented evaluations confirm its benefits over

heuristics and several MHs. Another recent work

[17] employed Energy Valley Optimizer (EVO) for

solving VMP. In the present study, we adopt COA

and include recent works (HHO and EVO) and

classic methods (Genetic Algorithm (GA) and CRO)

in our comparison to investigate the effectiveness

of recent MHs in solving VMP. Further, several

new operators are devised to be used in phases of

COA.

3. Problem Formulation

In the present study, five MH algorithms along

with two heuristics are experimented with. The

employed MHs in this work include GA, CRO

[18], HHO [19], Coati Optimization Algorithm

(COA [20]), and EVO [21]. EVO is inspired by the

interactions of atoms at sub-atomic (electron) level.

Previous studies have employed GA and CRO [12,

13], for solving VMP. Recently, EVO [17] and

HHO [14] were also used for solving VMP. To the

best of the authors’ knowledge, this is the first

research attempt in employing COA in solving

VMP. This section presents a background on VMP

and then introduces COA and EVO algorithms.

3.1. VM Placement

The purpose of a VMP algorithm is to optimally

assign VMs to PMs. The optimality is decided

based on one or more criteria, chief among which

are energy consumption, resource wastage, and

load balancing. Energy cost in data centers is a

An Evaluation of New Meta-heuristics for Virtual Machine Placement in Cloud Data Centers

3

main concern from both monetary and

environmental impact points of view. Therefore,

energy consumption is always a primary concern in

VMP.

The optimization goal of a VMP algorithm is to

minimize power consumption and resource

wastage. Power consumption of the data center is

the accumulation of the power consumed by all

PMs and resource wastage is first calculated for

each PM and then accumulated. Therefore,

(1)

1

0

min ,
N

jP W j

j

WP 






subject to

(2)

1

,

0

1 {0,..., 1},
N

i j

j

i M




   

(3)

1

,

0

{0,..., 1},

{ , }.

M
r r

ji i j

i

j NVM PM

r CPU RAM






    





Here, jP and jW are power consumption and

resource wastage of the jth PM, respectively. In

addition, P and W are the weight factors for

power and resource wastage, respectively. The

optimization constraint represented by (2) ensures

the assignment of a VM to only one PM. The

second constraint ((3)) dictates that the total

resource request of all the VMs mapped to a PM

must not exceed the PM’s capacity (for both

processing and memory resources). In the next

section, we discuss the formulation required to

calculate Pj and Wj. Then, In Section 3.3, we

discuss how to adopt several meta-heuristics for

solving VMP ((1)-(3)).

3.2. Power and Wastage Calculation
Let M be the number of VMs and N be the number

of PMs in a cloud data center. Each VM is a 3-tuple

in the form of { , , }id CPU RAM where

{0,1,..., 1}id M  shows the VM’s unique

identifier. Further, CPU and RAM are the requested

CPU and memory of the VM, respectively.

Similarly, each PM is a 5-tuple

idle max{ , , , , }id CPU RAM P P , with

{0,1,..., 1}id N  being the PM’s unique

identifier, CPU and RAM being the processing

power and memory capacity of the PM. In addition,

idleP and maxP are the idling power consumption

and maximum power consumption of the PM,

respectively. The maximum power consumption is

associated with the PM with full CPU utilization.

A VMP algorithm allocates all VMs to a subset of

PMs so that each VM is only allotted to one PM.

Moreover, the accumulated resource requests of all

the VMs placed on a PM must not exceed the PM’s

capacity. Let ,i j be a Boolean that equals one

when VMi is mapped to PMj, and zero otherwise.

The mapping solution is then shown as a matrix, as

shown in (4) with N rows and M columns in each

row. On the ith row, only the jth column is one and

the rest of the elements on the row are zero,

showing that VMi is placed on PMj.

(4)

0,0 0, 1

1,0 1, 1

...

...

...

M

N N M

 

 



  

 
 

 
 
  

Resource utilization, calculated for each resource

of a PM, is obtained by summing up the resource

values of all the VMs placed on the PM, divided by

the capacity of the PM’s respective resource. Let

j be the set of VMs on PMj. Then, CPU and

RAM utilization values of PMj are calculated by

(5).

(5) ,
ji

r

r i
j r

j

VM

U
PM






where, { , }r CPU RAM shows the resource for

which the utilization is being calculated, Uj
r is the

utilization value of resource r in PMj, and Ui
r is the

requested value of resource r in VMi, a VM mapped

to PMj. For a given PM, its power consumption,

which is the main optimization goal, is calculated

based on (6) [22].

(6) idle max idle(),
CPU

j jUP P P P  

where Pj is power consumption of PMj. Note that

the total power consumption of a data center is

simply calculated by summing up the power

consumption of all active PMs.

Resource wastage of PMj is calculated using (7).

