
 

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 13, No. 1, 2025, 53-61. 

 
Shahrood University of 

Technology 

 

Journal of Artificial Intelligence and Data Mining (JAIDM) 
Journal homepage: http://jad.shahroodut.ac.ir 

 

 

Original/Review Paper 
 

Analyzing the Performance of the Red Deer Optimization Algorithm in 

Comparison to Other Metaheuristic Algorithms 
 

Soheil Rezashoar* and Amir Abbas Rassafi 
 

Department of Transportation Planning, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran. 
 

Article Info  Abstract 

 

Article History: 
Received 01 August 2024 

Revised 05 September 2024 
Accepted 07 February 2025 

 

DOI:10.22044/jadm.2025.14868.2586 

 This study performs a thorough comparative analysis of the Red Deer 

Optimization Algorithm (RDOA) in comparison to five well-established 

metaheuristic algorithms: Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), Differential Evolution (DE), Artificial Bee Colony 

(ABC), and Whale Optimization Algorithm (WOA). The main objective 

is to evaluate the performance of RDOA on a range of benchmark 

problems, including essential unimodal and sophisticated multimodal 

functions. The methodology incorporates hyperparameters optimization 

for each algorithm to optimize performance and assesses them on six 

standard benchmark problems (Sphere, Rosenbrock, Bohachevsky, 

Griewank, Rastrigin, and Eggholder). Convergence plots are examined to 

demonstrate the rate at which convergence occurs and the level of stability 

achieved. The results demonstrate that RDOA performs well compared to 

other algorithms in all benchmarks and excels in dealing with multimodal 

functions. However, the selection of an algorithm should be based on the 

specific characteristics of the problem, taking into account their distinct 

advantages. 
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1. Introduction 

Optimization problems are common in many areas, 

such as engineering design, resource allocation, data 

analysis, and machine learning. Finding the best 

solutions to these problems, often defined by their 

complexity and lack of linearity, requires new ideas. 

Because they are based on actual and imagined 

events, metaheuristic algorithms are now useful 

tools for solving complex problems [1]. 

Metaheuristic algorithms are optimization 

techniques designed to address a range of 

optimization challenges effectively. These 

algorithms differentiate themselves from other 

optimization methods in several respects. Firstly, in 

contrast to gradient-based search techniques, 

derivative-free methods do not depend on the 

computation of derivatives inside the search space. 

Metaheuristic algorithms are significantly 

streamlined, augmented in adaptability, and 

improved in their capacity to circumvent local 

optima, leading to their considerable efficacy in 

addressing intricate optimization challenges. 

Metaheuristic algorithms are stochastic, 

commencing the optimization process by generating 

random results. This increases the probability that 

the algorithms will successfully evade premature 

convergence and efficiently traverse the search 

space. Metaheuristics attain an equilibrium between 

exploration and exploitation to accomplish their 

objectives. During the exploration phase, the 

algorithms extensively explore the noteworthy areas 

of the search space. Localized searches are 

conducted in these locations during the exploitation 

phase to determine the ideal solution. Metaheuristics 

have demonstrated efficacy in numerous electrical 

engineering applications. These encompass 

enhancing power generation, scheduling, and 

transportation in industrial environments, 

engineering bridges and buildings in civil 

construction, creating radar systems and networks in 

communications, and executing classification, 
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prediction, clustering, and system modeling in data 

mining. There exist various categories of 

metaheuristic search techniques [2], including 

nature-inspired and non-nature-inspired, single and 

multiple neighborhood structures, memory usage 

and memory-less approaches, single objective and 

multiple objective-based techniques, stochastic and 

deterministic methods, discrete and continuous 

algorithms, population-based and single point search 

techniques, and dynamic and static objective 

functions.  

Recently, researchers have categorized nature-

inspired algorithms into various groups, including 

evolutionary algorithms, swarm intelligence, 

physical-based algorithms, and human-based 

algorithms [3]. The human-based algorithms 

replicate human behaviors and activities. 

