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 The present study investigates the effectiveness of several new meta-

heuristic (MH) methods in solving virtual machine (VM) to physical 

machine (PM) placement (VMP) in cloud data centers. More 

specifically, Coati optimization algorithm (COA) is properly adapted 

for solving VMP by introducing several operators for the phases of 

the algorithm. Several emerging and classic meta-heuristics are also 

included in the evaluations, including genetic algorithm, chemical 

reaction optimization, Harris hawk optimization (HHO), and electron 

valley optimizer (EVO). Two main parameters are included in our 

evaluations, including power consumption and resource wastage. The 

algorithms are evaluated in terms of their ability to reduce power 

consumption and resource wastage in VMP, and also in terms of their 

execution times. A set of evaluations with synthetic VMs are 

performed. The results indicate that all MHs perform almost 

similarly, while emerging methods (COA, HHO, EVO) have a 

marginal benefit.  
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1. Introduction 

Numerous enterprises today rely on the cloud for 

their required services in terms of software and 

infrastructure. Cloud computing brings many 

benefits such as cost reduction and scalability. At 

the infrastructure level, cloud serves its users by 

creating virtual machines (VMs) [1], enabled by 

the virtualization technology [2, 3]. A VM can be 

executed on any of the available physical machines 

(PMs) in the data center of the cloud service 

provider. Further, a VM provides a given level of 

service for each resource (usually processing, 

memory, and storage). A VM is usually created 

with less resources than that of a PM. Thus, a PM 

can host and run more than one VM at the same 

time. Therefore, the way of assigning a set of VMs 

to a set of PMs becomes a substantial problem to 

solve. This problem, which is called VM to PM 

placement (VMP), is proven to be NP-hard [4]. 

VMs provided by a cloud service provider come 

into several flavors to serve users with different 

resource requirements. This is also true for PMs 

since PMs in a data center are not all identical. 

Another aspect of the problem that increases its 

difficulty is that the mapping of VMs needs the 

consideration of several resource constraints (e.g., 

CPU, RAM, disk, etc.). Energy consumption of the 

PMs in a data center is a main contributor to the 

cost of the data center. Since any active PM 

consumes energy, one main goal of a VMP method 

is to minimize the number of active PMs (PMs with 

at least one VM to execute), known as VM 

consolidation. Then, all inactive PMs can be turned 

off to reduce power consumption. Therefore, VMP 

can be pictured as a bin packing problem where 

VMs are the items, and PMs are the bins. Other 

metrics that are used to decide the effectiveness of 

a VMP method include resource utilization and 

resource wastage.  

To solve VMP efficiently, many heuristics and 

meta-heuristic (MH) algorithms are developed by 

the researchers in the area of cloud computing. 

MHs have shown promising results for solving 

VMP [5]. Further, several new MH algorithms 

emerge every year that can be utilized to solve 
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VMP more optimally. Based on the no-free-lunch 

(NFL) theorem [6], no MH is superior in solving 

all optimization problems. This motivates us to 

employ every emerging MH algorithm for solving 

VMP. Therefore, the present study adopts several 

newly-proposed MH algorithms for solving VMP. 

The goal is to decide to what extent new meta-

heuristics can benefit VMP, in terms of 

effectiveness (energy of the data center, resource 

utilization, resource wastage) and execution time.  

Employing an MH for solving VMP requires to 

modify the algorithm for VMP by introducing a 

proper solution encoding (to encode a solution to 

VMP as a member of the population of the MH 

algorithm) and parameter settings in the algorithm. 

This is required since most MHs are first 

introduced for optimizing continuous functions 

while VMP is a discrete problem. Second, as each 

algorithm includes a set of steps each of which 

operating on the population of the algorithm to 

create new members iteratively, one or more 

operators should be provided for each step. One 

main focus of the present study is on the latter. A 

set of operators are first introduced. Then, the 

operators are employed in different phases of 

several MH algorithms. Further, this study adopts 

a new MH, Coati optimization algorithm (COA) to 

solve VMP. COA is an emerging algorithm that has 

shown promising results in many optimization 

problems, as it can properly balance between 

exploration and exploitation in solution space. 

Further, a set of proper operators are designed to 

adopt COA for solving VMP. Several new and 

classic MHs are also included in the evaluations. 

Then, energy consumption, resource utilization, 

and resource wastage of all the algorithms are 

reported. Moreover, the execution time of the 

algorithms are compared. Our evaluations show 

that the results provided by the MHs are generally 

similar yet much better than heuristics.  

The rest of this paper is structured as follows. In the 

next section, Section 2, a brief literature review is 

given. Next, Section 3 discusses the preliminary 

materials in the field of VMP and MHs. Then, in 

Section 4 COA is introduced and then the 

modifications and required operators for COA are 

proposed so that it can be utilized for solving VMP. 