(7)
| |

CPU RAM
j j

j CPU RAM
j j

L L
W

U U



 



Where Lj
CPU and Lj

RAM are the residual CPU and

memory resources of PMj, respectively. Recall that

Uj
CPU and Uj

RAM are CPU and memory utilization of

PMj, respectively. Further, ε is a small positive

fraction (set to 0.000001).

3.3. Meta-heuristics for Solving VMP

Solving VMP, as an NP-hard problem [4], with

exact methods is not feasible, especially for big

numbers of VMs and PMs. Thus, heuristics and

MH methods are considered. A benefit of heuristic

methods is their fast execution times. On the other

hand, there is usually a gap between the optimal

solution and the solutions obtained by heuristic

Khayyambashi & Kiani/ Journal of AI and Data Mining, Vol. 13, No. 1, 2025

4

methods. What’s more, a heuristic method may

operate well in one situation while performing

poorly in others (e.g., when the correlation between

resources requested by the VMs is small). These

motivate the research community to apply MH

algorithms. Further, the NFL theorem motivates

researchers to examine emerging MH algorithms in

solving VMP. However, in order to apply an MH

algorithm to a problem such as VMP, as each

algorithm requires a set of operators to

appropriately manipulate candidate solutions,

proper operators should be adopted for different

phases of the algorithm. A typical MH algorithm

mainly consists of a given number iterations where

each iteration uses several operators to manipulate

the members of the population (candidate

solutions) of the algorithm to create a better

population. In the next section, solution encoding

(how to represent a candidate solution to VMP) and

different operators used in various MH algorithms

are introduced.

3.4. Solution Encoding
An MH algorithm has a population, each of which

representing a candidate solution (solution, for the

sake of simplicity) to the problem. For an MH

algorithm, an encoding scheme is required to

represent a solution for a specific problem. A

solution can be an intermediate or a final

representation of a VM to PM mapping. The

former, in which each solution is formed by a

sequence of VM indices, is the one that needs the

application of an additional operation to get to the

final mapping. For instance, {5,4,2,1,3,0,7,6} is an

intermediate mapping that shows a permutation of

VMs and the final mapping can be obtained using

a heuristic such as the first fit (FF) mapping.

Conversely, the solution {{0,5,2}{7,1,4}{3,6}}

represents a final mapping where VMs {0,2,5} are

mapped to PM0 and sets {7,1,4} and {3,6} are

mapped to PM1 and PM2, respectively. Some

algorithms represent solutions in the form of

intermediate solutions while others use the final

representation. The former simplifies the

operations in terms of time complexity. Further, in

the case of a final representation, applying some

operators to achieve a new solution can lead to an

invalid solution, which requires a complex repair

operator. However, the solution space represented

by an intermediate representation is more limited.

This study considers the intermediate

representation for all of the algorithms, where each

solution is a sequence of VM indices. Then, the FF

algorithm is applied to obtain the final mapping.

3.5. Operators for Intermediate Solution

Encoding
A major part of employing an MH algorithm for

VMP is designing proper operators for different

stages of the algorithm. An operator is used to

receive one or more solutions to create one or more

new solutions. Each phase in an MH algorithm is

either aimed at inducing exploration or

exploitation. The former induces drastic changes to

get new solutions while the latter attempts to

perform local searches without considerable

modifications. This section first introduces several

existing operators proposed in the literature. Then,

a set of new operators are proposed.

3.5.1. Crossover

A crossover operator creates one or more solutions

out of (usually) two input solutions. Two kinds of

crossover exist including single- and double-pint

crossovers. Typically, in a single-point crossover,

two solutions with an index, c, are provided. Then,

the new solutions are formed by exchanging their

first 𝑐 VMs. Another version of the operator creates

only one solution that is created from fractions of

the two input solutions. In the double-point

crossover, two indices c1 and c2 are provided and

used to cut a portion (from index c1 to c2) of the

solutions to exchange the portions. When a

crossover is applied, the resultant solutions are

likely to be invalid since some VM indices are not

present while some other are repeated. This should

be fixed. First, all the repeated VM indices are

removed. Then, all the missing VM indices are

inserted at random into the empty locations of the

solutions. This creates valid solutions. Let’s

assume X1={5,2,4,7,0,1,6,3} and X2=

{7,0,3,6,1,2,5,4}. A single-point crossover

operator on index 2 first yields Xnew=

{5,2,4,6,1,2,5,4}. Then, repeated indices are

removed and randomly reinserted into the solution.

Removing the repeated indices results in Xnew=

{5,2,4,6,1,_,_,_} and absent VM indices of

{0,3,7}. The empty locations without any VM

index are shown with an “_”. A sample results is

Xnew={5,2,4,6,1,0,7,3} which is obtained after

randomly reinserting absent indices into the free

locations.

