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1. Introduction

Optimization problems are common in many areas, addressing intricate  optimization challenges.
such as engineering design, resource allocation, data Metaheuristic algorithms are stochastic,
analysis, and machine learning. Finding the best commencing the optimization process by generating
solutions to these problems, often defined by their random results. This increases the probability that
complexity and lack of linearity, requires new ideas. the algorithms will successfully evade premature
Because they are based on actual and imagined convergence and efficiently traverse the search
events, metaheuristic algorithms are now useful space. Metaheuristics attain an equilibrium between
tools for solving complex problems [1]. exploration and exploitation to accomplish their
Metaheuristic ~ algorithms  are  optimization objectives. During the exploration phase, the
techniques designed to address a range of algorithms extensively explore the noteworthy areas
optimization  challenges  effectively.  These of the search space. Localized searches are
algorithms differentiate themselves from other conducted in these locations during the exploitation
optimization methods in several respects. Firstly, in phase to determine the ideal solution. Metaheuristics
contrast to gradient-based search techniques, have demonstrated efficacy in numerous electrical
derivative-free methods do not depend on the engineering  applications. These encompass
computation of derivatives inside the search space. enhancing power generation, scheduling, and
Metaheuristic ~ algorithms  are  significantly transportation  in  industrial  environments,
streamlined, augmented in adaptability, and engineering bridges and buildings in civil
improved in their capacity to circumvent local construction, creating radar systems and networks in

optima, leading to their considerable efficacy in communications, and executing classification,
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prediction, clustering, and system modeling in data
mining. There exist various categories of
metaheuristic search techniques [2], including
nature-inspired and non-nature-inspired, single and
multiple neighborhood structures, memory usage
and memory-less approaches, single objective and
multiple objective-based techniques, stochastic and
deterministic methods, discrete and continuous
algorithms, population-based and single point search
techniques, and dynamic and static objective
functions.

Recently, researchers have categorized nature-
inspired algorithms into various groups, including
evolutionary algorithms, swarm intelligence,
physical-based algorithms, and human-based
algorithms [3]. The human-based algorithms
replicate  human behaviors and activities.
Examples of human-based methods include
Teaching-Learning Based Optimization (TLBO)
[4], Harmony Search (HS) [5], Tabu Search (TS)
[6, 7], Group Search Optimizer (GSO) [8], and
War Strategy Optimization (WSO) [9]. In
evolution-based algorithms that are based on natural
evolutionary principles, a random starting
population is made, and each generation after that
evolves. The most renowned evolution-based
technique is the Genetic Algorithm (GA) [10]. In
addition, the Evolution Strategy (ES) [11],
Biogeography-Based Optimizer (BBO) [12], and
Population-Based Incremental Learning (PBIL) [13]
can also be put into this group. In swarm-based
algorithms inspired by animal groups' social
behavior, several entities traverse a search space to
identify the optimal answer. The predominant
technique swarm-based groups use is Particle
Swarm Optimization (PSO) [14]. Moreover, the
subsequent methods may also be categorized within
this group: Ant Colony Optimization (ACO) [15],
Bird Mating Optimizer (BMO) [16], Fruit-fly
Optimization Algorithm (FOA) [17], Gannet
Optimization Algorithm (GOA) [18], Aurtificial
Rabbits Optimization (ARO) [19], Starling
Murmuration Optimizer (SMO) [20], and Artificial
Jellyfish Search (AJS) [21]. Physics-based
algorithms emulate the laws of physics in the
universe. The subsequent methods exemplify this
category: Simulated Annealing (SA) [22], Big-Bang
Big-Crunch (BB-BC) [23], Central Force Optimizer
(CFO) [24], and Gravitational Search Algorithm
(GSA) [25].
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Figure 1 clearly shows the trend line of the number
of algorithms published per year, which has a
coefficient of determination (R2) of 0.926. A trend
line is considered very reliable when its R2 value is
close to or equal to 1. This result indicates
researchers' special interest and attention in
developing and presenting new meta-heuristic
algorithms, with the most significant number of
these methods being published between 2020 and
2022.
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Figure 1. Number of Metaheuristic Algorithms Developed
During 2000-2022 [26].

