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 This paper evaluates the performance of various fine-tuning methods 

for multilingual language models in Persian natural language 

processing tasks. In low-resource languages like Persian, which suffer 

from a lack of rich and sufficient data for training large models, it is 

crucial to select appropriate fine-tuning techniques that mitigate 

overfitting and prevent the model from learning weak or surface-level 

patterns. The main goal of this research is to compare the 

effectiveness of fine-tuning approaches such as Full-Finetune, LoRA, 

AdaLoRA, and DoRA on model learning and task performance. We 

apply these techniques to three different Persian NLP tasks: sentiment 

analysis, named entity recognition (NER), and span question 

answering (QA). For this purpose, we conduct experiments on three 

Transformer-based multilingual models with different architectures 

and parameter scales: BERT-base multilingual (~168M parameters) 

with Encoder only structure, mT5-small (~300M parameters) with 

Encoder-Decoder structure, and mGPT (~1.4B parameters) with 

Decoder only structure. Each of these models supports the Persian 

language but varies in structure and computational requirements, 

influencing the effectiveness of different fine-tuning approaches. 

Results indicate that fully fine-tuned BERT-base multilingual 

consistently outperforms other models across all tasks in basic 

metrics, particularly given the unique challenges of these embedding-

based tasks. Additionally, lightweight fine-tuning methods like LoRA 

and DoRA offer very competitive performance while significantly 

reducing computational overhead and outperform other models in 

Performance-Efficiency Score introduced in the paper. This study 

contributes to a better understanding of fine-tuning methods, 

especially for Persian NLP, and offers practical guidance for applying 

Large Language Models to downstream tasks in low-resource 

languages. 
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1. Introduction 

Since the introduction of large language models 

(LLMs), these models have become a fundamental 

tool in natural language processing (NLP), 

particularly in text processing, and have 

significantly surpassed traditional methods like 

recurrent neural networks (RNNs) [1] and their 

enhanced versions Like Long short-term memory 

(LSTM) [2]. These new language models, based on 

the attention mechanism [3] and the Transformer 

architecture, enable processing of text while 

preserving long-range dependencies and provide 

better control over NLP challenges such as 

ambiguity. 

Despite the impressive advancements of LLMs, 

several challenges remain in adapting these models 

to various tasks and datasets. One of the main 

issues is the enormous number of parameters in 

these models, making the training process highly 
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resource-intensive. Full training of these large 

models requires extensive computational power, 

long training times, and vast amounts of data, 

which are often beyond the reach of small or 

medium-sized enterprises and individual 

researchers. To mitigate this, language models are 

typically pre-trained on large datasets for general 

NLP tasks such as masked language modeling [4] 

and then made available for further fine-tuning on 

specific tasks. 

Fine-tuning, an essential approach in this context, 

involves adapting pre-trained models to specific 

tasks by adjusting their parameters to optimize 

performance on the given task. Initially, full fine-

tuning of all model parameters was the most 

common approach. However, the high 

computational cost of updating all parameters 

during fine-tuning remained a significant 

challenge. To address this, more efficient fine-

tuning methods, such as LoRA (Low-Rank 

Adaptation), were introduced [5]. These techniques 

aim to reduce hardware and computational costs 

while striving to improve or maintain model 

accuracy, achieving performance comparable to 

fully fine-tuned models. Particularly in resource-

constrained environments, these methods can 

significantly accelerate the fine-tuning process of 

large language models, enabling them to perform 

well across various NLP tasks with limited data. In 

comparison, fully fine-tuning a model requires 

substantially more data to adjust all of its 

parameters, which can be resource-intensive but 

effective in well-resourced settings. 

Persian, as a language with unique characteristics 

such as complex syntax and morphology, a diverse 

vocabulary, and cultural nuances in word 

meanings, poses particular challenges for NLP. 

Additionally, Persian has absorbed vocabulary and 

expressions from various regional dialects and 

underlanguages, and the widespread use of 

Finglish (Persian written in the Latin alphabet) in 

informal communication further complicates text 

processing. Another significant challenge is the 

absence of diacritics (Harekat), which are typically 

omitted in Persian text, unlike in Arabic or English. 