3.5.2. VM Exchange
A new solution is formed from an existing solution

by selecting two VM indices and exchanging their

positions. In its simplest form, the VMs are

selected at random. Another VM selection method

that can induce a higher change into the solution, is

exchanging the smallest VM (in terms of

resources) with the biggest one. As an example, let

An Evaluation of New Meta-heuristics for Virtual Machine Placement in Cloud Data Centers

5

X1={5,2,4,7,0,1,6,3}. A sample result would be

Xnew={5,2,1,7,0,4,6,3}, obtained by exchanging

the VM indices at the third and sixth locations

(highlighted with bold face). This operator can be

extended so that more than one exchange take

place, or each exchange includes a sequence of

VMs.

3.5.3. Shift Operator
A new solution is obtained by shifting out the VM

indices and reinserting them at random. A shift

operator is defined by a direction (left or tight), and

a count to show how many shifts should be

performed. Letting X1={5,2,4,7,0,1,6,3}, the right

shift operator by one yields Xnew={5,2,4,3,7,0,1,6}.

3.5.4. Rotate Operator
The rotate operator is similar to the shift operator.

However, when a VM is shifted out, it goes back to

the beginning of the solution (the first or the last

VM location, depending on the rotation direction).

Letting X1={5,2,4,7,0,1,6,3}, applying two

rotations yield Xnew={6,3,5,2,4,7,0,1}.

3.5.5. Interval Sorting
The interval sorting operator takes two indices,

denoted by c1 and c2, to determine an interval in the

solution. Then, all the VMs located within the

interval are sorted. The sort operation can be

increasing or decreasing and by one or more

resources. For instance, the sort can be done based

on CPU or memory resource values, or a parameter

that represents both CPU and memory resources.

While crossover and VM exchange operators have

been used in previous studies, to the best of our

knowledge, we are the first to propose and employ

shift and rotate operators for VMP.

4. Coati Optimization Algorithm

In this section, first, COA is introduced. Then, it is

adopted for solving VMP.

4.1. COA Algorithm

COA [20] is an inspiration from Coatis’ (a mammal

native to South America) social behavior in

hunting for preys (Iguanas), while escaping

predators. Coatis gather in a pack to hunt Iguanas

in a cooperative fashion. The prey is on a tree and

some Coatis ascend the tree to scare the Iguana to

jump from the tree to the ground where the rest of

the Coatis awaiting to trap the Iguana. Further,

when predators attack a Coati, they should escape

and move to a safe place. In COA, the population

is formed by Coatis and each Coati represents a

solution to the problem. The position of the Coati

shows its fitness. The position of a Coati is

manipulated based on two phenomena:

1. Coatis’ praying strategies to hunt Iguana

2. Coatis’ escaping strategy from predators

The population of Coatis is updated through two

phases (the total of three steps), as follows.

Phase 1, Step 1, Hunting strategy on tree. In

Phase 1, Coatis are divided into two groups of

equal size. The first group ascends the tree where

the Iguana perched. At the end of this step, the

Iguana scares and falls to the ground. The operator

for the first step is represented by (8).

(8)

11
,, ,: (),

{1,2,..., }, {1,2,..., }
2

PP
i ji i j i j j

r xIIguanax xX

n
i j m

   

 
  

 

Here, Xi
P1 is the new position of the Coati and

1
,

P
i jx

is the value of the jth variable in the ith Coati.

Further, m and n are the dimension size and the

number of Coatis (population size), respectively. In

addition, Iguanaj is the Coati with the best solution

and r is a random in [0,1] and I is a random in [0,2].

Phase 1, Step 2, Hunting strategy. The second

group of Coatis await the Iguana on the ground.

When the Iguana falls to the ground, Coatis

conduct a cooperative attack to finally hunt the

Iguana. The position of the Coati with the best

fitness value is considered as the location of the

Iguana.

(9)
,

{1, 2, ..., },

: ()
G G

j j jj

j m

rIguana Iguana lb ub lb



  

where IguanaG is the Iguana on the ground and

IguanaG
j is the value of the jth dimension in the

solution. Further, lbj and ubj are the lower and the

upper bounds of the jth dimension in the problem,

respectively. Parameter r is a random in [0,1].

Then, the position of each Coati is manipulated

according to (10).

(10)

,
,11

,

,

()
:

) otherwise(

{ 1,..., }, {1,2,..., },
2

Gi j iIguanaj i jPP
i i j

i j j

IIguana F F
xX

Iguana

x r x

x r

n
i n j m


   

 
 


 
   

 

where, Xi
P1 is the solution presented by the ith Coati

and
1

,
P
i jx is the value of the jth dimension of the ith

Coati. Moreover, Iguanaj is the value of the jth

dimension of the Iguana on the ground. The

parameters r and I are two random values in [0,1]

and [0,2], respectively.