Figure 2 illustrates that the PSO is the most
commonly utilized, with over 75,000 citations. The
GA is considered the second most often used
algorithm. The ACO, Differential Evolution (DE),
and SA hold the positions of third, fourth, and fifth,
respectively, in the ranking. The algorithms TS,
GWO, Artificial Bee Colony (ABC), Cuckoo Search
(CS), and HS are ranked as the fifth, sixth, seventh,
eighth, ninth, and tenth most mentioned algorithms
to date, respectively.
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Figure 2. Top Ten Cited MAs, Data Source—Google Scholar
(GS) on December 31, 2022 [26].
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GAs, PSO, and SA are widely recognized and
thoroughly researched metaheuristic algorithms [14,
27, 28]. GAs simulate natural selection by iteratively
generating and improving a population of viable
solutions over multiple generations. PSO is derived
from social behavior and imitates the collective
movement of birds or fish. SA utilizes
thermodynamic annealing techniques to examine the
range of possible solutions. These algorithms have
been effectively utilized in various fields, including
engineering, logistics, finance, and machine
learning.

Red Deer Optimization Algorithm (RDOA), a newly
developed metaheuristic algorithm, sets itself apart
by taking inspiration from the natural world,
particularly the behavior of red deer (Cervus
elaphus). The method was proposed by Fathollahi
Fard et al. [29] in 2020 and has subsequently
attracted interest due to its distinctive optimization
strategy. The algorithm emulates the characteristics
of red deer, such as searching for food, being
watchful, and grouping to explore and efficiently
exploit the solution space.

RDOA distinguishes itself from previous algorithms
by depending on these innate characteristics,
presenting a fresh approach to problem-solving in
optimization. The subject's originality and possible
uses have generated increasing interest within the
optimization community.

Although RDOA is a relatively new contribution to
the discipline, researchers have already started
investigating its possibilities and uses. RDOA has
been utilized in diverse functions such as
engineering design, robotics, and image processing,
demonstrating its capacity to address intricate
optimization challenges effectively. The preliminary
research has demonstrated encouraging outcomes,
suggesting that RDOA justifies additional
examination and comparison with well-established
metaheuristic algorithms.

This study paper conducts a thorough comparative
analysis, comparing RDOA with established
metaheuristic algorithms. Our main objective is to
analyze RDOA's effectiveness, convergence
properties, and adaptability in addressing
optimization functions across various levels of
difficulty and fields.

Research Methodology

2.1. Algorithm Phases

2.1.1. Initialization and Population

The first random population in RDOA is called "Red
Deers" (RDs) and is divided into two groups: "male
RDs" and "hinds." This starting population lays the

groundwork for later optimization procedures, in
which male RDs vie for harem formation, a crucial
component of the algorithm's architecture.

RD=X1X2X3,...,X ya (1)

Value =f (RD)=f (XL, X 2,X3,...,X \uar) @)

2.1.2. Roaring Phase

Male RDs mimic the roaring behavior of red deer to
start the optimizing process during the roaring phase.
Local search activities are used in this phase to
enhance the exploitation of possible solutions. To
diversify, male RDs investigate their communities
while adding randomization elements.

male +ax(((UB -LB)*a )+LB),

if a, 205
male =

ew

male -ax(((UB -LB)*a )+LB), )

if a, <0.5

UB and LB constrain the search space to formulate
an appropriate male neighborhood solution. They
represent the upper and lower limits of the search
space. Observe that the current position of male RD

ismale,,, , and its subsequent position is male ,,, .
Three steps, al, a2, and a3, comprise the

randomization process, originating from a uniform
distribution between 0 and 1.

2.1.3. Selection of Commanders

Not every male RD has the same skills. The
algorithm's identification of a subset of male RDs as
"commanders" gives users authority over the ratio of
intensification to diversification. Commanders shape
harems and also impact exploration and exploitation
features.