This makes it difficult for NLP models to 

disambiguate words, such as “خِرد” (wisdom) and 

 which are written identically ,(broken) ”خُرد“

without diacritics. Moreover, Persian contains 

many homographs that share the same written form 

and vowel marks but have different meanings 

depending on context. For instance, “مهر” can refer 

to the “sun”, “a month of Mehr in the Persian 

calendar” or “friendship/love”. These features, 

coupled with inherent ambiguities, make the need 

for specialized models and fine-tuning methods 

even more pressing. LLMs, however, are not 

initially trained to handle all languages and often 

focus on languages like English during pre-

training. With the rapid development of 

multilingual language models (Multilingual 

LLMs) [6], it has become possible to process 

multiple languages simultaneously, reducing the 

need to train separate models for each language. 

This shift towards multilingual models comes with 

two primary challenges: first, ensuring that the 

model retains its linguistic capabilities across 

multiple languages, and second, optimizing the 

model to deliver strong performance in low-

resource languages like Persian. By overcoming 

these challenges, multilingual LLMs can leverage 

shared linguistic features and semantic 

representations across languages, enabling better 

understanding and processing of various 

languages. 

This paper explores the performance of these 

models and their fine-tuning methods on Persian 

NLP tasks, examining their effectiveness in 

handling underrepresented languages like Persian 

to achieve improved accuracy, robustness, and 

generalization in various applications, such as 

sentiment analysis, named entity recognition, and 

question answering. Additionally, it discusses the 

trade-offs in computational efficiency when 

employing Parameter-Efficient Fine-Tuning 

methods, highlighting how these techniques 

balance performance with resource constraints. 

 

2. Related Work 

In the comprehensive benchmarking study by 

Abaskohi et al. [7], the efficacy of large language 

models for Persian was explored, with a focus 

primarily on GPT-3.5-turbo, alongside evaluations 

of GPT-4 and OpenChat-3.5. This study assessed 

these models across a variety of Persian language 

tasks, including mathematical problems, 

entailment, sentiment analysis, multiple-choice 

question answering (MCQA) in common and 

literary domains, MCQA focusing on math and 

logic, named entity recognition (NER), reading 

comprehension, and elementary school 

benchmarks. To address the lack of available 

Persian datasets, two new benchmarks were 

introduced, specifically targeting reasoning tasks. 

The findings revealed that while LLMs like GPT-4 

performed exceptionally well in tasks requiring 

reasoning and general knowledge, they often fell 

short when compared to smaller pre-trained models 

that were specifically fine-tuned for particular 

tasks. Additionally, performance improvements 

were observed when test sets were translated to 

English before inputting them into GPT-3.5, 
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further illustrating the challenges faced by LLMs 

in processing the Persian language [7]. 

However, this study primarily relied on closed-

source models like GPT-3.5 and GPT-4, and used 

zero or few-shot learning [8] with prompt 

engineering, without a focus on direct fine-tuning 

of these models. Due to the closed-source nature of 

the models and their massive size, fine-tuning 

GPT-4 was impractical and unfeasible. Instead, the 

study placed greater emphasis on a broad range of 

tasks by generating and embedding relevant data. 

This limitation presents an opportunity in the 

current literature, highlighting the need for further 

research on fine-tuning techniques specifically 

tailored for Persian NLP tasks. Such techniques 

could complement this valuable study and push the 

boundaries of Persian language processing. 

This paper aims to address these gaps by selecting 

fewer tasks but focusing on smaller, open-source 

models, which are more accessible and manageable 

compared to GPT-3.5 or GPT-4. Rather than 

relying on zero or few-shot learning, this study 

emphasizes directly fine-tuning the weights of 

these models using different parameter-efficient 

methods such as LoRA. These methods are 

particularly useful for enhancing model 

adaptability in low-resource settings. 

Consequently, this paper evaluates various fine-

tuning methods, including Full-Finetune, LoRA, 

AdaLoRA, and DoRA, to optimize performance on 

Persian language tasks. In doing so, it aims to 

provide deeper insights into effective strategies for 

underrepresented languages using smaller, open-

source models. 

In the study by Shuttleworth et al. [21], the authors 

examine the structural and behavioral differences 

between Low-Rank Adaptation (LoRA) and full 

fine-tuning methods in adapting pre-trained large 

language models to downstream tasks. Through 

spectral analysis of the models' weight matrices, 

they discover that LoRA introduces “intruder 

dimensions”—new, high-ranking singular vectors 

not present in fully fine-tuned models. These 

intruder dimensions lead to distinct generalization 

behaviors, where LoRA models, despite achieving 

similar performance on target tasks, exhibit 

increased forgetting of the pre-training distribution 

and reduced robustness in continual learning 

scenarios compared to fully fine-tuned models. The 

study concludes that even when LoRA and full 

fine-tuning attain comparable accuracy, they 

access different parts of the parameter space, 

resulting in non-equivalent solutions [21]. 