Phase 2, Escaping strategy. This phase is inspired

by the behaviour of Coatis in escaping predators.

When a predator attacks, the Coati moves to a safe

place. This phase is to induce exploitation by

Khayyambashi & Kiani/ Journal of AI and Data Mining, Vol. 13, No. 1, 2025

6

employing a local search operator. To do so, the

Coati moves to a location close to its current

location. This operator is conducted based on (11)

and (12).

(11) , , {1,2,..., },
j jlocal local

j j

lb ub
t Tlb ub

t t
  

where, t is the current iteration of the algorithm and

T is the maximum number of iterations allowed in

the algorithm. Moreover, lbj
local and ubj

local are the

local lower and upper bounds for the jth variable.

The new position assigned to Coati i in the second

phase of the algorithm, denoted by Xi
P2 is

determined by (12).

(12)

22
, ,: ()

(()),

1 2

{1,2,..., }, {1,2,..., }.

PP
i i j i j

local local local
j j j

rx xX

rlb ub lb

i n j m

 

 



 

Here, r is a random in [0,1]. Next, if the new

position optimizes the fitness of the Coati, the

movement is accepted by replacing the solution of

the Coati with the new solution, as presented by

(13).

(13)

1
1

otherwise

P
Pi
i i

i

i

X F Fx
X


 

 



Here, Fi
P1 is the fitness of the ith Coati in the

second phase and Fi is the old fitness of the Coati.

4.2. Adopting COA for VMP

The equations presented in the previous chapter are

designed to solve functions of continuous variables

with given bounds. This section presents the

operators developed for COA in order to employ it

for VMP, as a discrete problem.

Phase 1, Step 1, Alternate selection. As

mentioned earlier, each solution to the problem is

represented as a sequence of VMs. To generate a

new solution for a Coati, the old solution and the

best solution (Iguana) are used. The following

explains the operator, called alternate selection,

used to create a new Coati. VM indices are

sequentially inserted into the new solution. The

locations of even VM indices are defined based on

that of the Iguana and the odd VM indices from that

of the Coati. For instance, VM0 in the solution of

the new Coati is placed at the same location of the

Iguana while VM1 is placed at the location where

VM1 is located in the original Coati. When

attempting to place a VM to a location that is

already taken, it will be placed at the closest free

location. For instance, let’s assume

Xi={1,4,5,0,2,3,7,6} and Iguana={7,4,6,3,1,5,2,0}

be the solution of the original Coati and the Iguana,

respectively. Xi
P1 is empty at first thus Xi

P1=

{_,_,_,_,_,_,_,_}, where each underline (“_”)

shows an empty location to be filled with a VM

index. First, VM0 is placed at the same location of

VM0 in Iguana thus we get Xi
P1={_,_,_,_,_,_,_,0}.

The five subsequent steps lead to Xi
P1=

{1,4,5,_,_,3,2,0}. Then, to place VM6, which is

located at the third location of the Iguana, the third

location of the new solution is already filled, hence

VM6 is placed at the fourth location (the closest free

location), hence we get Xi
P1={1,4,5,6,_,3,2,0}.

Finally, VM7 is placed at the only remaining free

location to obtain Xi
P1={1,4,5,6,7,3,2,0}.

Phase 1, Step 2, Random cut. If the fitness of the

Coati is worse than that of IguanaG (the Iguana on

the ground, which is first constructed randomly),

then, the operator is applied to the Coati to create a

new solution. Two random numbers, 𝑟1 and 𝑟2 are

generated in the range [0,M-1] and [r1,M-1],

respectively. Then, the chunk of IguanaG
 from

index r1 to r2 is copied to the same location or the

new Coati. The rest of the locations are taken from

the original Coati. For instance, let us assume

Xi={1,4,5,0,2,3,7,6} and Iguana={7,4,6,3,1,5,2,0}.

Further, let r1=1 and r1=4. Thus, Xi
P1

=

{1,4,6,3,1,3,7,6} (the VM indices with bold font

inserted from Iguana). However, this operation

may result in absent and repeated VM indices,

which represents an invalid solution. To construct

a valid solution out of an invalid solution, a

repairing operator is applied, as discussed below.

Repair operator. This operator receives a solution

with repeated or absent VM indices along with r1

and r2 to create a valid solution. Repeated indices

are replaced with absent ones. To replace a given

repeated VM index with an absent one, the most

similar repeated VM index is selected for

replacement. Similarity is decided based on (14).

(14) 2 2
, ' ''() ()i i i ii iCPU CPUD RAM RAM   

where, Di,i’ is the calculated similarity between two

VMs, VMi and VMi’. Further, CPUi and CPUi’ are

respectively the CPU requests of VMi and VMi’.

Additionally, RAMi and RAMi’ are memory

requests of VMi and VMi’, respectively.