N =round (.N .. ) @)
Ns=Nmale_NC (5)

where N . variable represents the quantity of
commanders that are inherently male, the y variable
denotes a random integer within the range of 0 to 1,
and the N .
males. It is important to acknowledge the y is the

variable signifies the total count of

initial value of the algorithm model. Its value range
extends from 0 to 1.

2.1.4. Fighting Phase

Random conflicts break out between stags and
commanders. These conflicts simulate the battle
between male RDs to get harems with more hinds.
The fighting phase improves exploitation by using
local search operations and choosing the best options.
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new, =(C+S)/2+b,(UB-LB)*b,+LB) (g
new, =(C+5)/2-b,(UB-LB)*h,+LB) (7

The two novel solutions produced through the
combat process are NEW, and NEW,. The
designations for commanders and stags are C and S,

respectively. UB and LB provide the upper and
lower boundaries on the viability of the new

solutions. The upper and lower boundaries (b, and

b, ) of the search space are established through the

randomization of the combat process between 0 and
1, employing a uniform distribution function.

Among the four options: C, S, NeW,; and NeEwW ,,

only the most favorable case will be selected based
on Objective Fitness (OF). The OF of a male
commander directly affects the magnitude of his
harem, denoting the number of female hinds under
his control. Commanders with elevated OF tend to
amass larger harems owing to their enhanced
combat and vocalization capabilities.

2.1.5. Formation of Harems

Commanders create harems, which represent groups
of hinds. Exploration is impacted by the commanders'
fitness, which is directly related to the number of
hinds in each harem. The distribution of harems
across commanders gives the algorithm's exploration
stage an additional dimension.

V, =V, —maxv, ®)

where V| represents the normalized value of the
N, commander's power (ie., its OF), and V
denotes the power of the N, commander (i.e., its
OF).

The normalized power of commanders can be
calculated using the subsequent formula.

V, |
Zaiv_ ©)
=

The following formula can be used to determine a
harem's number of hinds, where N, , is the total

P

number of hinds.
N .harem =round (P, -N . ,) (10)

2.1.6. Mating within Harems

A portion of the hinds in commanders' harems mate
with them. Users can regulate diversity and
exploration by adjusting the number of hinds mate

with commanders using the "« " parameter. This
stage promotes population diversity and exploration.

N .harem ™ =round («-N .harem ) (1)
The quantity of hinds in Ny, the harem that copulate

mate
n

with their leader is N .harem ™" . Regarding the

solution space, we select N .harem™® of the

N .harem, at random. The mating process is
generally explained as follows.

_C +Hind
2

offs +UB-LB) x ¢ (2

2.1.7. Mating across Harems

Commanders can increase the size of their domains
by attacking other harems and mating with hinds
from other harems (call it k). This process is
controlled by the " " parameter, which gives users

authority over exploration and exploitation. This
stage increases the algorithm's capacity for
exploration.

N .harem,* =round (5-N .harem,)  (13)

mate

where N .harem,"™ is the number of hinds in the

Ky, harem that mate with the commander. It is

important to note that Equation (12) is used to carry
out the mating process.

2.1.8. Mating of Stags

In order to mimic the natural behavior of red deer
during the breeding season, each stag mates with
the closest hind. This process balances exploration
and exploitation aspects. The following formula
should be used to determine the distance in
J —dimension space between a stag and every
hind.

— hind 1 121/2
d, _{%(Stag" hind | )*} 14

where d, is the separation between a stag and its 1,

hind, the lowest value in this matrix represents the
hind chosen. The mating process begins after a hind
has been chosen. In this calculation, a stag is
considered instead of a commander.

2.1.9. Selection of the Next Generation

The next generation is determined through two
strategies: retaining elite solutions and selecting
offspring based on fitness values. The selection
process shapes the final population and concludes the
iterative optimization cycle. The RDOA offers a
unique optimization approach, allowing users to fine-
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tune its behavior according to the characteristics of
the problem at hand.

