
1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 13, No. 1, 2025, 107-117.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

Research paper

Multilingual Language Models in Persian Natural Language Processing

Tasks: A Performance Comparison of Fine-Tuning Techniques

Ali Reza Ghasemi and Javad Salimi Sartakhti*
Artificial Intelligence Group, Faculty of Electrical and Computer Engineering, University of Kashan, Kashan, Iran.

Article Info Abstract

Article History:
Received 09 December 2024

Revised 17 January 2025

Accepted 12 February 2025

DOI:10.22044/jadm.2025.15167.2625

 This paper evaluates the performance of various fine-tuning methods

for multilingual language models in Persian natural language

processing tasks. In low-resource languages like Persian, which suffer

from a lack of rich and sufficient data for training large models, it is

crucial to select appropriate fine-tuning techniques that mitigate

overfitting and prevent the model from learning weak or surface-level

patterns. The main goal of this research is to compare the

effectiveness of fine-tuning approaches such as Full-Finetune, LoRA,

AdaLoRA, and DoRA on model learning and task performance. We

apply these techniques to three different Persian NLP tasks: sentiment

analysis, named entity recognition (NER), and span question

answering (QA). For this purpose, we conduct experiments on three

Transformer-based multilingual models with different architectures

and parameter scales: BERT-base multilingual (~168M parameters)

with Encoder only structure, mT5-small (~300M parameters) with

Encoder-Decoder structure, and mGPT (~1.4B parameters) with

Decoder only structure. Each of these models supports the Persian

language but varies in structure and computational requirements,

influencing the effectiveness of different fine-tuning approaches.

Results indicate that fully fine-tuned BERT-base multilingual

consistently outperforms other models across all tasks in basic

metrics, particularly given the unique challenges of these embedding-

based tasks. Additionally, lightweight fine-tuning methods like LoRA

and DoRA offer very competitive performance while significantly

reducing computational overhead and outperform other models in

Performance-Efficiency Score introduced in the paper. This study

contributes to a better understanding of fine-tuning methods,

especially for Persian NLP, and offers practical guidance for applying

Large Language Models to downstream tasks in low-resource

languages.

Keywords:
Fine-Tuning Techniques, Large

Language Models in Low-

Resource Languages,

Multilingual Language Models,

multilingual BERT.

*Corresponding author:
salimi@kashanu.ac.ir (J. Salimi

Sartakhti).

1. Introduction

Since the introduction of large language models

(LLMs), these models have become a fundamental

tool in natural language processing (NLP),

particularly in text processing, and have

significantly surpassed traditional methods like

recurrent neural networks (RNNs) [1] and their

enhanced versions Like Long short-term memory

(LSTM) [2]. These new language models, based on

the attention mechanism [3] and the Transformer

architecture, enable processing of text while

preserving long-range dependencies and provide

better control over NLP challenges such as

ambiguity.

Despite the impressive advancements of LLMs,

several challenges remain in adapting these models

to various tasks and datasets. One of the main

issues is the enormous number of parameters in

these models, making the training process highly

mailto:salimi@kashanu.ac.ir

Sartakhti & Ghasemi/ Journal of AI and Data Mining, Vol. 13, No. 1, 2025

108

resource-intensive. Full training of these large

models requires extensive computational power,

long training times, and vast amounts of data,

which are often beyond the reach of small or

medium-sized enterprises and individual

researchers. To mitigate this, language models are

typically pre-trained on large datasets for general

NLP tasks such as masked language modeling [4]

and then made available for further fine-tuning on

specific tasks.

Fine-tuning, an essential approach in this context,

involves adapting pre-trained models to specific

tasks by adjusting their parameters to optimize

performance on the given task. Initially, full fine-

tuning of all model parameters was the most

common approach. However, the high

computational cost of updating all parameters

during fine-tuning remained a significant

challenge. To address this, more efficient fine-

tuning methods, such as LoRA (Low-Rank

Adaptation), were introduced [5]. These techniques

aim to reduce hardware and computational costs

while striving to improve or maintain model

accuracy, achieving performance comparable to

fully fine-tuned models. Particularly in resource-

constrained environments, these methods can

significantly accelerate the fine-tuning process of

large language models, enabling them to perform

well across various NLP tasks with limited data. In

comparison, fully fine-tuning a model requires

substantially more data to adjust all of its

parameters, which can be resource-intensive but

effective in well-resourced settings.

Persian, as a language with unique characteristics

such as complex syntax and morphology, a diverse

vocabulary, and cultural nuances in word

meanings, poses particular challenges for NLP.

Additionally, Persian has absorbed vocabulary and

expressions from various regional dialects and

underlanguages, and the widespread use of

Finglish (Persian written in the Latin alphabet) in

informal communication further complicates text

processing. Another significant challenge is the

absence of diacritics (Harekat), which are typically

omitted in Persian text, unlike in Arabic or English.

This makes it difficult for NLP models to

disambiguate words, such as “خِرد” (wisdom) and

 which are written identically ,(broken) ”خُرد“

without diacritics. Moreover, Persian contains

many homographs that share the same written form

and vowel marks but have different meanings

depending on context. For instance, “مهر” can refer

to the “sun”, “a month of Mehr in the Persian

calendar” or “friendship/love”. These features,

coupled with inherent ambiguities, make the need

for specialized models and fine-tuning methods

even more pressing. LLMs, however, are not

initially trained to handle all languages and often

focus on languages like English during pre-

training. With the rapid development of

multilingual language models (Multilingual

LLMs) [6], it has become possible to process

multiple languages simultaneously, reducing the

need to train separate models for each language.

This shift towards multilingual models comes with

two primary challenges: first, ensuring that the

model retains its linguistic capabilities across

multiple languages, and second, optimizing the

model to deliver strong performance in low-

resource languages like Persian. By overcoming

these challenges, multilingual LLMs can leverage

shared linguistic features and semantic

representations across languages, enabling better

understanding and processing of various

languages.

This paper explores the performance of these

models and their fine-tuning methods on Persian

NLP tasks, examining their effectiveness in

handling underrepresented languages like Persian

to achieve improved accuracy, robustness, and

generalization in various applications, such as

sentiment analysis, named entity recognition, and

question answering. Additionally, it discusses the

trade-offs in computational efficiency when

employing Parameter-Efficient Fine-Tuning

methods, highlighting how these techniques

balance performance with resource constraints.