Then, the algorithm of COA is presented. 

Afterwards, Section 5 introduces the evaluation 

settings and the obtained results. The paper is then 

concluded in Section 6.   

 

2. Related Work 

There are plentiful studies in the field of VMP 

using MHs [5, 7-10]. As our work focuses on 

emerging MHs, here, we briefly review several 

similar recent studies.  

Various MHs are used to solve VMP. Two 

scenarios are considered for VMP including static 

[11-13] and dynamic [14, 15] VMP. The former 

includes mapping a given set of VMs onto PMs, 

which is modeled as a constraint optimization 

problem. The latter models a more comprehensive 

system and includes more parameters such as 

utilization and service-level agreements. 

Investigating VMP as both static and dynamic have 

merits. In early stages of adopting an emerging 

algorithm, a static scenario provides the ability to 

examine the considered algorithms with different 

VM counts, which is the focus of this study.  

In [11], the authors used Ant colony system (ACS) 

to deal with VMP, aiming at PM energy reduction 

in the data center and significant improvements 

were observed in terms of energy reduction. The 

work of Duan et al. [16] is another study that used 

ACS for VMP. Chemical Reaction Optimization 

(CRO) is another nature-inspired algorithm which 

is employed for solving VMP in [13]. Recently, 

Harris Hawk Optimization (HHO) is employed for 

VMP in [14]. HHO is adopted for VMP, which the 

presented evaluations confirm its benefits over 

heuristics and several MHs. Another recent work 

[17] employed Energy Valley Optimizer (EVO)  for 

solving VMP. In the present study, we adopt COA 

and include recent works (HHO and EVO) and 

classic methods (Genetic Algorithm (GA) and CRO) 

in our comparison to investigate the effectiveness 

of recent MHs in solving VMP. Further, several 

new operators are devised to be used in phases of 

COA. 

 

3. Problem Formulation  

In the present study, five MH algorithms along 

with two heuristics are experimented with. The 

employed MHs in this work include GA, CRO 

[18], HHO [19], Coati Optimization Algorithm 

(COA [20]), and EVO [21]. EVO is inspired by the 

interactions of atoms at sub-atomic (electron) level. 

Previous studies have employed GA and CRO [12, 

13], for solving VMP. Recently, EVO [17] and 

HHO [14] were also used for solving VMP. To the 

best of the authors’ knowledge, this is the first 

research attempt in employing COA in solving 

VMP. This section presents a background on VMP 

and then introduces COA and EVO algorithms. 

 
3.1. VM Placement 

The purpose of a VMP algorithm is to optimally 

assign VMs to PMs. The optimality is decided 

based on one or more criteria, chief among which 

are energy consumption, resource wastage, and 

load balancing. Energy cost in data centers is a 
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main concern from both monetary and 

environmental impact points of view. Therefore, 

energy consumption is always a primary concern in 

VMP.  

The optimization goal of a VMP algorithm is to 

minimize power consumption and resource 

wastage. Power consumption of the data center is 

the accumulation of the power consumed by all 

PMs and resource wastage is first calculated for 

each PM and then accumulated. Therefore,  

(1) 

1

0

min ,
N

jP W j

j

WP 




  

subject to  

(2) 

1

,

0

1 {0,..., 1},
N

i j

j

i M




     

(3) 

1

,

0

{0,..., 1},

{ , }.

M
r r

ji i j

i

j NVM PM

r CPU RAM






    




 

Here, jP  and jW  are power consumption and 

resource wastage of the jth PM, respectively. In 

addition, P  and W  are the weight factors for 

power and resource wastage, respectively. The 

optimization constraint represented by (2) ensures 

the assignment of a VM to only one PM. The 

second constraint ((3)) dictates that the total 

resource request of all the VMs mapped to a PM 

must not exceed the PM’s capacity (for both 

processing and memory resources). In the next 

section, we discuss the formulation required to 

calculate Pj and Wj. Then, In Section 3.3, we 

discuss how to adopt several meta-heuristics for 

solving VMP ((1)-(3)). 

 

3.2. Power and Wastage Calculation 
Let M be the number of VMs and N be the number 

of PMs in a cloud data center. Each VM is a 3-tuple 

in the form of { , , }id CPU RAM  where 

{0,1,..., 1}id M   shows the VM’s unique 

identifier. Further, CPU and RAM are the requested 

CPU and memory of the VM, respectively. 