All the steps mentioned are presented in Figure 3 and
the four main stages of RDOA are presented in
Figure 4.
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Figure 3. Flowchart of the RDOA [29].
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Figure 4. Stages of the RDOA: (a) Population of RD, (b) Roaring Process, (c) Fighting Process, (d) Harems [30].

Our research aims to comprehensively evaluate
RDOA using benchmark functions to identify its
strengths and limitations. To achieve this goal, we
carefully planned and executed a set of tests using a
variety of standard functions covering a wide range
of difficulty levels. Using this framework, we could
evaluate the performance of RDOA under different
optimization scenarios and make relevant
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comparisons with other well-known metaheuristic
techniques. Our methodology consists of several
essential elements, including identifying and
selecting benchmark functions with different
difficulty levels, selecting comparison algorithms,
determining parameter settings of each of the
selected algorithms, designing and executing
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experiments, and evaluating the performance and
results obtained from each algorithm.

The algorithms selected for comparison are:

e GA: A population-based optimization
technique inspired by the process of natural
selection and genetics.

e PSO: A swarm intelligence-based algorithm
that simulates the behavior of birds flocking
or fish schooling.

e DE: A population-based optimization
algorithm that operates on a group of
candidate solutions [31].

e ABC: A bio-inspired optimization algorithm
based on the foraging behavior of honeybees
[32].

e Whale Optimization Algorithm (WOA): A
nature-inspired algorithm inspired by the
hunting behavior of humpback whales [33].

2. Results and Discussion

This section presents and analyzes the results
obtained from our comparative analysis of the RDOA
with various well-known metaheuristic algorithms.
We utilized Python to develop all six metaheuristic
algorithms and the RDOA. To achieve an even
comparison, we optimized the hyperparameters of
each algorithm to generate the most optimal
outcomes. The goal was to identify the most effective
hyperparameter settings that would allow for a
thorough and unbiased evaluation of the algorithms.
We implemented each method on the chosen
benchmark functions and documented the optimal
solutions achieved by each algorithm.

The following benchmark functions were chosen for

this study:

e Sphere Function: A fundamental unimodal
function, often used as a starting point for
optimization algorithms due to its simplicity.

e Rosenbrock Function: A classic multimodal
problem, characterized by a narrow, curved
valley that poses challenges for optimization
algorithms.

e Bohachevsky Function: A multimodal
problem with a pair of symmetric minima,
serving as a test of the algorithms' ability to
locate multiple optima.

e Griewank Function: A multimodal problem
with a flat, expansive basin around the global
minimum, testing the exploration capabilities
of the algorithms.
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e Rastrigin Function: A non-convex, highly
multimodal problem replete with local
minima, designed to evaluate the robustness
of optimization algorithms.

e Eggholder Function: A highly non-linear,
intricate problem with a complex landscape
featuring multiple peaks and valleys, serving
as arigorous test of an algorithm's exploration
and exploitation prowess.

Table 1 shows the standard equations, search
intervals, and global minimum of each function for
optimization. The number of iterations is 500, so the
algorithms have sufficient time in the search space.
Also, the dimensions of each of the mentioned
functions are 100. Due to implementation
limitations, the algorithms were run only once.
Repeated experiments are recommended in future
research to obtain highly reliable results.

Table 2 summarizes the results for each pair of
function and algorithm.

Figure 5 exhibits the convergence graphs for each of
the benchmark functions. The charts illustrate the
progression of the optimization process at each
epoch, showcasing the algorithm's performance on
various problem landscapes. The RDOA algorithm
demonstrated impressive convergence speed in
several cases, mainly when used for unimodal
functions such as the Sphere Function. The fact that
it can rapidly identify the global optimum in such
scenarios indicates its effectiveness in handling less
complex optimization problems. RDOA's agility
makes it an excellent choice for applications that
demand quick convergence. RDOA demonstrated
robustness and outperformed other algorithms on the
Griewank Function, which poses a difficult balance
between local and global optima. This capacity is
essential when addressing real-world problems
characterized by complex solution spaces. The
Rosenbrock Function demonstrated the competitive
performance of the system, indicating its capacity to
handle complex multimodal problems. However,
further adjustments may be necessary to improve its
performance on these functions. The findings
suggest that specific algorithms exhibit superior
performance on particular benchmark functions. For
instance, when applied to the Sphere Function, the
WOA demonstrates exceptional performance.
However, the PSO yields remarkable outcomes
when used with the Eggholder Function.
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Table 1. Benchmark Functions for Optimization.