2. Related Work

In the comprehensive benchmarking study by

Abaskohi et al. [7], the efficacy of large language

models for Persian was explored, with a focus

primarily on GPT-3.5-turbo, alongside evaluations

of GPT-4 and OpenChat-3.5. This study assessed

these models across a variety of Persian language

tasks, including mathematical problems,

entailment, sentiment analysis, multiple-choice

question answering (MCQA) in common and

literary domains, MCQA focusing on math and

logic, named entity recognition (NER), reading

comprehension, and elementary school

benchmarks. To address the lack of available

Persian datasets, two new benchmarks were

introduced, specifically targeting reasoning tasks.

The findings revealed that while LLMs like GPT-4

performed exceptionally well in tasks requiring

reasoning and general knowledge, they often fell

short when compared to smaller pre-trained models

that were specifically fine-tuned for particular

tasks. Additionally, performance improvements

were observed when test sets were translated to

English before inputting them into GPT-3.5,

Multilingual Language Models in Persian Natural Language Processing Tasks: A Performance Comparison of Fine-Tuning

Techniques

109

further illustrating the challenges faced by LLMs

in processing the Persian language [7].

However, this study primarily relied on closed-

source models like GPT-3.5 and GPT-4, and used

zero or few-shot learning [8] with prompt

engineering, without a focus on direct fine-tuning

of these models. Due to the closed-source nature of

the models and their massive size, fine-tuning

GPT-4 was impractical and unfeasible. Instead, the

study placed greater emphasis on a broad range of

tasks by generating and embedding relevant data.

This limitation presents an opportunity in the

current literature, highlighting the need for further

research on fine-tuning techniques specifically

tailored for Persian NLP tasks. Such techniques

could complement this valuable study and push the

boundaries of Persian language processing.

This paper aims to address these gaps by selecting

fewer tasks but focusing on smaller, open-source

models, which are more accessible and manageable

compared to GPT-3.5 or GPT-4. Rather than

relying on zero or few-shot learning, this study

emphasizes directly fine-tuning the weights of

these models using different parameter-efficient

methods such as LoRA. These methods are

particularly useful for enhancing model

adaptability in low-resource settings.

Consequently, this paper evaluates various fine-

tuning methods, including Full-Finetune, LoRA,

AdaLoRA, and DoRA, to optimize performance on

Persian language tasks. In doing so, it aims to

provide deeper insights into effective strategies for

underrepresented languages using smaller, open-

source models.

In the study by Shuttleworth et al. [21], the authors

examine the structural and behavioral differences

between Low-Rank Adaptation (LoRA) and full

fine-tuning methods in adapting pre-trained large

language models to downstream tasks. Through

spectral analysis of the models' weight matrices,

they discover that LoRA introduces “intruder

dimensions”—new, high-ranking singular vectors

not present in fully fine-tuned models. These

intruder dimensions lead to distinct generalization

behaviors, where LoRA models, despite achieving

similar performance on target tasks, exhibit

increased forgetting of the pre-training distribution

and reduced robustness in continual learning

scenarios compared to fully fine-tuned models. The

study concludes that even when LoRA and full

fine-tuning attain comparable accuracy, they

access different parts of the parameter space,

resulting in non-equivalent solutions [21].

While our papar also focuses on parameter-

efficient fine-tuning methods, such as LoRA,

AdaLoRA, and DoRA, for Persian language

models, it diverges from Shuttleworth et al.'s work

by concentrating on the application and evaluation

of these methods in low-resource settings.

Specifically, we assess the effectiveness of these

fine-tuning techniques on Persian NLP tasks,

aiming to optimize performance with minimal

parameter updates. While low-rank adapters often

yield results very close to those of fully fine-tuned

models in many cases, it is important to note— as

highlighted in Shuttleworth et al.'s paper—that

while LoRA models may not match the full

richness of a fully fine-tuned model, they can still

provide very competitive performance. This trade-

off becomes particularly significant in low-

resource situations, where full fine-tuning may

require extensive amounts of data and

computational resources. In such settings, LoRA

family fine-tuning methods can offer a valuable

alternative by achieving strong performance with

fewer data and resources. In contrast, Shuttleworth

et al. provide a theoretical analysis of the structural

differences between LoRA and full fine-tuning,

without a specific focus on underrepresented

languages or low-resource scenarios. Thus, our

study complements their findings by applying

parameter-efficient fine-tuning methods in a

practical, low-resource context, contributing to the

broader understanding of their applicability across

diverse languages and settings.

3. Model Selection

In this paper, we target three relatively small to

medium-sized models for fine-tuning: Multilingual

BERT Base, mT5 Small, and mGPT. All of these

open-source models are readily accessible from the

Hugging Face model hub. We believe that these

three models represent some of the best options

across a variety of transformer architectures and

parameters. With this selection, we encompass

Encoder-only, Encoder-Decoder, and Decoder-

only transformer models and providing a diverse

range of parameter counts from approximately 170

million to 1.4 billion parameters. This allows us to

examine the effects of parameter-efficient methods

across a spectrum of model sizes and architectures.

3.1. Multilingual BERT Base

This model is an Encoder-only transformer and a

variant of Bidirectional Encoder Representations

from Transformers (BERT) developed by Google.

It is pre-trained on the top 104 languages, including

Persian, using a masked language modeling

(MLM) objective and next sentence prediction

(NSP) on the largest Wikipedia. With

approximately 177 million parameters, its lack of a

decoder limits its capability for generative tasks,

Sartakhti & Ghasemi/ Journal of AI and Data Mining, Vol. 13, No. 1, 2025

110

such as text generation. However, it is well-suited

for various downstream tasks, including sequence

classification, token classification, and question

answering [4,6].

3.2. mT5 Small

This model is an Encoder-Decoder transformer and

a variant of the Text-to-Text Transfer Transformer

(T5) from Google [9]. It is pre-trained on 101

languages, including Persian, using the

multilingual Colossal Clean Crawled Corpus

(mC4). The mT5 model converts all NLP tasks into

a text-to-text format, making it versatile for a wide

range of applications. It has approximately 170

million parameters and benefits from both an

encoder and a decoder, making it an excellent

choice for embedding and generative tasks [10].

3.3. mGPT

This model is a Decoder-only transformer and an

unofficial, multilingual variant of the Generative

Pre-training Transformer (GPT-2) originally

developed by OpenAI [11]. It has been retrained by

Ai-forever to support multiple languages. It is pre-

trained on 61 languages, including Persian, using

the multilingual Colossal Clean Crawled Corpus

(mC4) and Wikipedia. As an autoregressive model,

mGPT reproduces the GPT-3 architecture using

sources from GPT-2, incorporating a sparse

attention mechanism. With around 1.4 billion

parameters, its lack of an encoder makes it less

effective for embedding and supervised learning

tasks but a strong candidate for generative and

unsupervised learning applications [12].