Examples of human-based methods include 

Teaching-Learning Based Optimization (TLBO) 

[4], Harmony Search (HS) [5], Tabu Search (TS) 

[6, 7], Group Search Optimizer (GSO) [8], and 

War Strategy Optimization (WSO) [9]. In 

evolution-based algorithms that are based on natural 

evolutionary principles, a random starting 

population is made, and each generation after that 

evolves. The most renowned evolution-based 

technique is the Genetic Algorithm (GA) [10]. In 

addition, the Evolution Strategy (ES) [11], 

Biogeography-Based Optimizer (BBO) [12], and 

Population-Based Incremental Learning (PBIL) [13] 

can also be put into this group. In swarm-based 

algorithms inspired by animal groups' social 

behavior, several entities traverse a search space to 

identify the optimal answer. The predominant 

technique swarm-based groups use is Particle 

Swarm Optimization (PSO) [14]. Moreover, the 

subsequent methods may also be categorized within 

this group: Ant Colony Optimization (ACO) [15], 

Bird Mating Optimizer (BMO) [16], Fruit-fly 

Optimization Algorithm (FOA) [17], Gannet 

Optimization Algorithm (GOA) [18], Artificial 

Rabbits Optimization (ARO) [19], Starling 

Murmuration Optimizer (SMO) [20], and Artificial 

Jellyfish Search (AJS) [21]. Physics-based 

algorithms emulate the laws of physics in the 

universe. The subsequent methods exemplify this 

category: Simulated Annealing (SA) [22], Big-Bang 

Big-Crunch (BB-BC) [23], Central Force Optimizer 

(CFO) [24], and Gravitational Search Algorithm 

(GSA) [25].  

 

 

Figure 1 clearly shows the trend line of the number 

of algorithms published per year, which has a 

coefficient of determination (R2) of 0.926. A trend 

line is considered very reliable when its R2 value is 

close to or equal to 1. This result indicates 

researchers' special interest and attention in 

developing and presenting new meta-heuristic 

algorithms, with the most significant number of 

these methods being published between 2020 and 

2022. 

 

Figure 1. Number of Metaheuristic Algorithms Developed 

During 2000–2022 [26]. 

Figure 2 illustrates that the PSO is the most 

commonly utilized, with over 75,000 citations. The 

GA is considered the second most often used 

algorithm. The ACO, Differential Evolution (DE), 

and SA hold the positions of third, fourth, and fifth, 

respectively, in the ranking. The algorithms TS, 

GWO, Artificial Bee Colony (ABC), Cuckoo Search 

(CS), and HS are ranked as the fifth, sixth, seventh, 

eighth, ninth, and tenth most mentioned algorithms 

to date, respectively. 

 

Figure 2. Top Ten Cited MAs, Data Source—Google Scholar 

(GS) on December 31, 2022 [26]. 
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GAs, PSO, and SA are widely recognized and 

thoroughly researched metaheuristic algorithms [14, 

27, 28]. GAs simulate natural selection by iteratively 

generating and improving a population of viable 

solutions over multiple generations. PSO is derived 

from social behavior and imitates the collective 

movement of birds or fish. SA utilizes 

thermodynamic annealing techniques to examine the 

range of possible solutions. These algorithms have 

been effectively utilized in various fields, including 

engineering, logistics, finance, and machine 

learning.  

Red Deer Optimization Algorithm (RDOA), a newly 

developed metaheuristic algorithm, sets itself apart 

by taking inspiration from the natural world, 

particularly the behavior of red deer (Cervus 

elaphus). The method was proposed by Fathollahi 

Fard et al. [29] in 2020 and has subsequently 

attracted interest due to its distinctive optimization 

strategy. The algorithm emulates the characteristics 

of red deer, such as searching for food, being 

watchful, and grouping to explore and efficiently 

exploit the solution space.  

RDOA distinguishes itself from previous algorithms 

by depending on these innate characteristics, 

presenting a fresh approach to problem-solving in 

optimization. The subject's originality and possible 

uses have generated increasing interest within the 

optimization community. 