Similarly, each PM is a 5-tuple 

idle max{ , , , , }id CPU RAM P P , with 

{0,1,..., 1}id N   being the PM’s unique 

identifier, CPU and RAM being the processing 

power and memory capacity of the PM. In addition, 

idleP  and maxP  are the idling power consumption 

and maximum power consumption of the PM, 

respectively. The maximum power consumption is 

associated with the PM with full CPU utilization. 

A VMP algorithm allocates all VMs to a subset of 

PMs so that each VM is only allotted to one PM. 

Moreover, the accumulated resource requests of all 

the VMs placed on a PM must not exceed the PM’s 

capacity. Let ,i j  be a Boolean that equals one 

when VMi is mapped to PMj, and zero otherwise. 

The mapping solution is then shown as a matrix, as 

shown in (4) with N rows and M columns in each 

row. On the ith row, only the jth column is one and 

the rest of the elements on the row are zero, 

showing that VMi is placed on PMj.  

(4) 

0,0 0, 1

1,0 1, 1

...

... ... ...

...

M

N N M

 

 



  

 
 

 
 
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Resource utilization, calculated for each resource 

of a PM, is obtained by summing up the resource 

values of all the VMs placed on the PM, divided by 

the capacity of the PM’s respective resource. Let 

j  be the set of VMs on PMj. Then, CPU and 

RAM utilization values of PMj are calculated by 

(5). 

(5) ,
ji

r

r i
j r

j

VM

U
PM





 

where, { , }r CPU RAM shows the resource for 

which the utilization is being calculated, Uj
r is the 

utilization value of resource r in PMj, and Ui
r is the 

requested value of resource r in VMi, a VM mapped 

to PMj. For a given PM, its power consumption, 

which is the main optimization goal, is calculated 

based on (6) [22].  

(6) idle max idle( ),
CPU

j jUP P P P    

where Pj is power consumption of PMj. Note that 

the total power consumption of a data center is 

simply calculated by summing up the power 

consumption of all active PMs.  

Resource wastage of PMj is calculated using (7).  

(7) 
| |

CPU RAM
j j

j CPU RAM
j j

L L
W

U U



 


 

Where Lj
CPU and Lj

RAM are the residual CPU and 

memory resources of PMj, respectively. Recall that 

Uj
CPU and Uj

RAM are CPU and memory utilization of 

PMj, respectively.  Further, ε is a small positive 

fraction (set to 0.000001).  

 

3.3. Meta-heuristics for Solving VMP 

Solving VMP, as an NP-hard problem [4], with 

exact methods is not feasible, especially for big 

numbers of VMs and PMs. Thus, heuristics and 

MH methods are considered. A benefit of heuristic 

methods is their fast execution times. On the other 

hand, there is usually a gap between the optimal 

solution and the solutions obtained by heuristic 
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methods. What’s more, a heuristic method may 

operate well in one situation while performing 

poorly in others (e.g., when the correlation between 

resources requested by the VMs is small). These 

motivate the research community to apply MH 

algorithms. Further, the NFL theorem motivates 

researchers to examine emerging MH algorithms in 

solving VMP. However, in order to apply an MH 

algorithm to a problem such as VMP, as each 

algorithm requires a set of operators to 

appropriately manipulate candidate solutions, 

proper operators should be adopted for different 

phases of the algorithm. A typical MH algorithm 

mainly consists of a given number iterations where 

each iteration uses several operators to manipulate 

the members of the population (candidate 

solutions) of the algorithm to create a better 

population. In the next section, solution encoding 

(how to represent a candidate solution to VMP) and 

different operators used in various MH algorithms 

are introduced.  

 

3.4. Solution Encoding 
An MH algorithm has a population, each of which 

representing a candidate solution (solution, for the 

sake of simplicity) to the problem. For an MH 

algorithm, an encoding scheme is required to 

represent a solution for a specific problem. A 

solution can be an intermediate or a final 

representation of a VM to PM mapping. The 

former, in which each solution is formed by a 

sequence of VM indices, is the one that needs the 

application of an additional operation to get to the 

final mapping. For instance, {5,4,2,1,3,0,7,6} is an 

intermediate mapping that shows a permutation of 

VMs and the final mapping can be obtained using 

a heuristic such as the first fit (FF) mapping. 

Conversely, the solution {{0,5,2}{7,1,4}{3,6}} 

represents a final mapping where VMs {0,2,5} are 

mapped to PM0 and sets {7,1,4} and {3,6} are 

mapped to PM1 and PM2, respectively. Some 

algorithms represent solutions in the form of 

intermediate solutions while others use the final 

representation. The former simplifies the 

operations in terms of time complexity. Further, in 

the case of a final representation, applying some 

operators to achieve a new solution can lead to an 

invalid solution, which requires a complex repair 

operator. However, the solution space represented 

by an intermediate representation is more limited. 