4. Evaluation Metrics

Evaluating the performance of a model requires

selecting appropriate metrics based on the task. The

following metrics are used to assess classification

and text generation tasks.

 Accuracy: Accuracy measures the proportion

of correctly predicted instances out of the total

instances. It is a straightforward metric that

provides an overall sense of the model’s

correctness but may not be sufficient when

dealing with imbalanced datasets.

 Recall: Recall, also known as sensitivity,

measures the proportion of correctly identified

positive instances out of all actual positive

instances in the dataset. It is useful for

evaluating how well the model captures all

relevant instances.

 Precision: Precision calculates the proportion

of correctly predicted positive instances out of

all instances predicted as positive. It indicates

how reliable the model's positive predictions

are, reducing the impact of false positives.

 F1 Score: The F1 Score is the harmonic mean

of precision and recall. It balances both

metrics, providing a single value that considers

both the accuracy of positive predictions and

the ability to capture all relevant positives.

 Exact Match (EM): The exact match metric

assesses whether the predicted answer span

precisely matches the ground truth answer. A

high exact match score signifies that the model

consistently identifies the correct answer

without discrepancies, serving as a strict

measure of accuracy in answer extraction.

 ROUGE (Recall-Oriented Understudy for

Gisting Evaluation): ROUGE evaluates the

quality of generated text by comparing it to

reference texts. The Persian ROUGE score

functions similarly to the standard ROUGE

score but is tailored for Persian texts. This

metric evaluates the overlap between the

predicted answer and the reference answer,

focusing on recall, precision, and F1 metrics

for n-grams. A high ROUGE score indicates

that the model extracts answers closely aligned

with human references, reflecting effective

answering and content relevance.

In classification tasks with multiple classes,

standard precision, recall, and F1 scores may not

reflect performance evenly across all classes,

especially in imbalanced datasets. Macro-

averaging provides an equal-weighted evaluation

by computing the metric for each class

independently and then averaging the results. the

macro-averaging approach ensures that the

model’s evaluation is not biased toward dominant

classes, making it particularly valuable in tasks

with class imbalance.

5. Tasks and Datasets

Natural Language Processing covers a wide range

of tasks that can be addressed by language models.

However, task selection in this study is constrained

by both the model architectures and the availability

of data, especially in low-resource languages like

Persian. For instance, BERT, as an encoder-only

transformer, is typically limited to tasks that rely on

embeddings and supervised learning, rather than

generative tasks. Additionally, the scarcity of large,

high-quality datasets in Persian narrows our task

options. Considering these limitations, we focus on

three traditional downstream tasks with sufficient

data availability: Sentiment Analysis, Named

Entity Recognition (NER), and Span Question

Answering (QA). These tasks are widely studied

and have established benchmarks, making them

Multilingual Language Models in Persian Natural Language Processing Tasks: A Performance Comparison of Fine-Tuning

Techniques

111

suitable for evaluation across multiple models and

fine-tuning methods.

5.1. Sentiment Analysis

Sentiment Analysis is the process of determining

the sentiment or opinion expressed in a text, often

as part of sequence classification tasks in NLP. The

task typically involves binary classification (e.g.,

Positive or Negative) or multi-class classification

(e.g., Positive, Negative, or Neutral). In this paper,

we use the "asparius/Persian-Food-Sentiment"

dataset from Hugging Face, which is a binary

sentiment analysis dataset specifically for Persian.

The dataset consists of 56.7k training samples, 6.3k

validation samples, and 7k test samples, all of

which are labeled for sentiment polarity (Positive

or Negative). Each sample in the dataset contains

two columns: the label (sentiment) and the text

[13]. We set the maximum token length

(MAX_LEN) to 150 tokens, which is sufficient to

cover almost all texts in the dataset while keeping

computational efficiency in mind.

The evaluation of the Sentiment Analysis task is

conducted using the Accuracy, Macro Recall,

Macro Precision, Macro F1 Score.

5.2. Named Entity Recognition

Named Entity Recognition (NER) is a task aimed

at identifying and classifying named entities (such

as people, organizations, locations) within a text.

NER is a multi-class classification task where each

entity type (e.g., PERSON, LOCATION) is treated

as a separate class. For this task, we use the

"mansoorhamidzadeh/Persian-NER-Dataset-

500k" from Hugging Face. Although the full

dataset contains approximately 500k samples, we

use a subset of 100k rows for training, 10k for

validation, and 10k for testing to optimize memory

usage and training time. Each sample in the dataset

has three features: ner_tags (a list of named entity

tags), tokens (a list of tokens in the sample), and

ner_tags_index (the corresponding index values for

the NER tags, mapping to specific named entities)

[14]. To manage memory and processing time due

to the large input size, we set MAX_LEN to 125

tokens, which covers the majority of the token lists

in the dataset while balancing resource usage.

The following metrics were used to evaluate the

Named Entity Recognition task: accuracy, macro

recall, macro precision, and macro F1 score.

5.3. Span Question Answering
Span-based Question Answering (Span QA) is a

task where the model is required to predict the start

and end positions of the answer within a given

context, based on a provided question. For this

task, we use the "SLPL/syntran-fa" dataset from

Hugging Face, which contains approximately 48k

samples in Persian. We split the dataset into 38k

rows for training, 4.8k for validation, and 4.8k for

testing. Each sample consists of three features:

question, fluent_answer (the context), and

short_answer (the answer) [15]. For this task, the

input sequence is a concatenation of the context

and the question, with a MAX_LEN of 100 tokens.

This token limit is sufficient to handle most

samples in this dataset, as the combined length of

the context and question is generally short.

Additionally, this dataset is relatively

straightforward, providing a good baseline for

evaluating span-based question answering in

Persian.

The performances of the Span Question Answering

task are evaluated by Macro F1 Score, Exact

Match, Persian ROUGE Score

6. Fine-tuning Methods

Fine-tuning pre-trained language models is a

crucial step in this work, as it adapts the rich

linguistic and contextual knowledge embedded in

large models for specific downstream tasks. In this

section, we explore various fine-tuning techniques,

each offering different trade-offs between

computational cost and performance. The goal is to

identify the most appropriate solution for each task

by balancing efficiency and accuracy. In this paper,

we pay special attention to modern Low Rank

Adapter methods. These methods offer significant

advantages over Adapter-based methods in terms

of parameter efficiency and integration simplicity.