While our papar also focuses on parameter-

efficient fine-tuning methods, such as LoRA, 

AdaLoRA, and DoRA, for Persian language 

models, it diverges from Shuttleworth et al.'s work 

by concentrating on the application and evaluation 

of these methods in low-resource settings. 

Specifically, we assess the effectiveness of these 

fine-tuning techniques on Persian NLP tasks, 

aiming to optimize performance with minimal 

parameter updates. While low-rank adapters often 

yield results very close to those of fully fine-tuned 

models in many cases, it is important to note— as 

highlighted in Shuttleworth et al.'s paper—that 

while LoRA models may not match the full 

richness of a fully fine-tuned model, they can still 

provide very competitive performance. This trade-

off becomes particularly significant in low-

resource situations, where full fine-tuning may 

require extensive amounts of data and 

computational resources. In such settings, LoRA 

family fine-tuning methods can offer a valuable 

alternative by achieving strong performance with 

fewer data and resources. In contrast, Shuttleworth 

et al. provide a theoretical analysis of the structural 

differences between LoRA and full fine-tuning, 

without a specific focus on underrepresented 

languages or low-resource scenarios. Thus, our 

study complements their findings by applying 

parameter-efficient fine-tuning methods in a 

practical, low-resource context, contributing to the 

broader understanding of their applicability across 

diverse languages and settings. 

 

3. Model Selection 

In this paper, we target three relatively small to 

medium-sized models for fine-tuning: Multilingual 

BERT Base, mT5 Small, and mGPT. All of these 

open-source models are readily accessible from the 

Hugging Face model hub. We believe that these 

three models represent some of the best options 

across a variety of transformer architectures and 

parameters. With this selection, we encompass 

Encoder-only, Encoder-Decoder, and Decoder-

only transformer models and providing a diverse 

range of parameter counts from approximately 170 

million to 1.4 billion parameters. This allows us to 

examine the effects of parameter-efficient methods 

across a spectrum of model sizes and architectures. 

 
3.1. Multilingual BERT Base 

This model is an Encoder-only transformer and a 

variant of Bidirectional Encoder Representations 

from Transformers (BERT) developed by Google. 

It is pre-trained on the top 104 languages, including 

Persian, using a masked language modeling 

(MLM) objective and next sentence prediction 

(NSP) on the largest Wikipedia. With 

approximately 177 million parameters, its lack of a 

decoder limits its capability for generative tasks, 
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such as text generation. However, it is well-suited 

for various downstream tasks, including sequence 

classification, token classification, and question 

answering [4,6]. 

 
3.2. mT5 Small 

This model is an Encoder-Decoder transformer and 

a variant of the Text-to-Text Transfer Transformer 

(T5) from Google [9]. It is pre-trained on 101 

languages, including Persian, using the 

multilingual Colossal Clean Crawled Corpus 

(mC4). The mT5 model converts all NLP tasks into 

a text-to-text format, making it versatile for a wide 

range of applications. It has approximately 170 

million parameters and benefits from both an 

encoder and a decoder, making it an excellent 

choice for embedding and generative tasks [10]. 
 

3.3. mGPT 

This model is a Decoder-only transformer and an 

unofficial, multilingual variant of the Generative 

Pre-training Transformer (GPT-2) originally 

developed by OpenAI [11]. It has been retrained by 

Ai-forever to support multiple languages. It is pre-

trained on 61 languages, including Persian, using 

the multilingual Colossal Clean Crawled Corpus 

(mC4) and Wikipedia. As an autoregressive model, 

mGPT reproduces the GPT-3 architecture using 

sources from GPT-2, incorporating a sparse 

attention mechanism. With around 1.4 billion 

parameters, its lack of an encoder makes it less 

effective for embedding and supervised learning 

tasks but a strong candidate for generative and 

unsupervised learning applications [12]. 

 

4. Evaluation Metrics 

Evaluating the performance of a model requires 

selecting appropriate metrics based on the task. The 

following metrics are used to assess classification 

and text generation tasks. 

 Accuracy: Accuracy measures the proportion 

of correctly predicted instances out of the total 

instances. It is a straightforward metric that 

provides an overall sense of the model’s 

correctness but may not be sufficient when 

dealing with imbalanced datasets. 

 Recall: Recall, also known as sensitivity, 

measures the proportion of correctly identified 

positive instances out of all actual positive 

instances in the dataset. It is useful for 

evaluating how well the model captures all 

relevant instances. 