This study considers the intermediate 

representation for all of the algorithms, where each 

solution is a sequence of VM indices. Then, the FF 

algorithm is applied to obtain the final mapping. 

 

3.5. Operators for Intermediate Solution 

Encoding  
A major part of employing an MH algorithm for 

VMP is designing proper operators for different 

stages of the algorithm. An operator is used to 

receive one or more solutions to create one or more 

new solutions. Each phase in an MH algorithm is 

either aimed at inducing exploration or 

exploitation. The former induces drastic changes to 

get new solutions while the latter attempts to 

perform local searches without considerable 

modifications. This section first introduces several 

existing operators proposed in the literature. Then, 

a set of new operators are proposed.  

 

3.5.1. Crossover  

A crossover operator creates one or more solutions 

out of (usually) two input solutions. Two kinds of 

crossover exist including single- and double-pint 

crossovers. Typically, in a single-point crossover, 

two solutions with an index, c, are provided. Then, 

the new solutions are formed by exchanging their 

first 𝑐 VMs. Another version of the operator creates 

only one solution that is created from fractions of 

the two input solutions. In the double-point 

crossover, two indices c1 and c2 are provided and 

used to cut a portion (from index c1 to c2) of the 

solutions to exchange the portions. When a 

crossover is applied, the resultant solutions are 

likely to be invalid since some VM indices are not 

present while some other are repeated. This should 

be fixed. First, all the repeated VM indices are 

removed. Then, all the missing VM indices are 

inserted at random into the empty locations of the 

solutions. This creates valid solutions. Let’s 

assume X1={5,2,4,7,0,1,6,3} and X2= 

{7,0,3,6,1,2,5,4}. A single-point crossover 

operator on index 2 first yields Xnew= 

{5,2,4,6,1,2,5,4}. Then, repeated indices are 

removed and randomly reinserted into the solution. 

Removing the repeated indices results in Xnew= 

{5,2,4,6,1,_,_,_} and absent VM indices of 

{0,3,7}. The empty locations without any VM 

index are shown with an “_”. A sample results is 

Xnew={5,2,4,6,1,0,7,3} which is obtained after 

randomly reinserting absent indices into the free 

locations.  

 

3.5.2. VM Exchange  
A new solution is formed from an existing solution 

by selecting two VM indices and exchanging their 

positions. In its simplest form, the VMs are 

selected at random. Another VM selection method 

that can induce a higher change into the solution, is 

exchanging the smallest VM (in terms of 

resources) with the biggest one. As an example, let 
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X1={5,2,4,7,0,1,6,3}. A sample result would be 

Xnew={5,2,1,7,0,4,6,3}, obtained by exchanging 

the VM indices at the third and sixth locations 

(highlighted with bold face). This operator can be 

extended so that more than one exchange take 

place, or each exchange includes a sequence of 

VMs.  

 

3.5.3. Shift Operator 
A new solution is obtained by shifting out the VM 

indices and reinserting them at random. A shift 

operator is defined by a direction (left or tight), and 

a count to show how many shifts should be 

performed. Letting X1={5,2,4,7,0,1,6,3}, the right 

shift operator by one yields Xnew={5,2,4,3,7,0,1,6}.  

 

3.5.4. Rotate Operator 
The rotate operator is similar to the shift operator. 

However, when a VM is shifted out, it goes back to 

the beginning of the solution (the first or the last 

VM location, depending on the rotation direction). 

Letting X1={5,2,4,7,0,1,6,3}, applying two 

rotations yield Xnew={6,3,5,2,4,7,0,1}. 

 

3.5.5. Interval Sorting 
The interval sorting operator takes two indices, 

denoted by c1 and c2, to determine an interval in the 

solution. Then, all the VMs located within the 

interval are sorted. The sort operation can be 

increasing or decreasing and by one or more 

resources. For instance, the sort can be done based 

on CPU or memory resource values, or a parameter 

that represents both CPU and memory resources. 

While crossover and VM exchange operators have 

been used in previous studies, to the best of our 

knowledge, we are the first to propose and employ 

shift and rotate operators for VMP. 

 

4. Coati Optimization Algorithm 

In this section, first, COA is introduced. Then, it is 

adopted for solving VMP.  