By introducing low-rank matrices, these methods

enables substantial performance improvements

with fewer trainable parameters, making it

particularly beneficial for large models with

limited training resources. Additionally, Low Rank

Adapter methods can be seamlessly integrated into

existing architectures without the need for complex

structural modifications, unlike Adapter-based

methods, which require inserting additional

modules between layers.

6.1. Full Fine-Tuning

Full fine-tuning involves updating all model

parameters (including both the task-specific head

and the entire pre-trained language model) during

training. This method allows the model to fully

adapt to the target task, potentially leveraging the

most task-specific knowledge. However, this

comprehensive updating comes with increased

computational demands and risks of overfitting,

particularly on smaller datasets. While it typically

leads to faster convergence, the large number of

trainable parameters can cause the model to shift

Sartakhti & Ghasemi/ Journal of AI and Data Mining, Vol. 13, No. 1, 2025

112

some of its pre-trained linguistic generalization in

favor of the task at hand.

6.2. LoRA

Low-Rank Adaptation (LoRA) is a parameter-

efficient fine-tuning method that significantly

reduces the number of trainable parameters by

freezing most of the model and injecting small,

trainable low-rank matrices, specifically in the

attention layers. This approach reduces the

memory and computational cost of fine-tuning

large models, making it a feasible option when

resources are limited. LoRA is particularly suited

for tasks where only subtle adjustments to the pre-

trained model are needed to achieve good

performance [5]. In our experiments, we employed

the Hugging Face PEFT (Parameter-Efficient Fine-

Tuning) library, which enables efficient adaptation

of large models with minimal trainable parameters.

We used settings: r=8 (rank of the low-rank

matrices), lora_alpha=32 (scaling factor), and

lora_dropout=0.1 (to prevent overfitting).

6.3. DoRA

Weight-Decomposed Low-Rank Adaptation

(DoRA) addresses the accuracy gap often observed

between traditional full fine-tuning (FT) and Low-

Rank Adaptation (LoRA) methods in parameter-

efficient fine-tuning (PEFT). While LoRA has

gained popularity for minimizing additional

inference costs, it frequently falls short in

performance compared to FT. DoRA enhances the

learning capacity of LoRA by employing a novel

weight decomposition analysis that separates pre-

trained weights into magnitude and direction

components. This innovative approach allows for

more effective directional updates while reducing

the number of trainable parameters. Empirical

results indicate that DoRA consistently

outperforms LoRA in fine-tuning across various

downstream tasks, achieving improved training

stability without incurring extra inference overhead

[16].

6.4. AdaLoRA

Adaptive Low-Rank Adaptation (AdaLoRA)

further refines the concept of low-rank adaptation

by dynamically adjusting the rank at a layer-wise

level. AdaLoRA improves parameter-efficient

fine-tuning (PEFT) by addressing the limitations of

traditional methods like LoRA, which distribute

incremental update budgets evenly across all

weight matrices, often leading to suboptimal

performance. AdaLoRA introduces an adaptive

mechanism that allocates the parameter budget

based on the importance of different weight

matrices. By parameterizing updates through

singular value decomposition (SVD), AdaLoRA

effectively prunes unimportant updates while

avoiding the computational burden of exact SVD.

This approach results in more efficient use of

resources and enhances fine-tuning performance,

particularly in low-budget scenarios. Experiments

show that AdaLoRA consistently outperforms

baseline methods on tasks like natural language

processing, question answering, and language

generation [17]. Like LoRA and DoRA, we utilized

the same configuration (r=8, lora_alpha=32,

lora_dropout=0.1) in our experiments.

7. Results

In our experiments, we used the PyTorch library

along with the PyTorch Lightning framework for

cleaner and more structured implementation. We

used AdamW optimizer, CrossEntropy loss, and

the following settings in our experiments:

 Batch size: 32

 Early stopping: Implemented with a fixed

patience limit on validation step to prevent

overfitting

 Random seed: 42

We utilized Google Colab Pro for our experiments,

which provided access to NVIDIA A100 GPUs

With 40GB of Video Random Access Memory

(VRAM), a high-speed GPU memory essential for

handling large models and datasets in deep

learning. The CPU configuration included an Intel

Xeon processor with 4 virtual CPUs (vCPUs), and

the system was equipped with approximately 25GB

of RAM.

During training, we fed 50% of the training data

randomly in each epoch, simulating a dynamic

sampling approach that prevents the model from

seeing the same data order in every epoch. This

technique aims to improve generalization and

reduce the risk of overfitting, especially when

paired with early stopping.

Tables 1, 2, 3, 5, 6, 7, 9, 10, and 11 provide a

detailed comparison of the number of trainable and

non-trainable parameters for each model under

different fine-tuning methods. These tables

highlight the reduction in trainable parameters

when using parameter-efficient fine-tuning

methods and computational resources.

The final performance of each model was

evaluated based on specific metrics for each task.

The results in Table 4, 8, and 12 summarize the

evaluation after the training process (either after

the set number of epochs or an early stopping

mechanism).

Multilingual Language Models in Persian Natural Language Processing Tasks: A Performance Comparison of Fine-Tuning

Techniques

113

7.1. Sentiment analysis task results

For the sentiment analysis task, we fine-tuned

using a simple classification head. The classifier

consists of two output neurons, utilizing the state

of the last token from the LLM's output, following

the standard approach for

“SequenceClassification” [18]. We used the

following hyper-parameters in our experiments:

 Learning rate: 2e-5

 Number of epochs: 5

 Patience (Number of waits with no

improvement): 1

Table 1. Number of parameters and computational

resources for Multilingual BERT Base in Sentiment

Analysis task

 Parameters and Requirement

Method Trainable Non-

Trainable
Total VRAM

Full fine-

tune
177M 0 177M 6.20GB

LoRA 326K 177M 177M 3.50GB
DoRA 344K 177M 177M 4.17GB
AdaLoRA 474K 177M 177M 3.42GB

Table 2. Number of parameters and computational

resources for mT5 Small in Sentiment Analysis task

 Parameters and Requirement

Method Trainable Non-

Trainable
Total VRAM

Full fine-
tune

172M 0 172M 5.40GB

LoRA 344K 172M 172M 8.00GB

DoRA 362K 172M 172M 6.00GB
AdaLoRA 1.9M 172M 174M 6.40GB

Table 3. Number of parameters and computational

resources for mGPT 1.4B in Sentiment Analysis task

 Parameters and Requirement

Method Trainable Non-

Trainable
Total VRAM

Full fine-

tune
- - - -

LoRA 1.6M 1.4B 1.4B 27.3GB

DoRA 1.7M 1.4B 1.4B 32.8GB

AdaLoRA 2.4M 1.4B 1.4B 27.2GB

Table 4. Post-training metrics on test data in Sentiment

Analysis task

Model Accuracy F1_score Precision Recall
BERT full fine-

tunea
0.8665 0.8564 0.9265 0.7961

BERT LoRA 0.8485 0.8407 0.8865 0.7994

BERT DoRA 0.8468 0.8377 0.8908 0.7905

BERT
AdaLoRA

0.6978 0.6928 0.7044 0.6815

mT5 full fine-

tunea

0.8555 0.8511 0.8781 0.8257

mT5 LoRA 0.7904 0.7795 0.8221 0.7411

mT5 DoRA 0.7882 0.7770 0.8205 0.7378

mT5 AdaLoRA 0.4957 0.6509 0.4977 0.9403
mGPT LoRA 0.8427 0.8332 0.8868 0.7857

mGPT DoRA 0.8418 0.8444 0.8307 0.8585

mGPT

AdaLoRA

0.7194 0.7050 0.7431 0.6706

a The model is over-fitted and the early stopping mechanism is invoked.

7.2. Named Entity Recognition task result

For NER task, we employed a fine-tuning strategy

using a classification head that contains 41 output

neurons, corresponding to the 41 distinct entity

classes present in the dataset. This approach

follows the standardized methodology for

“TokenClassification” [19], where each token in

the input sequence is classified into one of the 41

classes (40 entities classes and a non-entity class).

The classification head receives the token-level

representations generated by the pre-trained

language model and uses these to predict the

appropriate class for each token. We used the

following hyper-parameters in our experiments:

 Learning rate: 2e-5

 Number of epochs: 6

 Patience: 2

Table 5. Number of parameters and computational

resources for Multilingual BERT Base in Named

Entity Recognition task

 Parameters and Requirement

Method Trainable

Non-

Trainable
Total VRAM

Full fine-

tune
177M 0 177M 6.00GB

LoRA 296K 177M 178M 3.80GB

DoRA 314K 177M 178M 3.76GB

AdaLoRA 444K 177M 178M 3.20GB

Table 6. Number of parameters and computational

resources for mT5 Small in Named Entity

Recognition task

 Parameters and Requirement

Method Trainable

Non-

Trainable
Total VRAM

Full fine-

tune
146M 0 146M 4.80GB

LoRA 135K 146M 147M 2.80GB
DoRA 141K 146M 147M 2.50GB

AdaLoRA 888K 146M 147M 2.70GB

Table 7. Number of parameters and computational

resources for mGPT 1.4B in Named Entity

Recognition task

 Parameters and Requirement

Method Trainable Non-

Trainable
Total VRAM

Full fine-
tune

- - - -

LoRA 1.7M 1.4B 1.4B 23.8GB

DoRA 1.8M 1.4B 1.4B 30.7GB
AdaLoRA 2.4M 1.4B 1.4B 23.9GB

7.3. Question Answering task result

For the Span Question Answering (QA) task, we

employed a fine-tuning strategy using a

classification head with 2 output neurons,

corresponding to the positions of the start and end

tokens in the input sequence. This approach

Sartakhti & Ghasemi/ Journal of AI and Data Mining, Vol. 13, No. 1, 2025

114

follows the standardized methodology for

extractive “QuestionAnswering” [20], where the

model identifies the span of text within the input

passage that contains the answer. The classification

head receives the token-level representations and

uses these to predict the start and end positions of

the answer span in token level. We used the

following hyper-parameters in our experiments:

Learning rate: 1e-5, Number of epochs: 10,

Patience: 5.

Table 8. Post-training metrics on test data in Named

Entity Recognition task.

Model Accuracy F1_score Precision Recall
BERT full fine-

tunea
0.9155 0.5512 0.6349 0.5366

BERT LoRA 0.8755 0.2464 0.3566 0.2183

BERT DoRA 0.8774 0.2592 0.4040 0.2326

BERT
AdaLoRA

0.8507 0.1919 0.3515 0.1669

mT5 full fine-

tunea

0.8972 0.3545 0.4861 0.3058

mT5 LoRA 0.8265 0.0943 0.1282 0.0845

mT5 DoRA 0.8244 0.0913 0.1307 0.0823

mT5 AdaLoRA 0.8002 0.0555 0.0765 0.0518
mGPT LoRA 0.8564 0.2725 0.4893 0.2269

mGPT DoRA 0.8572 0.2860 0.4304 0.2475

mGPT
AdaLoRA

0.8398 0.2468 0.4117 0.2032

a The model is over-fitted and the early stopping mechanism is invoked.

Table 9. Number of parameters and computational

resources for Multilingual BERT Base in Question

Answering task.

 Parameters and Requirement

Method Trainable

Non-

Trainable
Total VRAM

Full fine-

tune
177M 0 177M 5.30GB

LoRA 296K 177M 177M 2.60GB
DoRA 314K 177M 177M 2.98GB

AdaLoRA 444K 177M 177M 2.50GB

Table 10. Number of parameters and computational

resources for mT5 Small in Question Answering task.

 Parameters and Requirement

Method Trainable

Non-

Trainable
Total VRAM

Full fine-
tune

172M 0 172M 6.20GB

LoRA 345K 172M 172M 3.57GB

DoRA 363K 172M 172M 4.00GB
AdaLoRA 1.9M 172M 174M 4.45GB

Table 11. Number of parameters and computational

resources for mGPT 1.4B in Question Answering

task.

 Parameters and Requirement

Method Trainable

Non-

Trainable
Total VRAM

Full fine-
tune

- - - -

LoRA 1.6M 1.4B 1.4B 20.0GB

DoRA 1.7M 1.4B 1.4B 24.6GB

AdaLoRA 2.4M 1.4B 1.4B 20.1GB

Table 12. Post-training metrics on test data in Question

Answering task.