Phase 2, Selective interval sort. This step is to

implement a local search. Therefore, no drastic

changes are made to the solutions and only small

changes are applied to slightly move the solutions

in search of a better solution nearby. To do so, two

random numbers are generated, called 𝑙 and 𝑠 so

that we have 1 l k  and 0 1s M l    . k is

a controllable parameter selected between 0 and M-

1. After generating s and l, the chunk of l indices in

the solution, starting from index s 𝑠 (i.e.,

{s,s+1,…,s+l-1}) is sorted decreasingly by the

processing values of the respective VM indices in

the locations. For instance, let Xi={1,4,5,0,2,3,7,6}

and and CPU requests of the VMs be Xi
CPU=

An Evaluation of New Meta-heuristics for Virtual Machine Placement in Cloud Data Centers

7

{100,120,75,150,200,80,50,125}. Further, assume
s=2 and l=4. Thus, all VM indices between location

2 and location 5 are sorted decreasingly based on

the CPU values (Xi
CPU) of the VMs. Therefore, this

operator yields the new solution as

Xi
P2={1,4,2,0,3,5,7,6}. Finally, (15) is evaluated to

decide whether the new solution is worthy to

accept.

(15)

2
2

otherwise

P
Pi
i i

i

i

X F Fx
X


 

 



4.3. COA Algorithm
Algorithm 1 shows the used algorithm for COA.

First, at the initialization phase, the population is

created and the parameters are set (Line 2). Then,

the algorithm runs until the termination criteria is

met (here, 200 iterations). In each iteration, the

population is divided in two halves. The first half

performs the first phase (Iguana on tree) (Lines 5-

7). This phase includes the application of the

alternate selection to all members of the first half.

Then, the algorithm enters the second phase (Lines

8-10), which is applied to the population members

of the second half. This phase employs the

introduced random cut operator. Next, the escape

phase is performed (Line 11) by applying the

selective interval sort operator to the new

population. The algorithm returns the fittest

solution as the output.

Algorithm 1. COA algorithm for VMP.

1 begin Algorithm

2 Pop initialize(VM,PM);
3 while(termination criterion not met)

4 Pop.fit calculateFitness(Pop);

5 for all Pop[i],
2

{0,..., 1}
n

i  
  

 

6 PopNew IguanaOnTree(Pop,i);

7 end for

8 for all Pop[i], { ,..., 1}
2

n
i n

 
  
 

9 PopNew  IguanaOnGround(Pop,i);

10 end for

11 PopNew escapePredators(PopNew);

12 Pop  PopNew;

13 end while
14 return(CoatiWithBestFitness(Pop));
15 end Algorithm

5. Evaluation Results

This section gives the evaluation results of COA

and other algorithms. All of the algorithms were

implemented using C/C++ and ran on a system

with Core™ i5 CPU and 8GB of RAM. For VM

tasks, a standard synthetic task generator

introduced in [23] was used. Three important

parameters are provided for the task generator. The

first two parameters include CPUR and RAMR that

define reference values for CPU and memory. In

this study, CPUR and RAMR both were set to 0.45.

Further, a correlation parameter P controls the

correlation between VM’s CPU and memory

resource values, where {0,0.25,0.5,0.75,1}P .

P=0 shows the case where the values of CPU and

memory in the VMs have strong negative

correlation while P=1 indicates strong positive

correlation. Our simulation results are reported for

all the values of 𝑃. Further, the number of VMs was

set to one of 100, 200, 500, 800, and 1200 values,

and the number of PMs and VMs were the same

and their resource capacities were assigned

randomly.

5.1. Evaluated Algorithms and Metrics

The evaluated algorithms include two categories.

The first category includes two heuristics, first-fit

decreasing (FFD) and best-fit (BF). The second

category includes several MHs as introduced

below. The selected algorithms both include well-

established ones with promising results (GA and

CRO) as well as two emerging algorithms (HHO

and EVO).

GA The algorithm in [12] was used. GA is a

popular algorithm that has rather simple parameter

settings and it is efficient in exploring search space.

For crossover, the crossover operator introduced in

Section 3 is used. For mutation, the exchange

operator introduced in Section 3 is employed. In

GA, the crossover and mutation rates were set to

0.8 and 0.1, respectively.

CRO The CRO algorithm proposed in [12] was

employed. CRO is efficient but its parameter

setting is rather tedious. However, as it employs

four operators, it can perform well in diverse

applications. The values of  ,  and the initial

Kinetic energy were set to 1, 0.25, and 1,

respectively. Further, Molecular collision and KE

loss rate were set to 0.6 and 0.2, respectively. The

value for initial buffer was 5.