 

4.1. COA Algorithm 

COA [20] is an inspiration from Coatis’ (a mammal 

native to South America) social behavior in 

hunting for preys (Iguanas), while escaping 

predators. Coatis gather in a pack to hunt Iguanas 

in a cooperative fashion. The prey is on a tree and 

some Coatis ascend the tree to scare the Iguana to 

jump from the tree to the ground where the rest of 

the Coatis awaiting to trap the Iguana. Further, 

when predators attack a Coati, they should escape 

and move to a safe place. In COA, the population 

is formed by Coatis and each Coati represents a 

solution to the problem. The position of the Coati 

shows its fitness. The position of a Coati is 

manipulated based on two phenomena:  

1. Coatis’ praying strategies to hunt Iguana 

2. Coatis’ escaping strategy from predators 

The population of Coatis is updated through two 

phases (the total of three steps), as follows. 

Phase 1, Step 1, Hunting strategy on tree. In 

Phase 1, Coatis are divided into two groups of 

equal size. The first group ascends the tree where 

the Iguana perched. At the end of this step, the 

Iguana scares and falls to the ground. The operator 

for the first step is represented by (8). 

(8) 

11
,, ,: ( ),

{1,2,..., }, {1,2,..., }
2

PP
i ji i j i j j

r xIIguanax xX

n
i j m

   

 
  

 

 

Here, Xi
P1 is the new position of the Coati and 

1
,

P
i jx  

is the value of the jth variable in the ith Coati. 

Further, m and n are the dimension size and the 

number of Coatis (population size), respectively. In 

addition, Iguanaj is the Coati with the best solution 

and r is a random in [0,1] and I is a random in [0,2].  

Phase 1, Step 2, Hunting strategy. The second 

group of Coatis await the Iguana on the ground. 

When the Iguana falls to the ground, Coatis 

conduct a cooperative attack to finally hunt the 

Iguana. The position of the Coati with the best 

fitness value is considered as the location of the 

Iguana.  

(9) 
,

{1, 2, ..., },

: ( )
G G

j j jj

j m

rIguana Iguana lb ub lb



  
 

where IguanaG is the Iguana on the ground and 

IguanaG
j is the value of the jth dimension in the 

solution. Further, lbj and ubj are the lower and the 

upper bounds of the jth dimension in the problem, 

respectively. Parameter r is a random in [0,1]. 

Then, the position of each Coati is manipulated 

according to (10).  

(10) 

,
,11

,

,

( )
:

) otherwise(

{ 1,..., }, {1,2,..., },
2

Gi j iIguanaj i jPP
i i j

i j j

IIguana F F
xX

Iguana

x r x

x r

n
i n j m


   

 
 


 
   

 

 

where, Xi
P1 is the solution presented by the ith Coati 

and 
1

,
P
i jx  is the value of the jth dimension of the ith 

Coati. Moreover, Iguanaj is the value of the jth 

dimension of the Iguana on the ground. The 

parameters r and I are two random values in [0,1] 

and [0,2], respectively.  

Phase 2, Escaping strategy. This phase is inspired 

by the behaviour of Coatis in escaping predators. 

When a predator attacks, the Coati moves to a safe 

place. This phase is to induce exploitation by 
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employing a local search operator. To do so, the 

Coati moves to a location close to its current 

location. This operator is conducted based on (11) 

and (12). 

(11) , , {1,2,..., },
j jlocal local

j j

lb ub
t Tlb ub

t t
    

where, t is the current iteration of the algorithm and 

T is the maximum number of iterations allowed in 

the algorithm. Moreover, lbj
local and ubj

local are the 

local lower and upper bounds for the jth variable. 

The new position assigned to Coati i in the second 

phase of the algorithm, denoted by Xi
P2 is 

determined by (12). 

(12) 

22
, ,: ( )

( ( )),

1 2

{1,2,..., }, {1,2,..., }.

PP
i i j i j

local local local
j j j

rx xX

rlb ub lb

i n j m

 

 



 

 

Here, r is a random in [0,1]. Next, if the new 

position optimizes the fitness of the Coati, the 

movement is accepted by replacing the solution of 

the Coati with the new solution, as presented by 

(13).  

(13) 

1
1

otherwise

P
Pi
i i

i

i

X F Fx
X


 
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


 

Here, Fi
P1 is the fitness of the ith Coati in the 

second phase and Fi is the old fitness of the Coati.  

 

4.2. Adopting COA for VMP 

The equations presented in the previous chapter are 

designed to solve functions of continuous variables 

with given bounds. This section presents the 

operators developed for COA in order to employ it 

for VMP, as a discrete problem.  