Model F1_score Rouge Exact_match
BERT full fine-tunea 0.9684 0.9952 0.9881
BERT LoRA 0.9010 0.9875 0.9617
BERT DoRA 0.9497 0.9852 0.9611

BERT AdaLoRA 0.8255 0.9458 0.8493

mT5 full fine-tunea 0.9098 0.9884 0.9679
mT5 LoRA 0.1696 0.2886 0.0704

mT5 DoRA 0.1864 0.3124 0.0762

mT5 AdaLoRA 0.0130 0.0785 0.0018
mGPT LoRA 0.4492 0.6476 0.3633

mGPT DoRA 0.3747 0.6607 0.3550

mGPT AdaLoRA 0.2955 0.5388 0.1881
a The model is over-fitted and the early stopping mechanism is invoked.

8. Discussion

8.1. Results overview

In this section, we discuss the results obtained

across various fine-tuning methods and models,

focusing on model sizes, VRAM consumption, and

learning performance. Despite using the same

PEFT configurations across models, VRAM usage

varied across different fine-tuning techniques and

tasks due to the distinct approaches these methods

employ. As expected, full fine-tuning consumed

the most VRAM. Among the parameter-efficient

methods, DoRA utilized more VRAM than LoRA,

while AdaLoRA consumed the least. However,

when examining the number of learned parameters,

AdaLoRA generally outnumbered the other

methods, followed by DoRA, with LoRA learning

the fewest parameters.

At first glance, AdaLoRA's ability to learn more

parameters while using less memory seems

promising. However, our results show that

AdaLoRA underperformed across all tasks and

models, sometimes failing to learn effectively, as

indicated by near-zero progress in certain cases.

While not definitive, a likely explanation is that

AdaLoRA’s adaptive parameter allocation may

sometimes underestimate the importance of key

weight matrices, leading to an underrepresentation

of critical features. Additionally, its SVD-based

parameterization introduces approximations that

might remove subtle yet important signal details,

which can be especially impactful in low-budget

settings. Finally, the sensitivity of its adaptive

mechanism to hyperparameter settings and model-

specific factors could result in inconsistent

improvements compared to more uniformly

distributing methods like LoRA and DoRA. In

contrast, DoRA consistently yielded better results

than both LoRA and AdaLoRA, and while its

performance was not as strong as full fine-tuning,

it still provided a reasonable trade-off between

parameter efficiency and memory consumption.

Throughout the experiments, we used fixed hyper-

parameters for all tasks to maintain a controlled

Multilingual Language Models in Persian Natural Language Processing Tasks: A Performance Comparison of Fine-Tuning

Techniques

115

comparison across models and methods. While

tuning hyper-parameters individually for each

model might have improved performance, we

opted for fixed settings to ensure fairness in our

comparisons. As shown in Tables 4, 6, and 12, full

fine-tuning delivered the best results in all tasks.

However, it exhibited signs of early overfitting,

which suggests that training could be halted earlier.

On the other hand, models trained with DoRA and

LoRA did not show signs of overfitting, which is

promising, as it indicates these models could

continue to improve with additional training while

significantly reducing computational resources.

When examining model performance, BERT

consistently outperformed all other models across

tasks, regardless of the fine-tuning method. The

full fine-tuned mT5 was competitive with the

LoRA and DoRA versions of BERT, but it did not

reach the performance of the full fine-tuned BERT.

Moreover, the parameter-efficient versions of mT5

generally performed worse than their BERT

counterparts, and the learning speed of mT5 was

noticeably slower compared to BERT.

mGPT, on the other hand, showed significant

improvement across metrics, but due to its

substantially larger number of parameters, the

allocated number of epochs was insufficient for

thorough training. This under-fitting was evident in

the validation and test loss curves. Despite this, we

believe mGPT has the potential to surpass BERT

given enough training time, although its

computational requirements are far higher. In our

experiments, parameter-efficient versions of

mGPT required between 20GB to 40GB of VRAM

for training, and we were unable to fully fine-tune

mGPT on an A100 GPU with 40GB VRAM due to

these demands.

8.2. Performance-Efficiency Score

While metrics like F1-score, accuracy, precision,

etc are essential for evaluating task-specific

performance, they do not account for the

significant variations in computational resources

required by different models. The trade-off

between model performance and computational

efficiency is a crucial consideration, especially

with the increasing deployment of large-scale pre-

trained models. To address this gap, we propose the

Performance-Efficiency Score (PES) —a novel

metric designed to capture both model

effectiveness and resource efficiency. PES

integrates traditional performance metrics with the

total number of trainable parameters and VRAM

usage, providing a more holistic evaluation. By

incorporating a logarithmic scaling of resource

usage, PES ensures that models with excessive

resource demands are appropriately penalized,

while still rewarding smaller, more efficient

models that achieve competitive performance. A

possible formula and structure for it is shown in

Equations (1):

𝑃𝐸𝑆 =
∑ 𝑊𝑖𝑀𝑖𝑖

log 𝑃 × log 𝑉 × ∑ 𝑊𝑖𝑖

 (1)

Where 𝑀𝑖 represents task performance metrics

such as F1 score, accuracy, or any other relevant

evaluation metric. The impact coefficient 𝑊𝑖 is

dynamically adjusted according to the relative

importance and contribution of each metric to the

specific task, ensuring a balanced evaluation across

different performance dimensions. 𝑃 denotes the

number of LLM parameters in millions, and 𝑉

represents the VRAM usage in gigabytes.

For the Sentiment Analysis (SA) task, we assigned

an equal weight of 2.5 to each metric, as it is a

binary as symmetric classification problem. For

Named Entity Recognition (NER), we used a

weight of 1 for accuracy, 3 for F1 score, 2 for

precision, and 4 for recall, prioritizing the correct

identification of entities rather than non-entities,

given that the majority of tokens are non-entities.

In the Question Answering (QA) task, we applied

a weight of 3 to the F1 score, 2 to the ROUGE

score, and 5 to exact match, as more stringent

metrics like exact match hold greater significance.

The results are shown in Figure 1.

Figure 1. Performance-Efficiency Score for Models

BERT, mT5, and mGPT in tsaks Sentiment Analysis,

Named Entity Recognition, and Question Answering with

fine-tuning methods full fine-tuning, LoRA, DoRA, and

AdaLoRA.