HHO Harris hawk optimization (HHO) is a new

MH algorithm with promising performance. This

algorithm was modified for VMP. The algorithm

has three phases including exploration,

exploitation, and attack. For the exploration phase,

a crossover operator was used to combine two

solutions and create a new solution. For the

exploitation phase, a random is generated to decide

between applying a crossover operator or a VM

exchange operator. Finally, for the attack phase,

multiple VM exchange operator was used. In HHO,

the exploit and attack rates were set to 0.5 and 0.1,

respectively.

Khayyambashi & Kiani/ Journal of AI and Data Mining, Vol. 13, No. 1, 2025

8

EVO Electron valley optimizer (EVO), which has

recently been used for VMP [17] was used. It

should be noted that for an Alpha reaction, a single-

point crossover was employed to create a new atom

from an existing atom and the best atom. Further,

for a Beta decay, a selective rotate or shift operator

was applied where a random is generated to select

between shift or rotate operation. For a Gamma

reaction, a crossover operator is used to generate a

new atom from the atom itself and a neighbor atom.

Finally, a Positron reaction uses a shift operator on

the best atom to generate a new atom.

The number of iterations and the population size

were set to 100 and 200 for all MH algorithms.

In terms of evaluated metrics, we consider power

consumption, resource wastage, and execution

time of the algorithms.

5.2. Results and Discussion

Power consumption. Figure 1 shows the obtained

results for power consumption reduction with

respect to FFD. As it can be seen, when there is low

correlation between CPU and memory resources in

VMs, the benefit of MHs is high. On an average,

GA, CRO, HHO, EVO, and COA performed

16.7%, 16.2%, 16.6%, 16.7%, and 16.5% better

than FFD, respectively. Further, BF performed

14.3% better than FFD. However, as the correlation

value increases, the benefit of the algorithms with

regard to FFD diminishes. The average power

reduction values for P=0.5 is 8.3%, 7.8%, 8.4%,

8.6%, and 8.2% for GA, CRO, HHO, EVO, and

COA, respectively. For P=1.0, which represents

full correlation, the benefit declines to 3.2%, 2.9%,

3.2%, 3.3%, and 3.2%.

Overall, GA performs well as it is efficient in

exploring search space. Further, HHO, EVO, and

COA perform slightly better than CRO.

Figure 1. Power consumption reduction of different algorithms with respect to FFD for different numbers of VMs.

Resource wastage. Figure 2 gives the results of

resource wastage reduction (in percent) of the

algorithms, which are calculated with FFD results

as the baseline. As it can be seen all algorithms

perform significantly better than FFD. Note that

BF has also performed well and it is to no surprise.

BF attempt to fit a VM into the PM with the closest

resource capacity available. Therefore, it

emphasizes on reduction of resource wastage.

0

10

20

100 200 500 800 1200

%
P

o
w

er
 r

ed
u
ct

io
n

VM count

(a) P=0.0
BF GA CRO HHO EVO COA

0

10

20

100 200 500 800 1200

%
P

o
w

er
 r

ed
u
ct

io
n

VM count

(b) P=0.25
BF GA CRO HHO EVO COA

0

5

10

100 200 500 800 1200

%
P

o
w

er
 r

ed
u
ct

io
n

VM count

(c) P=0.5
BF GA CRO HHO EVO COA

0

5

10

100 200 500 800 1200

%
P

o
w

er
 r

ed
u
ct

io
n

VM count

(d) P=0.75
BF GA CRO HHO EVO COA

-2

0

2

4

6

100 200 500 800 1200%
P

o
w

er
 r

ed
u
ct

io
n

VM count

(e) P=1.0
BF GA CRO HHO EVO COA

An Evaluation of New Meta-heuristics for Virtual Machine Placement in Cloud Data Centers

9

Execution time. Execution time of MH algorithms

are presented in Figure 3. The execution times are

given for P=0.5 and different numbers of VMs.

CRO has the best scalability and lowest execution

time and GA has the worst scalability. COA

performed significantly better than GA, EVO, and

HHO.

Figure 2. Resource wastage reduction of different algorithms with respect to FFD for different number of VMs.

6. Concluding Remarks

In the present study, several classic and new MHs

were evaluated in solving VMP. Specifically, COA

was adopted for VMP by introducing a set of

operators. The evaluation results indicate that the

evaluated MHs generally perform similarly in

terms of power consumption reduction and

outperform heuristics. However, their execution

times can be different significantly, which is

mainly due to the operators they use and also the

phases of the algorithm. What’s more, the

evaluation results show that COA, EVO, and HHO

as new MHs performed well with respect to GA, as

a classic MH, but the benefit is not significant. One

benefit of COA, which is also true about EVO, was

its simple parameter settings while, e.g. for CRO,

there are several parameters that should be set

properly which requires many trials and errors for

a specific problem.

Figure 3. Running times of the MHs for various VM

counts.