Phase 1, Step 1, Alternate selection. As 

mentioned earlier, each solution to the problem is 

represented as a sequence of VMs. To generate a 

new solution for a Coati, the old solution and the 

best solution (Iguana) are used. The following 

explains the operator, called alternate selection, 

used to create a new Coati. VM indices are 

sequentially inserted into the new solution. The 

locations of even VM indices are defined based on 

that of the Iguana and the odd VM indices from that 

of the Coati. For instance, VM0 in the solution of 

the new Coati is placed at the same location of the 

Iguana while VM1 is placed at the location where 

VM1 is located in the original Coati. When 

attempting to place a VM to a location that is 

already taken, it will be placed at the closest free 

location. For instance, let’s assume 

Xi={1,4,5,0,2,3,7,6} and Iguana={7,4,6,3,1,5,2,0} 

be the solution of the original Coati and the Iguana, 

respectively. Xi
P1 is empty at first thus Xi

P1= 

{_,_,_,_,_,_,_,_}, where each underline (“_”) 

shows an empty location to be filled with a VM 

index. First, VM0 is placed at the same location of 

VM0 in Iguana thus we get Xi
P1={_,_,_,_,_,_,_,0}. 

The five subsequent steps lead to Xi
P1= 

{1,4,5,_,_,3,2,0}. Then, to place VM6, which is 

located at the third location of the Iguana, the third 

location of the new solution is already filled, hence 

VM6 is placed at the fourth location (the closest free 

location), hence we get Xi
P1={1,4,5,6,_,3,2,0}. 

Finally, VM7 is placed at the only remaining free 

location to obtain Xi
P1={1,4,5,6,7,3,2,0}.  

Phase 1, Step 2, Random cut. If the fitness of the 

Coati is worse than that of IguanaG (the Iguana on 

the ground, which is first constructed randomly), 

then, the operator is applied to the Coati to create a 

new solution. Two random numbers, 𝑟1 and 𝑟2 are 

generated in the range [0,M-1] and [r1,M-1], 

respectively. Then, the chunk of IguanaG
 from 

index r1 to r2 is copied to the same location or the 

new Coati. The rest of the locations are taken from 

the original Coati. For instance, let us assume 

Xi={1,4,5,0,2,3,7,6} and Iguana={7,4,6,3,1,5,2,0}. 

Further, let r1=1 and r1=4. Thus, Xi
P1

= 

{1,4,6,3,1,3,7,6} (the VM indices with bold font 

inserted from Iguana). However, this operation 

may result in absent and repeated VM indices, 

which represents an invalid solution. To construct 

a valid solution out of an invalid solution, a 

repairing operator is applied, as discussed below.  

Repair operator. This operator receives a solution 

with repeated or absent VM indices along with r1 

and r2 to create a valid solution. Repeated indices 

are replaced with absent ones. To replace a given 

repeated VM index with an absent one, the most 

similar repeated VM index is selected for 

replacement. Similarity is decided based on (14).  

(14) 2 2
, ' ''( ) ( )i i i ii iCPU CPUD RAM RAM     

where, Di,i’  is the calculated similarity between two 

VMs, VMi and VMi’.  Further, CPUi and CPUi’ are 

respectively the CPU requests of VMi and VMi’. 

Additionally, RAMi and RAMi’ are memory 

requests of VMi and VMi’, respectively. 

Phase 2, Selective interval sort. This step is to 

implement a local search. Therefore, no drastic 

changes are made to the solutions and only small 

changes are applied to slightly move the solutions 

in search of a better solution nearby. To do so, two 

random numbers are generated, called 𝑙 and 𝑠 so 

that we have 1 l k   and 0 1s M l    . k is 

a controllable parameter selected between 0 and M-

1. After generating s and l, the chunk of l indices in 

the solution, starting from index s 𝑠 (i.e., 

{s,s+1,…,s+l-1}) is sorted decreasingly by the 

processing values of the respective VM indices in 

the locations. For instance, let Xi={1,4,5,0,2,3,7,6} 

and  and CPU requests of the VMs be Xi
CPU= 
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{100,120,75,150,200,80,50,125}. Further, assume 
s=2 and l=4. Thus, all VM indices between location 

2 and location 5 are sorted decreasingly based on 

the CPU values (Xi
CPU) of the VMs. Therefore, this 

operator yields the new solution as 

Xi
P2={1,4,2,0,3,5,7,6}. Finally, (15) is evaluated to 

decide whether the new solution is worthy to 

accept.  

(15) 

2
2

otherwise

P
Pi
i i

i

i

X F Fx
X


 

 



 

 

4.3. COA Algorithm 
Algorithm 1 shows the used algorithm for COA. 

First, at the initialization phase, the population is 

created and the parameters are set (Line 2). Then, 

the algorithm runs until the termination criteria is 

met (here, 200 iterations). In each iteration, the 

population is divided in two halves. The first half 

performs the first phase (Iguana on tree) (Lines 5-

7). This phase includes the application of the 

alternate selection to all members of the first half. 