Based on the results obtained across all tasks, it is

evident that BERT fine-tuned with LoRA,

followed closely by DoRA, emerges as the most

effective and resource-efficient approach. LoRA

demonstrates a strong balance between

performance and computational efficiency,

0

0.2

0.4

0.6

0.8

1

1.2

SA NER QA

BERT full fine-tune BERT LoRA BERT DoRA
BERT AdaLoRA mT5 full fine-tune mT5 LoRA
mT5 DoRA mT5 AdaLoRA mGPT LoRA
mGPT DoRA mGPT AdaLoRA

Sartakhti & Ghasemi/ Journal of AI and Data Mining, Vol. 13, No. 1, 2025

116

offering competitive accuracy with a significantly

lower number of trainable parameters and reduced

VRAM usage compared to full fine-tuning. DoRA,

while slightly more resource-intensive than LoRA,

shows comparable performance and adapts well to

the complexity of the tasks, making it a viable

alternative where more flexibility is required.

9. Conclusion and Future work

In this paper, we evaluated the performance of

several parameter-efficient fine-tuning methods—

LoRA, DoRA, and AdaLoRA—on three different

tasks: Sentiment Analysis, Named Entity

Recognition (NER), and Question Answering

(QA). Our results demonstrate that full fine-tuning

consistently offers the highest performance in

terms of accuracy and task-specific metrics across

all tasks. However, parameter-efficient methods

like LoRA and DoRA provide competitive results

while significantly reducing computational costs,

particularly in terms of the number of trainable

parameters and VRAM consumption.

BERT-based models, particularly with LoRA and

DoRA fine-tuning, emerged as the most efficient

solutions, balancing performance and resource

efficiency. This is especially important for

resource-constrained environments, where full

fine-tuning is impractical. Our findings show that

lightweight fine-tuning methods like LoRA and

DoRA offer the best overall balance, with LoRA

being the most resource-efficient while

maintaining competitive performance, followed

closely by DoRA, which showed slightly better

results at a marginally higher resource cost.

In addition, we introduce the Parameter Efficiency

Score (PES) to quantify the trade-offs between

performance and computational resources. PES

allowed us to evaluate and compare the efficiency

of different models and fine-tuning methods by

incorporating both task performance metrics and

resource usage. Our results show that LoRA and

DoRA outperform other methods in terms of PES,

making them highly attractive for low-resource

settings.

Furthermore, we suggest that for downstream and

embedding-based tasks in low-resource

environments, using small Encoder models like

BERT with full fine-tuning is a highly effective

option. For scenarios involving larger models,

where hardware limitations are a concern, using

LoRA family adapters, especially LoRA and

DoRA, proves to be a very efficient approach.

However, it is crucial to consider the potential

trade-offs such as longer training times and the

need for more data to avoid under-fitting when

using these efficient fine-tuning methods. These

findings can guide future efforts in adapting large

language models for resource-constrained

environments.

In future work, we aim to explore additional

parameter-efficient fine-tuning methods and revisit

existing techniques, applying them to other

multilingual language models with hyper-
parameters and training settings specifically

optimized for each model and method to achieve

optimal performance. We also plan to improve

AdaLoRA's performance by refining its adaptive

parameter allocation and reducing approximation

errors resulting from the SVD-based

parameterization. These refinements will facilitate

more accurate identification of critical weight

matrices and contribute to more robust outcomes.

Our approaches will be evaluated on more complex

tasks and larger datasets. Additionally, expanding

our research to include languages beyond Persian

and the multilingual models already tested will

allow us to generalize our findings across diverse

linguistic contexts. To further enhance the model's

practical applicability, future evaluations will

involve testing on completely unseen datasets. We

also intend to investigate the impact of fine-tuning

methods on the interpretability of Persian-specific

linguistic structures, such as morphology and

syntax, to gain a deeper understanding of how these

techniques influence language representation and

task-specific performance. Furthermore, we aim to

enhance the PES metric by incorporating additional

factors related to hardware resource consumption.

Specifically, we will consider factors such as

training time, energy usage, memory requirements,

and GPU utilization. These considerations will

enable a more comprehensive and accurate

assessment of model efficiency. By integrating

these factors, we seek to ensure that the PES metric

evaluates not only the model's performance in

terms of accuracy and parameters but also provides

a more holistic view of the computational resources

required to achieve that performance. These

improvements will be tested and incorporated into

PES in future experiments to ensure proper

accounting of resource efficiency when evaluating

model performance. This will offer a more well-

rounded perspective on both performance and

resource optimization in practical applications.

References
[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,

“Learning representations by back-propagating errors,”

Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[2] S. Hochreiter and J. Schmidhuber, “Long short-term

memory,” Neural Computation, vol. 9, no. 8, pp. 1735–

1780, 1997.

Multilingual Language Models in Persian Natural Language Processing Tasks: A Performance Comparison of Fine-Tuning

Techniques

117

[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L.

Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin,

“Attention is all you need,” in Advances in Neural

Information Processing Systems, 2017, pp. 5998–6008.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,

“BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding,” in

Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational

Linguistics, 2019.

[5] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S.

Wang, L. Wang, and W. Chen, “LoRA: Low-Rank

Adaptation of Large Language Models,” arXiv preprint

arXiv:2106.09685, 2021.

[6] T. Pires, E. Schlinger, and D. Garrette, “How

Multilingual Is Multilingual BERT?,” arXiv preprint

arXiv:1906.01502, 2019.

[7] A. Abaskohi, S. Baruni, M. Masoudi, N. Abbasi, M.

Babalou, A. Edalat, S. Kamahi, S. Mahdizadeh Sani, N.

Naghavian, D. Namazifard, P. Sadeghi, Y.

Yaghoobzadeh, “Benchmarking Large Language

Models for Persian: A Preliminary Study Focusing on

ChatGPT,” arXiv preprint arXiv:2404.02403, 2024.

[8] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J.

Kaplan, P. Dhariwal Journal of Machine Learning

Research, A. Neelakantan, P. Shyam, G. Sastry, A.

Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T.

Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu,

C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S.

Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A.

Radford, I. Sutskever, and D. Amodei, “Language

Models are Few-Shot Learners,” in Advances in Neural

Information Processing Systems, vol. 33, pp. 1877–

1901, 2020.

[9] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,

M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring

the Limits of Transfer Learning with a Unified Text-to-

Text Transformer,”, vol. 21, pp. 1–67, 2020.

[10] L. Xue, N. Constant, A. Roberts, M. Kale, R. Al-

Rfou, A. Siddhant, A. Barua, and C. Raffel, “mT5: A

massively multilingual pre-trained text-to-text

transformer,” arXiv preprint arXiv:2010.11934, Oct. 22,

2020.

[11] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,

and I. Sutskever, “Language Models are Unsupervised

Multitask Learners,” OpenAI, 2019.

[12] O. Shliazhko, A. Fenogenova, M. Tikhonova, V.