In terms of execution time, COR and COA

performed better, showing better scalability for

higher VM counts. In the future, the authors plan to

0

50

100

100 200 500 800 1200

%
R

es
o

u
ce

 w
as

ta
g
e

re
d

u
ct

io
n

VM count

(a) P=0.0
BF GA CRO HHO EVO COA

0

20

40

60

80

100 200 500 800 1200

%
R

es
o

u
ce

 w
as

ta
g
e

re
d

u
ct

io
n

VM count

(b) P=0.25
BF GA CRO HHO EVO COA

0

20

40

60

80

100 200 500 800 1200

%
R

es
o
u
ce

 w
as

ta
g
e

re
d
u
ct

io
n

VM count

(c) P=0.5
BF GA CRO HHO EVO COA

-50

0

50

100

100 200 500 800 1200

%
R

es
o

u
ce

 w
as

ta
 r

ed
u

ct
io

n

VM count

(d) P=0.75
BF GA CRO HHO EVO COA

0

20

40

60

100 200 500 800 1200

%
R

es
o
u
ce

 w
as

ta
g
e

re
d
u
ct

io
n

VM count

(e) P=1.0
BF GA CRO HHO EVO COA

0

500

100 200 500 800 1200

Ti
m

e
(S

)

VM count

Execution time
GA EVO CRO

COA HHO

Khayyambashi & Kiani/ Journal of AI and Data Mining, Vol. 13, No. 1, 2025

10

implement the algorithm for solving VMP in

dynamic scenarios where more important

parameters such as overbooking and service level

agreement (SLA) and network bandwidth are

modeled. Further, investigating the effectiveness of

COA in green data centers is another work planned

for the future. Another future work is to design and

experiment with new operators to be used in COA.

References
[1] M. Singh, “Virtualization in cloud computing-a

study,” in 2018 International Conference on Advances

in Computing, Communication Control and

Networking, ICACCCN, 2018, pp. 64-67.

[2] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and

I. Brandic, “Cloud computing and emerging IT

platforms: Vision, hype, and reality for delivering

computing as the 5th utility,” Future Generation

Computer Systems, vol. 25, no. 6, pp. 599-616, 2009.

[3] Y. Xing and Y. Zhan, “Virtualization and cloud

computing,” in Future Wireless Networks and

Information Systems, Lecture Notes in Electrical

Engineering, 2012, pp. 305-312.

[4] J. D. Ullman, “NP-complete scheduling problems,"

Journal of Computer and System Sciences, vol. 10, no.

3, pp. 384-393, 1975.

[5] J. P. Gabhane, S. Pathak, and N. M. Thakare,

“Metaheuristics algorithms for virtual machine

placement in cloud computing environments—a

review,” in Computer Networks, Big Data and IoT,

ICCBI, 2020, pp. 329-349.

[6] D. H. Wolpert and W. G. Macready, “No free lunch

theorems for optimization,” IEEE Transactions on

Evolutionary Computation, vol. 1, no. 1, pp. 67-82,

1997.

[7] B. Pourghebleh, A. Aghaei Anvigh, A. R. Ramtin,

and B. Mohammadi, “The importance of nature-inspired

meta-heuristic algorithms for solving virtual machine

consolidation problem in cloud environments,” Cluster

Computing, vol. 24, no. 3, pp. 2673-2696, 2021.

[8] K. Rajwar, K. Deep, and S. Das, “An exhaustive

review of the metaheuristic algorithms for search and

optimization: taxonomy, applications, and open

challenges,” Artificial Intelligence Review, vol. 56, pp.

1-71, 2023.

[9] H. Talebian, A. Gani, M. Sookhak, A. A. Abdelatif,

A. Yousafzai, A. V. Vasilakos, and F. R. Yu,

“Optimizing virtual machine placement in iaas data

centers: taxonomy, review and open issues,” Cluster

Computing, vol. 23, pp. 837-878, 2020.

[10] A. Safari-Bavil, S. Jabbehdari, and M. Ghobaei-

Arani, “An Efficient Approach to Solve Software-

defined Networks based Virtual Machines Placement

Problem using Moth-Flame Optimization in the Cloud

Computing Environment,” Journal of AI and Data

Mining, vol. 9, no. 3, pp. 309-320, 2021.

[11] F. Alharbi, Y.-C. Tian, M. Tang, W.-Z. Zhang, C.

Peng, and M. Fei, “An ant colony system for energy-

efficient dynamic virtual machine placement in data

centers,” Expert Systems with Applications, vol. 120, pp.

228-238, 2019.

[12] M. Kiani and M. R. Khayyambashi, “A network-

aware and power-efficient virtual machine placement

scheme in cloud datacenters based on chemical reaction

optimization,” Computer Networks, vol. 196, pp.

108270, 2021.

[13] Z. Li, Y. Li, T. Yuan, S. Chen, and S. Jiang,

“Chemical reaction optimization for virtual machine

placement in cloud computing,” Applied Intelligence,

vol. 49, pp. 220-232, 2019.