Although RDOA is a relatively new contribution to 

the discipline, researchers have already started 

investigating its possibilities and uses. RDOA has 

been utilized in diverse functions such as 

engineering design, robotics, and image processing, 

demonstrating its capacity to address intricate 

optimization challenges effectively. The preliminary 

research has demonstrated encouraging outcomes, 

suggesting that RDOA justifies additional 

examination and comparison with well-established 

metaheuristic algorithms.  

This study paper conducts a thorough comparative 

analysis, comparing RDOA with established 

metaheuristic algorithms. Our main objective is to 

analyze RDOA's effectiveness, convergence 

properties, and adaptability in addressing 

optimization functions across various levels of 

difficulty and fields. 

Research Methodology 

2.1. Algorithm Phases 

2.1.1. Initialization and Population 

The first random population in RDOA is called "Red 

Deers" (RDs) and is divided into two groups: "male 

RDs" and "hinds." This starting population lays the 

groundwork for later optimization procedures, in 

which male RDs vie for harem formation, a crucial 

component of the algorithm's architecture. 

1, 2, 3, , NvarRD X X X X    (1) 

( ) ( 1, 2, 3, , )NvarValue f RD f X X X X     (2) 

2.1.2. Roaring Phase 

Male RDs mimic the roaring behavior of red deer to 

start the optimizing process during the roaring phase. 

Local search activities are used in this phase to 

enhance the exploitation of possible solutions. To 

diversify, male RDs investigate their communities 

while adding randomization elements. 
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  (3) 

UB and LB constrain the search space to formulate 

an appropriate male neighborhood solution. They 

represent the upper and lower limits of the search 

space. Observe that the current position of male RD 

is oldmale , and its subsequent position is newmale . 

Three steps, 1 , 2 , and 3 , comprise the 

randomization process, originating from a uniform 

distribution between 0 and 1.  

2.1.3. Selection of Commanders 

Not every male RD has the same skills. The 

algorithm's identification of a subset of male RDs as 

"commanders" gives users authority over the ratio of 

intensification to diversification. Commanders shape 

harems and also impact exploration and exploitation 

features. 

( . )C maleN round N   (4) 

s male CN N N    (5) 

where CN variable represents the quantity of 

commanders that are inherently male, the  variable 

denotes a random integer within the range of 0 to 1, 

and the maleN  variable signifies the total count of 

males. It is important to acknowledge the   is the 

initial value of the algorithm model. Its value range 

extends from 0 to 1.  

2.1.4. Fighting Phase 

Random conflicts break out between stags and 

commanders. These conflicts simulate the battle 

between male RDs to get harems with more hinds. 

The fighting phase improves exploitation by using 

local search operations and choosing the best options. 
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1 1 2( ) / 2 (( ) )new C S b UB LB b LB        (6) 

2 1 2( ) / 2 (( ) )new C S b UB LB b LB        (7) 

The two novel solutions produced through the 

combat process are 1new  and 2new . The 

designations for commanders and stags are C and S, 

respectively. UB and LB provide the upper and 

lower boundaries on the viability of the new 

solutions. The upper and lower boundaries ( 1b and

2b ) of the search space are established through the 

randomization of the combat process between 0 and 

1, employing a uniform distribution function. 

Among the four options: C, S, 1new  and 2new , 

only the most favorable case will be selected based 

on Objective Fitness (OF). The OF of a male 

commander directly affects the magnitude of his 

harem, denoting the number of female hinds under 

his control. Commanders with elevated OF tend to 

amass larger harems owing to their enhanced 

combat and vocalization capabilities. 

2.1.5. Formation of Harems 

Commanders create harems, which represent groups 

of hinds. Exploration is impacted by the commanders' 

fitness, which is directly related to the number of 

hinds in each harem. The distribution of harems 

across commanders gives the algorithm's exploration 

stage an additional dimension.  

maxn n iV v v    (8) 

where nV  represents the normalized value of the 

thn  commander's power (i.e., its OF), and nv  

denotes the power of the thn  commander (i.e., its 

OF).  

The normalized power of commanders can be 

calculated using the subsequent formula. 

1

| |
i

n
n a

ii

V
P

V





  

(9) 

The following formula can be used to determine a 

harem's number of hinds, where hindN  is the total 

number of hinds. 