Then, the algorithm enters the second phase (Lines 

8-10), which is applied to the population members 

of the second half. This phase employs the 

introduced random cut operator. Next, the escape 

phase is performed (Line 11) by applying the 

selective interval sort operator to the new 

population. The algorithm returns the fittest 

solution as the output. 
 

Algorithm 1. COA algorithm for VMP. 

1 begin Algorithm 

2 Pop initialize(VM,PM); 
3 while(termination criterion not met) 

4    Pop.fit calculateFitness(Pop); 

5    for all Pop[i], 
2

{0,..., 1}
n

i  
  

     

6       PopNew IguanaOnTree(Pop,i); 

7    end for 

8    for all Pop[i], { ,..., 1}
2

n
i n

 
  
 

  

9      PopNew  IguanaOnGround(Pop,i); 

10   end for 

11  PopNew escapePredators(PopNew);  

12  Pop  PopNew;  

13 end while 
14 return(CoatiWithBestFitness(Pop)); 
15 end Algorithm 
 

5. Evaluation Results 

This section gives the evaluation results of COA 

and other algorithms. All of the algorithms were 

implemented using C/C++ and ran on a system 

with Core™ i5 CPU and 8GB of RAM. For VM 

tasks, a standard synthetic task generator 

introduced in [23] was used. Three important 

parameters are provided for the task generator. The 

first two parameters include CPUR   and RAMR  that 

define reference values for CPU and memory. In 

this study, CPUR  and RAMR   both were set to 0.45. 

Further, a correlation parameter P controls the 

correlation between VM’s CPU and memory 

resource values, where {0,0.25,0.5,0.75,1}P . 

P=0 shows the case where the values of CPU and 

memory in the VMs have strong negative 

correlation while P=1 indicates strong positive 

correlation. Our simulation results are reported for 

all the values of 𝑃. Further, the number of VMs was 

set to one of 100, 200, 500, 800, and 1200 values, 

and the number of PMs and VMs were the same 

and their resource capacities were assigned 

randomly.  

 

5.1. Evaluated Algorithms and Metrics 

The evaluated algorithms include two categories. 

The first category includes two heuristics, first-fit 

decreasing (FFD) and best-fit (BF). The second 

category includes several MHs as introduced 

below. The selected algorithms both include well-

established ones with promising results (GA and 

CRO) as well as two emerging algorithms (HHO 

and EVO). 

GA The algorithm in [12] was used. GA is a 

popular algorithm that has rather simple parameter 

settings and it is efficient in exploring search space. 

For crossover, the crossover operator introduced in 

Section 3 is used. For mutation, the exchange 

operator introduced in Section 3 is employed. In 

GA, the crossover and mutation rates were set to 

0.8 and 0.1, respectively.   

CRO The CRO algorithm proposed in [12] was 

employed. CRO is efficient but its parameter 

setting is rather tedious. However, as it employs 

four operators, it can perform well in diverse 

applications. The values of  ,   and the initial 

Kinetic energy were set to 1, 0.25, and 1, 

respectively. Further, Molecular collision and KE 

loss rate were set to 0.6 and 0.2, respectively. The 

value for initial buffer was 5. 

HHO Harris hawk optimization (HHO) is a new 

MH algorithm with promising performance. This 

algorithm was modified for VMP. The algorithm 

has three phases including exploration, 

exploitation, and attack. For the exploration phase, 

a crossover operator was used to combine two 

solutions and create a new solution. For the 

exploitation phase, a random is generated to decide 

between applying a crossover operator or a VM 

exchange operator. Finally, for the attack phase, 

multiple VM exchange operator was used. In HHO, 

the exploit and attack rates were set to 0.5 and 0.1, 

respectively.   
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EVO Electron valley optimizer (EVO), which has 

recently been used for VMP [17] was used. It 

should be noted that for an Alpha reaction, a single-

point crossover was employed to create a new atom 

from an existing atom and the best atom. Further, 

for a Beta decay, a selective rotate or shift operator 

was applied where a random is generated to select 

between shift or rotate operation. For a Gamma 

reaction, a crossover operator is used to generate a 

new atom from the atom itself and a neighbor atom. 

Finally, a Positron reaction uses a shift operator on 

the best atom to generate a new atom. 

The number of iterations and the population size 

were set to 100 and 200 for all MH algorithms.  

In terms of evaluated metrics, we consider power 

consumption, resource wastage, and execution 

time of the algorithms. 