[14] M. HS, P. Gupta, and G. McArdle, “A Harris Hawk

Optimisation system for energy and resource efficient

virtual machine placement in cloud data centers,” Plos

One, vol. 18, no. 8, p. e0289156, 2023.

[15] B. Zhang, X. Wang, and H. Wang, “Virtual

machine placement strategy using cluster-based genetic

algorithm,” Neurocomputing, vol. 428, pp. 310-316,

2021.

[16] L. T. Duan, J. Wang, and H. Y. Wang, “An energy-

aware ant colony optimization strategy for virtual

machine placement in cloud computing,” Cluster

Computing, vol. 27, no. 10, pp. 1-14, 2024.

[17] M. Kiani, “Virtual machine placement in cloud data

centers using energy valley optimizer algorithm,” Tabriz

Journal of Electrical Engineering, in press, 2024.

[18] A. Y. Lam and V. O. Li, “Chemical reaction

optimization: a tutorial,” Memetic Computing, vol. 4,

pp. 3-17, 2012.

[19] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M.

Mafarja, and H. Chen, “Harris hawks optimization:

Algorithm and applications,” Future Generation

Computer Systems, vol. 97, pp. 849-872, 2019.

[20] M. Dehghani, Z. Montazeri, E. Trojovská, and P.

Trojovský, “Coati optimization algorithm: A new bio-

inspired metaheuristic algorithm for solving

optimization problems,” Knowledge-Based Systems,

vol. 259, pp. 110011, 2023.

[21] M. Azizi, U. Aickelin, H. A. Khorshidi, and M.

Baghalzadeh Shishehgarkhaneh, “Energy valley

optimizer: a novel metaheuristic algorithm for global

and engineering optimization,” Scientific Reports, vol.

13, no. 1, pp. 226, 2023.

[22] X. Fan, W.-D. Weber, and L. A. Barroso, “Power

provisioning for a warehouse-sized computer,” ACM

SIGARCH Computer Architecture News, vol. 35, no. 2,

pp. 13-23, 2007.

[23] Y. Ajiro and A. Tanaka, “Improving packing

algorithms for server consolidation,” in International

Conference on Mathematical Geophysics, CMG, 2007,

vol. 253, pp. 399-406.

 .1404سال ،دوره سیزدهم، شماره اول ،کاویمجله هوش مصنوعی و داده باشی و کیانیخیام

 های فراابتکاری برای حل مسئله جانمایی ماشین مجازی در مراکز داده ابریبررسی الگوریتم

 ،*2باشیمحمدرضا خیام و1محسن کیانی

 .، اصفهان، ایراناصفهاندانشگاه ریاضی و کامپیوتر خوانسار، دانشکدهگروه علوم کامپیوتر، 1

 .دانشگاه اصفهان، اصفهان، ایران، دانشکده مهندسی کامپیوتر، افزارگروه مهندسی نرم 2

 19/01/2025 پذیرش؛ 20/12/2024 بازنگری؛ 03/09/2024 ارسال

 چکیده:

شین سئله جانمایی ما شین هایدر این پژوهش، کارایی چند الگوریتم فراابتکاری در حل م سی هایمجازی روی ما فیزیکی در مراکز داده ابری مورد برر

ست. به طور خاص، الگوریتم بهینه شین با سازی کواتیقرار گرفته ا سئله جانمایی ما هایمعرفی چند عملگر برای مراحل مختلف الگوریتم، برای حل م

ست. شامل الگوریتم ژنتیک، بهینه بتکاریالگوریتم فراافراابتکاری نوظهور و چند الگوریتم همچنین، چند مجازی انطباق یاقته ا سازی قدیمی و محبوب،

شیمیایی، بهینه شاهین هریس، و بهینهمبتنی بر واکنش صرفی و دره الکترون، مورد ارزیابی قرار گرفته یسازسازی شامل توان م صلی، اند. دو پارامتر ا

شدند. الگوریتمهدررفت منابع، در ارزیابی صرفی و کاهش هدررفت منابع، و همچنین زمان توانمندی های مذکور از نظرها بررسی شان در کاهش توان م

های مجازی تولید شده با یک مولد وظیفه تصادفی ها با ماشینای از ارزیابیهای مجازی ارزیابی شدند. مجموعهاجرایشان در حل مسئله جانمایی ماشین

های نوظهور کمی کنند، هرچند الگوریتممی به طور عمومی مشددابه یکدیگر عملفراابتکاری های انجام شددد. نتایم مبین این واقعیت اسددت که الگوریتم

 دارای مزیت هستند.

 .های فراابتکاریسازی، الگوریتمسازی کواتی، مراکز داده ابری، ماشین مجازی، بهینهرایانش ابری، الگوریتم بهینه :کلمات کلیدی