. ( )n n hindN harem round P N    (10) 

2.1.6. Mating within Harems 

A portion of the hinds in commanders' harems mate 

with them. Users can regulate diversity and 

exploration by adjusting the number of hinds mate 

with commanders using the " " parameter. This 

stage promotes population diversity and exploration. 

. ( . )mate

n nN harem round N harem    (11) 

The quantity of hinds in thn  the harem that copulate 

with their leader is . mate

nN harem . Regarding the 

solution space, we select . mate

nN harem  of the 

. kN harem  at random. The mating process is 

generally explained as follows. 

offs ( ) x
2

C Hind
UB LB c


     (12) 

2.1.7. Mating across Harems 

Commanders can increase the size of their domains 

by attacking other harems and mating with hinds 

from other harems (call it k). This process is 

controlled by the "  " parameter, which gives users 

authority over exploration and exploitation. This 

stage increases the algorithm's capacity for 

exploration. 

. ( . )mate

k kN harem round N harem    (13) 

where . mate

kN harem  is the number of hinds in the 

thk harem that mate with the commander. It is 

important to note that Equation (12) is used to carry 

out the mating process. 

2.1.8. Mating of Stags 

In order to mimic the natural behavior of red deer 

during the breeding season, each stag mates with 

the closest hind. This process balances exploration 

and exploitation aspects. The following formula 

should be used to determine the distance in 

J dimension space between a stag and every 

hind. 
2 1/2{ ( ) }i

i j j

j J

d stag hind 
ò

  
(14) 

where id  is the separation between a stag and its thi  

hind, the lowest value in this matrix represents the 

hind chosen. The mating process begins after a hind 

has been chosen. In this calculation, a stag is 

considered instead of a commander. 

2.1.9. Selection of the Next Generation 

The next generation is determined through two 

strategies: retaining elite solutions and selecting 

offspring based on fitness values. The selection 

process shapes the final population and concludes the 

iterative optimization cycle. The RDOA offers a 

unique optimization approach, allowing users to fine-
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tune its behavior according to the characteristics of 

the problem at hand. 

All the steps mentioned are presented in Figure 3 and 

the four main stages of RDOA are presented in 

Figure 4. 

Figure 3. Flowchart of the RDOA [29]. 

 

Figure 4. Stages of the RDOA: (a) Population of RD, (b) Roaring Process, (c) Fighting Process, (d) Harems [30]. 

Our research aims to comprehensively evaluate 

RDOA using benchmark functions to identify its 

strengths and limitations. To achieve this goal, we 

carefully planned and executed a set of tests using a 

variety of standard functions covering a wide range 

of difficulty levels. Using this framework, we could 

evaluate the performance of RDOA under different 

optimization scenarios and make relevant 

comparisons with other well-known metaheuristic 

techniques. Our methodology consists of several 

essential elements, including identifying and 

selecting benchmark functions with different 

difficulty levels, selecting comparison algorithms, 

determining parameter settings of each of the 

selected algorithms, designing and executing 
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experiments, and evaluating the performance and 

results obtained from each algorithm.  

The algorithms selected for comparison are: 

● GA: A population-based optimization 

technique inspired by the process of natural 

selection and genetics. 

● PSO: A swarm intelligence-based algorithm 

that simulates the behavior of birds flocking 

or fish schooling. 

● DE: A population-based optimization 

algorithm that operates on a group of 

candidate solutions [31]. 

● ABC: A bio-inspired optimization algorithm 

based on the foraging behavior of honeybees 

[32]. 

● Whale Optimization Algorithm (WOA): A 

nature-inspired algorithm inspired by the 

hunting behavior of humpback whales [33]. 

 

2. Results and Discussion 

This section presents and analyzes the results 

obtained from our comparative analysis of the RDOA 

with various well-known metaheuristic algorithms. 

We utilized Python to develop all six metaheuristic 

algorithms and the RDOA. To achieve an even 

comparison, we optimized the hyperparameters of 

each algorithm to generate the most optimal 

outcomes. The goal was to identify the most effective 

hyperparameter settings that would allow for a 

thorough and unbiased evaluation of the algorithms. 