 

5.2. Results and Discussion 

Power consumption. Figure 1 shows the obtained 

results for power consumption reduction with 

respect to FFD. As it can be seen, when there is low 

correlation between CPU and memory resources in 

VMs, the benefit of MHs is high. On an average, 

GA, CRO, HHO, EVO, and COA performed 

16.7%, 16.2%, 16.6%, 16.7%, and 16.5% better 

than FFD, respectively.  Further, BF performed 

14.3% better than FFD. However, as the correlation 

value increases, the benefit of the algorithms with 

regard to FFD diminishes. The average power 

reduction values for P=0.5 is 8.3%, 7.8%, 8.4%, 

8.6%, and 8.2% for GA, CRO, HHO, EVO, and 

COA, respectively. For P=1.0, which represents 

full correlation, the benefit declines to 3.2%, 2.9%, 

3.2%, 3.3%, and 3.2%.  

Overall, GA performs well as it is efficient in 

exploring search space. Further, HHO, EVO, and 

COA perform slightly better than CRO. 

        

         

 

Figure 1. Power consumption reduction of different algorithms with respect to FFD for different numbers of VMs. 

 

Resource wastage. Figure 2 gives the results of 

resource wastage reduction (in percent) of the 

algorithms, which are calculated with FFD results 

as the baseline. As it can be seen all algorithms 

perform significantly better than FFD. Note that 

BF has also performed well and it is to no surprise. 

BF attempt to fit a VM into the PM with the closest 

resource capacity available. Therefore, it 

emphasizes on reduction of resource wastage. 
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Execution time. Execution time of MH algorithms 

are presented in Figure 3. The execution times are 

given for P=0.5 and different numbers of VMs. 

CRO has the best scalability and lowest execution 

time and GA has the worst scalability. COA 

performed significantly better than GA, EVO, and 

HHO. 

 

     

     

 

Figure 2. Resource wastage reduction of different algorithms with respect to FFD for different number of VMs.

6. Concluding Remarks 

In the present study, several classic and new MHs 

were evaluated in solving VMP. Specifically, COA 

was adopted for VMP by introducing a set of 

operators. The evaluation results indicate that the 

evaluated MHs generally perform similarly in 

terms of power consumption reduction and 

outperform heuristics. However, their execution 

times can be different significantly, which is 

mainly due to the operators they use and also the 

phases of the algorithm. What’s more, the 

evaluation results show that COA, EVO, and HHO 

as new MHs performed well with respect to GA, as 

a classic MH, but the benefit is not significant. One 

benefit of COA, which is also true about EVO, was 

its simple parameter settings while, e.g. for CRO, 

there are several parameters that should be set 

properly which requires many trials and errors for 

a specific problem.  

 

Figure 3. Running times of the MHs for various VM 

counts. 

In terms of execution time, COR and COA 

performed better, showing better scalability for 

higher VM counts. In the future, the authors plan to 
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implement the algorithm for solving VMP in 

dynamic scenarios where more important 

parameters such as overbooking and service level 

agreement (SLA) and network bandwidth are 

modeled. Further, investigating the effectiveness of 

COA in green data centers is another work planned 

for the future. Another future work is to design and 

experiment with new operators to be used in COA.   
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 چکیده:

شین سئله جانمایی ما شین هایدر این پژوهش، کارایی چند الگوریتم فراابتکاری در حل م سی  هایمجازی روی ما فیزیکی در مراکز داده ابری مورد برر

ست. به طور خاص، الگوریتم بهینه شین با سازی کواتیقرار گرفته ا سئله جانمایی ما  هایمعرفی چند عملگر برای مراحل مختلف الگوریتم، برای حل م

ست. شامل الگوریتم ژنتیک، بهینه بتکاریالگوریتم فراافراابتکاری نوظهور و چند الگوریتم همچنین، چند  مجازی انطباق یاقته ا سازی قدیمی و محبوب، 

شیمیایی، بهینه شاهین هریس، و بهینهمبتنی بر واکنش  صرفی و دره الکترون، مورد ارزیابی قرار گرفته یسازسازی  شامل توان م صلی،  اند. دو پارامتر ا

شدند. الگوریتمهدررفت منابع، در ارزیابی صرفی و کاهش هدررفت منابع، و همچنین زمان توانمندی های مذکور از نظرها بررسی  شان در کاهش توان م

های مجازی تولید شده با یک مولد وظیفه تصادفی ها با ماشینای از ارزیابیهای مجازی ارزیابی شدند. مجموعهاجرایشان در حل مسئله جانمایی ماشین

های نوظهور کمی کنند، هرچند الگوریتممی به طور عمومی مشددابه یکدیگر عملفراابتکاری های انجام شددد. نتایم مبین این واقعیت اسددت که الگوریتم

  دارای مزیت هستند.

 .های فراابتکاریسازی، الگوریتمسازی کواتی، مراکز داده ابری، ماشین مجازی، بهینهرایانش ابری، الگوریتم بهینه :کلمات کلیدی