 Precision: Precision calculates the proportion 

of correctly predicted positive instances out of 

all instances predicted as positive. It indicates 

how reliable the model's positive predictions 

are, reducing the impact of false positives. 

 F1 Score: The F1 Score is the harmonic mean 

of precision and recall. It balances both 

metrics, providing a single value that considers 

both the accuracy of positive predictions and 

the ability to capture all relevant positives. 

 Exact Match (EM): The exact match metric 

assesses whether the predicted answer span 

precisely matches the ground truth answer. A 

high exact match score signifies that the model 

consistently identifies the correct answer 

without discrepancies, serving as a strict 

measure of accuracy in answer extraction. 

 ROUGE (Recall-Oriented Understudy for 

Gisting Evaluation): ROUGE evaluates the 

quality of generated text by comparing it to 

reference texts. The Persian ROUGE score 

functions similarly to the standard ROUGE 

score but is tailored for Persian texts. This 

metric evaluates the overlap between the 

predicted answer and the reference answer, 

focusing on recall, precision, and F1 metrics 

for n-grams. A high ROUGE score indicates 

that the model extracts answers closely aligned 

with human references, reflecting effective 

answering and content relevance. 

In classification tasks with multiple classes, 

standard precision, recall, and F1 scores may not 

reflect performance evenly across all classes, 

especially in imbalanced datasets. Macro-

averaging provides an equal-weighted evaluation 

by computing the metric for each class 

independently and then averaging the results. the 

macro-averaging approach ensures that the 

model’s evaluation is not biased toward dominant 

classes, making it particularly valuable in tasks 

with class imbalance. 

 

5. Tasks and Datasets 

Natural Language Processing covers a wide range 

of tasks that can be addressed by language models. 

However, task selection in this study is constrained 

by both the model architectures and the availability 

of data, especially in low-resource languages like 

Persian. For instance, BERT, as an encoder-only 

transformer, is typically limited to tasks that rely on 

embeddings and supervised learning, rather than 

generative tasks. Additionally, the scarcity of large, 

high-quality datasets in Persian narrows our task 

options. Considering these limitations, we focus on 

three traditional downstream tasks with sufficient 

data availability: Sentiment Analysis, Named 

Entity Recognition (NER), and Span Question 

Answering (QA). These tasks are widely studied 

and have established benchmarks, making them 
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suitable for evaluation across multiple models and 

fine-tuning methods. 

5.1. Sentiment Analysis 

Sentiment Analysis is the process of determining 

the sentiment or opinion expressed in a text, often 

as part of sequence classification tasks in NLP. The 

task typically involves binary classification (e.g., 

Positive or Negative) or multi-class classification 

(e.g., Positive, Negative, or Neutral). In this paper, 

we use the "asparius/Persian-Food-Sentiment" 

dataset from Hugging Face, which is a binary 

sentiment analysis dataset specifically for Persian. 

The dataset consists of 56.7k training samples, 6.3k 

validation samples, and 7k test samples, all of 

which are labeled for sentiment polarity (Positive 

or Negative). Each sample in the dataset contains 

two columns: the label (sentiment) and the text 

[13]. We set the maximum token length 

(MAX_LEN) to 150 tokens, which is sufficient to 

cover almost all texts in the dataset while keeping 

computational efficiency in mind. 

The evaluation of the Sentiment Analysis task is 

conducted using the Accuracy, Macro Recall, 

Macro Precision, Macro F1 Score. 

 

5.2. Named Entity Recognition 

Named Entity Recognition (NER) is a task aimed 

at identifying and classifying named entities (such 

as people, organizations, locations) within a text. 

NER is a multi-class classification task where each 

entity type (e.g., PERSON, LOCATION) is treated 

as a separate class. For this task, we use the 

"mansoorhamidzadeh/Persian-NER-Dataset-

500k" from Hugging Face. Although the full 

dataset contains approximately 500k samples, we 

use a subset of 100k rows for training, 10k for 

validation, and 10k for testing to optimize memory 

usage and training time. Each sample in the dataset 

has three features: ner_tags (a list of named entity 

tags), tokens (a list of tokens in the sample), and 

ner_tags_index (the corresponding index values for 

the NER tags, mapping to specific named entities) 

[14]. To manage memory and processing time due 

to the large input size, we set MAX_LEN to 125 

tokens, which covers the majority of the token lists 

in the dataset while balancing resource usage.  