We implemented each method on the chosen 

benchmark functions and documented the optimal 

solutions achieved by each algorithm.  

The following benchmark functions were chosen for 

this study: 

● Sphere Function: A fundamental unimodal 

function, often used as a starting point for 

optimization algorithms due to its simplicity. 

 

● Rosenbrock Function: A classic multimodal 

problem, characterized by a narrow, curved 

valley that poses challenges for optimization 

algorithms. 

 

● Bohachevsky Function: A multimodal 

problem with a pair of symmetric minima, 

serving as a test of the algorithms' ability to 

locate multiple optima. 

 

● Griewank Function: A multimodal problem 

with a flat, expansive basin around the global 

minimum, testing the exploration capabilities 

of the algorithms. 

● Rastrigin Function: A non-convex, highly 

multimodal problem replete with local 

minima, designed to evaluate the robustness 

of optimization algorithms. 

● Eggholder Function: A highly non-linear, 

intricate problem with a complex landscape 

featuring multiple peaks and valleys, serving 

as a rigorous test of an algorithm's exploration 

and exploitation prowess. 

 

Table 1 shows the standard equations, search 

intervals, and global minimum of each function for 

optimization. The number of iterations is 500, so the 

algorithms have sufficient time in the search space. 

Also, the dimensions of each of the mentioned 

functions are 100. Due to implementation 

limitations, the algorithms were run only once. 

Repeated experiments are recommended in future 

research to obtain highly reliable results. 

Table 2 summarizes the results for each pair of 

function and algorithm.  

Figure 5 exhibits the convergence graphs for each of 

the benchmark functions. The charts illustrate the 

progression of the optimization process at each 

epoch, showcasing the algorithm's performance on 

various problem landscapes. The RDOA algorithm 

demonstrated impressive convergence speed in 

several cases, mainly when used for unimodal 

functions such as the Sphere Function. The fact that 

it can rapidly identify the global optimum in such 

scenarios indicates its effectiveness in handling less 

complex optimization problems. RDOA's agility 

makes it an excellent choice for applications that 

demand quick convergence. RDOA demonstrated 

robustness and outperformed other algorithms on the 

Griewank Function, which poses a difficult balance 

between local and global optima. This capacity is 

essential when addressing real-world problems 

characterized by complex solution spaces. The 

Rosenbrock Function demonstrated the competitive 

performance of the system, indicating its capacity to 

handle complex multimodal problems. However, 

further adjustments may be necessary to improve its 

performance on these functions. The findings 

suggest that specific algorithms exhibit superior 

performance on particular benchmark functions. For 

instance, when applied to the Sphere Function, the 

WOA demonstrates exceptional performance. 

However, the PSO yields remarkable outcomes 

when used with the Eggholder Function.  
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Table 1. Benchmark Functions for Optimization. 

 

Table 2. Summary of the Results Obtained for Each Function-Algorithm Pair.

Functions GA PSO DE ABC WOA RDOA 

Sphere 9.21e+02 5.32e+03 4.45e+03 3.45e+00 5.73e-92 4.55e-05 

Rosenbrock 1.27e+07 4.10e+07 6.24e+07 1.48e+03 2.50e-01 5.00e-02 

Bohachevsky 0.00e+00 0.00e+00 0.00e+00 4.00e-02 0.00e+00 0.00e+00 

Griewank 1.58e+00 1.95e+00 1.21e+00 5.00e-02 0.00e+00 1.41e-05 

Rastrigin 2.25e+03 7.21e+03 1.82e+03 9.26e+01 0.00e+00 3.00e-02 

Eggholder 1.00e-02 -3.10e+09 -1.16e+04 -1.89e+04 -1.98e+04 -1.98e+04 

Figure 5. Convergence Plots for the Six Benchmark Functions. 
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3. Conclusions 

In this paper, a comparison of the performance of the 

RDOA with five other well-known algorithms was 

conducted by running on six benchmark functions. 