. . Search L
Functions Equation Range Global Minimum
D
Sphere f(x)= ZX z [1%%(]) fx*=0,atx*=(0,...,0)
i=1
D-1 ) )
Rosenbrock f (X)=Z(100(X —Xiz) +(Xi —1) ) [1%)%(]) fx*:O,atx*:(l,..‘,l)
i=1
f Z 4 2x? 3 3 4 4 l
Bohachevsky (x)=x,+ Xz—ECOS( ”Xl)—BCOS( ”Xz)+5 ooy fx*=0,atx*=(0,...,0)
Griewank f(x)= Hcos +1 vy fx*=0,atx*=(0,...,0)
4000< " 11
Rastrigin fm(x)=2(xf ~10cos (27X, ))+10-D ooy fx*=0,atx*=(0,...,0)
i=1
X -
: . 1 . [-512, | *_
Eggholder (X )=—(x,+47)sin - % +47|-xsinyx, - (x,+47) i fi* = -959.6407, abe * = (512,404, 2319)
Table 2. Summary of the Results Obtained for Each Function-Algorithm Pair.
Functions GA PSO DE ABC WOA RDOA
Sphere 9.21e+02 5.32e+03 4.45e+03 3.45e+00 5.73e-92 4.55e-05
Rosenbrock 1.27e+07 4.10e+07 6.24e+07 1.48e+03 2.50e-01 5.00e-02
Bohachevsky 0.00e+00 0.00e+00 0.00e+00 4.00e-02 0.00e+00 0.00e+00
Griewank 1.58e+00 1.95e+00 1.21e+00 5.00e-02 0.00e+00 1.41e-05
Rastrigin 2.25e+03 7.21e+03 1.82e+03 9.26e+01 0.00e+00 3.00e-02
Eggholder 1.00e-02 -3.10e+09 -1.16e+04 -1.8%e+04 -1.98e+04 -1.98e+04
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Figure 5. Convergence Plots for the Six Benchmark Functions.
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3. Conclusions

In this paper, a comparison of the performance of the
RDOA with five other well-known algorithms was
conducted by running on six benchmark functions.
These functions include:

e Sphere
e Rosenbrock
e Bohachevsky
e (Griewank
e Rastrigin
e Eggholder
This research showed that most algorithms

encountered difficulties escaping from local minima
when using the Eggholder Function. However, the
PSO approach achieved a significantly superior
result. Although RDOA did not yield significant
results compared to other methods, it showed a
significantly faster convergence speed. The RDOA
algorithm showed a significant convergence speed
in several cases, mainly when used for unimodal
functions such as the Sphere Function. The fact that
it could quickly identify the global optimum in such
scenarios indicates its effectiveness in handling less
complex optimization problems. One of the striking
features of RDOA was its ability to navigate
effectively in complex and diverse environments.
RDOA demonstrated robustness and outperformed
other algorithms in the Griewank Function, which
balances the difficulty between local and global
optima. This capacity is essential when addressing
real-world problems characterized by complex
solution spaces. The Rosenbrock Function
demonstrated the competitive performance of the
system, indicating its capacity to handle complex,
multi-faceted problems. However, further tuning
may be required to improve its performance in these
functions. A fundamental feature of RDOA is its
ability to manage the trade-off between exploration
and exploitation effectively. The process rushes
through the solution space to identify prospective
optimal solutions while successfully exploiting
previously discovered regions. The balance of
RDOA allows it to quickly adjust to different types
of performance, making it highly versatile for many
optimization scenarios. Finally, RDOA is still a new
and rich algorithm, so future work will involve
improvising variants of this algorithm and applying
them to engineering problems in optimization and
machine learning.
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