The following metrics were used to evaluate the 

Named Entity Recognition task: accuracy, macro 

recall, macro precision, and macro F1 score. 

 

5.3. Span Question Answering 
Span-based Question Answering (Span QA) is a 

task where the model is required to predict the start 

and end positions of the answer within a given 

context, based on a provided question. For this 

task, we use the "SLPL/syntran-fa" dataset from 

Hugging Face, which contains approximately 48k 

samples in Persian. We split the dataset into 38k 

rows for training, 4.8k for validation, and 4.8k for 

testing. Each sample consists of three features: 

question, fluent_answer (the context), and 

short_answer (the answer) [15]. For this task, the 

input sequence is a concatenation of the context 

and the question, with a MAX_LEN of 100 tokens. 

This token limit is sufficient to handle most 

samples in this dataset, as the combined length of 

the context and question is generally short. 

Additionally, this dataset is relatively 

straightforward, providing a good baseline for 

evaluating span-based question answering in 

Persian.  

The performances of the Span Question Answering 

task are evaluated by Macro F1 Score, Exact 

Match, Persian ROUGE Score 

 

6. Fine-tuning Methods 

Fine-tuning pre-trained language models is a 

crucial step in this work, as it adapts the rich 

linguistic and contextual knowledge embedded in 

large models for specific downstream tasks. In this 

section, we explore various fine-tuning techniques, 

each offering different trade-offs between 

computational cost and performance. The goal is to 

identify the most appropriate solution for each task 

by balancing efficiency and accuracy. In this paper, 

we pay special attention to modern Low Rank 

Adapter methods. These methods offer significant 

advantages over Adapter-based methods in terms 

of parameter efficiency and integration simplicity. 

By introducing low-rank matrices, these methods 

enables substantial performance improvements 

with fewer trainable parameters, making it 

particularly beneficial for large models with 

limited training resources. Additionally, Low Rank 

Adapter methods can be seamlessly integrated into 

existing architectures without the need for complex 

structural modifications, unlike Adapter-based 

methods, which require inserting additional 

modules between layers. 

 

6.1. Full Fine-Tuning 

Full fine-tuning involves updating all model 

parameters (including both the task-specific head 

and the entire pre-trained language model) during 

training. This method allows the model to fully 

adapt to the target task, potentially leveraging the 

most task-specific knowledge. However, this 

comprehensive updating comes with increased 

computational demands and risks of overfitting, 

particularly on smaller datasets. While it typically 

leads to faster convergence, the large number of 

trainable parameters can cause the model to shift 
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some of its pre-trained linguistic generalization in 

favor of the task at hand. 

6.2. LoRA 

Low-Rank Adaptation (LoRA) is a parameter-

efficient fine-tuning method that significantly 

reduces the number of trainable parameters by 

freezing most of the model and injecting small, 

trainable low-rank matrices, specifically in the 

attention layers. This approach reduces the 

memory and computational cost of fine-tuning 

large models, making it a feasible option when 

resources are limited. LoRA is particularly suited 

for tasks where only subtle adjustments to the pre-

trained model are needed to achieve good 

performance [5]. In our experiments, we employed 

the Hugging Face PEFT (Parameter-Efficient Fine-

Tuning) library, which enables efficient adaptation 

of large models with minimal trainable parameters. 

We used settings: r=8 (rank of the low-rank 

matrices), lora_alpha=32 (scaling factor), and 

lora_dropout=0.1 (to prevent overfitting). 

 

6.3. DoRA 

Weight-Decomposed Low-Rank Adaptation 

(DoRA) addresses the accuracy gap often observed 

between traditional full fine-tuning (FT) and Low-

Rank Adaptation (LoRA) methods in parameter-

efficient fine-tuning (PEFT). While LoRA has 

gained popularity for minimizing additional 

inference costs, it frequently falls short in 

performance compared to FT. DoRA enhances the 

learning capacity of LoRA by employing a novel 

weight decomposition analysis that separates pre-

trained weights into magnitude and direction 

components. This innovative approach allows for 

more effective directional updates while reducing 

the number of trainable parameters. Empirical 

results indicate that DoRA consistently 

outperforms LoRA in fine-tuning across various 

downstream tasks, achieving improved training 

stability without incurring extra inference overhead 

[16]. 