These functions include: 

● Sphere 

● Rosenbrock 

● Bohachevsky 

● Griewank 

● Rastrigin 

● Eggholder 

This research showed that most algorithms 

encountered difficulties escaping from local minima 

when using the Eggholder Function. However, the 

PSO approach achieved a significantly superior 

result. Although RDOA did not yield significant 

results compared to other methods, it showed a 

significantly faster convergence speed. The RDOA 

algorithm showed a significant convergence speed 

in several cases, mainly when used for unimodal 

functions such as the Sphere Function. The fact that 

it could quickly identify the global optimum in such 

scenarios indicates its effectiveness in handling less 

complex optimization problems. One of the striking 

features of RDOA was its ability to navigate 

effectively in complex and diverse environments. 

RDOA demonstrated robustness and outperformed 

other algorithms in the Griewank Function, which 

balances the difficulty between local and global 

optima. This capacity is essential when addressing 

real-world problems characterized by complex 

solution spaces. The Rosenbrock Function 

demonstrated the competitive performance of the 

system, indicating its capacity to handle complex, 

multi-faceted problems. However, further tuning 

may be required to improve its performance in these 

functions. A fundamental feature of RDOA is its 

ability to manage the trade-off between exploration 

and exploitation effectively. The process rushes 

through the solution space to identify prospective 

optimal solutions while successfully exploiting 

previously discovered regions. The balance of 

RDOA allows it to quickly adjust to different types 

of performance, making it highly versatile for many 

optimization scenarios. Finally, RDOA is still a new 

and rich algorithm, so future work will involve 

improvising variants of this algorithm and applying 

them to engineering problems in optimization and 

machine learning. 
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 فراابتکاری های الگوریتم سایر با مقایسه در قرمز گوزن سازی بهینه الگوریتم عملکرد تحلیل

 

 امیر عباس رصافی و *سهیل رضاشعار

 . ایران قزوین، ،(ره)خمینی امام المللیبین دانشگاه ومهندسی،فنی دانشکده نقل،وحمل ریزیبرنامه گروه

 07/02/2025 پذیرش؛ 05/09/2024 بازنگری؛ 01/08/2024 ارسال

 چکیده:

 انجام شده اثبات خوبی به فراابتکاری الگوریتم پنج با مقایسه در (RDOA) قرمز گوزن سازیبهینه الگوریتم از ایمقایسه تحلیل یک مطالعه این

ست سیلی تکامل ،(PSO) ذرات ازدحام سازیبهینه ،(GA) ژنتیک الگوریتم: داده ا صنوعی زنبورهای کلونی ،(DE) دیفران  الگوریتم و (ABC) م

صلی هدف. (WOA) نهنگ سازیبهینه سائل، از طیفی در RDOA عملکرد ارزیابی ا ست پیچیده و ضروری چندوجهی توابع جمله از م  این. ا

 ،Sphere) استاندارد مسئله شش اساس بر را آن ها و شودمی عملکرد آن سازیبهینه جهت الگوریتم هر برای فراپارامتر سازیبهینه شامل روش

Rosenbrock، Bohachevsky، Griewank، Rastrigin و Eggholder )که اینقطه دادن نشان برای همگرایی نمودارهای. کرده است ارزیابی 

شان نتایج. دگرفتن قرار بررسی مورد آمده دست به ثبات سطح و دهدمی رخ همگرایی آن در سه در RDOA که دادند ن  هاالگوریتم سایر با مقای

 اسددداس بر باید الگوریتم یک انتخاب حال، این با. دارد برتری چندوجهی توابع با برخورد در و کندمی عمل خوب توابع در نظر گرفته شدددده در

 در هاییبینش. اسددت سددازیبهینه محققان برای عالی منبع یک کار این. باشددد آن ها متمایز مزایای گرفتن نظر در با مسددئله، خاص هایویژگی

 .کندمی برجسته را RDOA هایمحدودیت و قوت نقاط و دهدمی ارائه الگوریتم انتخاب مورد

 .RODAسازی گوزن قرمز، گرفته از طبیعت، الگوریتم بهینه فراابتکاری، الهام سازی،بهینه :کلمات کلیدی