Mikhailov, A. Kozlova, and T. Shavrina, “mGPT: Few-

Shot Learners Go Multilingual,” arXiv preprint

arXiv:2204.07580, 2022.

[13] M. Farahani, M. Gharachorloo, M. Farahani, and

M. Manthouri, “ParsBERT: Transformer-based model

for Persian language understanding,” arXiv preprint

arXiv:2005.12515, 2020.

[14] M. Hamidzadeh, “Persian-NER-Dataset-500k,”

Hugging Face, 2024. [Online]. Available:

https://huggingface.co/datasets/mansoorhamidzadeh/Pe

rsian-NER-Dataset-500k. [Accessed: Feb. 9, 2025].

[15] S .Sabouri, “syntran-fa,” Hugging Face, [Online].

Available:

https://huggingface.co/datasets/SLPL/syntran-fa.

[Accessed: Feb. 9, 2025].

[16] S.-Y. Liu, C.-Y. Wang, H. Yin, P. Molchanov, Y.-

C. F. Wang, K.-T. Cheng, and M.-H. Chen, “DoRA:

Weight-Decomposed Low-Rank Adaptation,” arXiv

preprint arXiv:2402.09353, 2024.

[17] Q. Zhang, M. Chen, A. Bukharin, N.

Karampatziakis, P. He, Y. Cheng, W. Chen, and T.

Zhao, “AdaLoRA: Adaptive Budget Allocation for

Parameter-Efficient Fine-Tuning,” arXiv preprint

arXiv:2303.10512, 2023.

[18] Hugging Face, “Auto classes:

AutoModelForSequenceClassification,” Hugging Face,

[Online]. Available:

https://huggingface.co/docs/transformers/model_doc/au

to#transformers.AutoModelForSequenceClassification.

[Accessed: Feb. 9, 2025].

[19] Hugging Face, “Auto classes:

AutoModelForTokenClassification,” Hugging Face,

[Online]. Available:

https://huggingface.co/docs/transformers/model_doc/au

to#transformers.AutoModelForTokenClassification.

[Accessed: Feb. 9, 2025].

[20] Hugging Face, “Auto classes:

AutoModelForQuestionAnswering,” Hugging Face,

[Online]. Available:

https://huggingface.co/docs/transformers/model_doc/au

to#transformers.AutoModelForQuestionAnswering.

[Accessed: Feb. 9, 2025].

[21] R. Shuttleworth, J. Andreas, A. Torralba, and P.

Sharma, “LoRA vs Full Fine-tuning: An Illusion of

Equivalence,” arXiv preprint arXiv:2410.21228, 2024.

 .1404سال ،دوره سیزدهم، شماره اول ،کاویمجله هوش مصنوعی و داده سلیمی سرتختی و قاسمی

 قیدق میتنظ یهاکیعملکرد تکن سهی: مقایفارس یعیچندزبانه در پردازش زبان طب یزبان یهامدل

 *ی سرتختیمجواد سلی و یرضا قاسمیلع

 .کاشان، کاشان، ایراندانشگاه ،، دانشکده مهندسی برق و کامپیوترگروه هوش مصنوعی

 12/02/2025 پذیرش؛ 17/01/2025 بازنگری؛ 09/12/2024 ارسال

 چکیده:

. در پردازدیم یزبان فارس یعیپردازش زبان طب فیچندزبانه در وظا یزبان یهامدل یبرا قیدق میمختلف تنظ یهاعملکرد روش یابیمقاله به ارز نیا

 قیدق میمناسب تنظ یهاکیتکنبزرگ مواجه هستند، انتخاب یهاآموزش مدل یبرا یو کاف یغن یهاکه با کمبود داده یمنبع مانند فارسکم یهازبان

پژوهش نیا یدارد. هدف اص ل یادیز تیاهم ش وند،یتوس م مدل م فیو ض ع یس یالگوها یریادگیکرده و مانع از یریجلوگ برازششیکه از ب

ست. ا فیوظا کردمدل و عمل یریادگیدر DoRA و Full-Finetune ،LoRA ،AdaLoRA مانند قیدق میتنظ یکردهایرو ییکارا سهیمقا نیمختلف ا

سه وظ هاکیتکن س یعیمختلف پردازش زبان طب فهیدر شخ لیشامل ت ل یفار سات، ت سؤالات متن نامدار یهاتیموجود صیاحسا سخ به اعمال یو پا

متفاوت انجام یپارامتر یهااسیبا س ااتارها و مق Transformer یمعماربر یس ه مدل چندزبانه مبتن یرو ییهاشیمنظور، آزما نیا یاند. براش ده

رمزگشا -پارامتر(با سااتار رمزگذار ونیلیم 300~) mT5-small، پارامتر(با سااتار تنها رمزگذار ونیلیم 168~چندزبانه) BERT-base :شده است

 یازهایاما تفاوت در س ااتار و ن کنندیم یبانیپش ت یفارس انها از زبمدل نیاز ا کیهر پارامتر(با س ااتار تنها رمزگش ا. اردیلیم 1.4~) mGPT و

سبات شان م جی. نتاگذاردیم ریتأث قیدق میمختلف تنظ یهاروش ییها بر کاراآن یم ا کامل، به قیدق میچندزبانه با تنظ BERT-base که مدل دهدین

 یس ازهیتعببر یمبتن فیوظا نیااص ا یهابا توجه به چالش ژهیبه و رد،یگیم یش یپ هیپا یارهایها در معمدل ریاز س ا فیوظا یطور مداوم در تمام

س ربار یکه به طور قابل توجه یدر حال دهند،یرا ارائه م ییبالا یرقابت عملکرد DoRA و LoRA س بک مانند قیدق میتنظ یهاروش ن،یعلاوه بر ا

 یهام العه به درک بهتر روش نی. اکنندیها بهتر عمل ممدل ریمقاله، از س ا نیدر ا ش دهیرفعملکرد مع-ییکارا ازیرا کاهش داده و در امت یم اس بات

در یدس تنییپا فیبزرگ در وظا یزبان یهامدل یریکارگبه یبرا یعمل یهاییو راهنما کندیکمک م ،یپردازش زبان فارس یبرا ژهیبه و ق،یدق میتنظ

 .دهدیمنبع ارائه مکم یهازبان

 .چندزبانه BERT، چندزبانه یزبان یهامدل، منبعکم یهابزرگ در زبان یزبان یهامدل، قیدق میتنظ یهاکیتکن :کلمات کلیدی