 

6.4. AdaLoRA 

Adaptive Low-Rank Adaptation (AdaLoRA) 

further refines the concept of low-rank adaptation 

by dynamically adjusting the rank at a layer-wise 

level. AdaLoRA improves parameter-efficient 

fine-tuning (PEFT) by addressing the limitations of 

traditional methods like LoRA, which distribute 

incremental update budgets evenly across all 

weight matrices, often leading to suboptimal 

performance. AdaLoRA introduces an adaptive 

mechanism that allocates the parameter budget 

based on the importance of different weight 

matrices. By parameterizing updates through 

singular value decomposition (SVD), AdaLoRA 

effectively prunes unimportant updates while 

avoiding the computational burden of exact SVD. 

This approach results in more efficient use of 

resources and enhances fine-tuning performance, 

particularly in low-budget scenarios. Experiments 

show that AdaLoRA consistently outperforms 

baseline methods on tasks like natural language 

processing, question answering, and language 

generation [17]. Like LoRA and DoRA, we utilized 

the same configuration (r=8, lora_alpha=32, 

lora_dropout=0.1) in our experiments. 

 

7. Results 

In our experiments, we used the PyTorch library 

along with the PyTorch Lightning framework for 

cleaner and more structured implementation. We 

used AdamW optimizer, CrossEntropy loss, and 

the following settings in our experiments: 

 Batch size: 32 

 Early stopping: Implemented with a fixed 

patience limit on validation step to prevent 

overfitting 

 Random seed: 42 

We utilized Google Colab Pro for our experiments, 

which provided access to NVIDIA A100 GPUs 

With 40GB of Video Random Access Memory 

(VRAM), a high-speed GPU memory essential for 

handling large models and datasets in deep 

learning. The CPU configuration included an Intel 

Xeon processor with 4 virtual CPUs (vCPUs), and 

the system was equipped with approximately 25GB 

of RAM. 

During training, we fed 50% of the training data 

randomly in each epoch, simulating a dynamic 

sampling approach that prevents the model from 

seeing the same data order in every epoch. This 

technique aims to improve generalization and 

reduce the risk of overfitting, especially when 

paired with early stopping. 

Tables 1, 2, 3, 5, 6, 7, 9, 10, and 11 provide a 

detailed comparison of the number of trainable and 

non-trainable parameters for each model under 

different fine-tuning methods. These tables 

highlight the reduction in trainable parameters 

when using parameter-efficient fine-tuning 

methods and computational resources. 

The final performance of each model was 

evaluated based on specific metrics for each task. 

The results in Table 4, 8, and 12 summarize the 

evaluation after the training process (either after 

the set number of epochs or an early stopping 

mechanism). 
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7.1. Sentiment analysis task results 

For the sentiment analysis task, we fine-tuned 

using a simple classification head. The classifier 

consists of two output neurons, utilizing the state 

of the last token from the LLM's output, following 

the standard approach for 

“SequenceClassification” [18]. We used the 

following hyper-parameters in our experiments: 

 Learning rate: 2e-5 

 Number of epochs: 5 

 Patience (Number of waits with no 

improvement): 1  

Table 1. Number of parameters and computational 

resources for Multilingual BERT Base in Sentiment 

Analysis task 

 Parameters and Requirement 

Method Trainable  Non-

Trainable 
Total VRAM 

Full fine-

tune 
177M 0 177M 6.20GB 

LoRA 326K 177M 177M 3.50GB 
DoRA 344K 177M 177M 4.17GB 
AdaLoRA 474K 177M 177M 3.42GB 

 

Table 2. Number of parameters and computational 

resources for mT5 Small in Sentiment Analysis task 

 Parameters and Requirement 

Method Trainable  Non-

Trainable 
Total VRAM 

Full fine-
tune 

172M 0 172M 5.40GB 

LoRA 344K 172M 172M 8.00GB 

DoRA 362K 172M 172M 6.00GB 
AdaLoRA 1.9M 172M 174M 6.40GB 

 

Table 3. Number of parameters and computational 

resources for mGPT 1.4B in Sentiment Analysis task 

 Parameters and Requirement 

Method Trainable  Non-

Trainable 
Total VRAM 

Full fine-

tune 
- - - - 

LoRA 1.6M 1.4B 1.4B 27.3GB 

DoRA 1.7M 1.4B 1.4B 32.8GB 

AdaLoRA 2.4M 1.4B 1.4B 27.2GB 
 

Table 4.  Post-training metrics on test data in Sentiment 

Analysis task 

Model      Accuracy F1_score Precision Recall 
BERT full fine-

tunea 
0.8665 0.8564 0.9265 0.7961 

BERT LoRA 0.8485 0.8407 0.8865 0.7994 

BERT DoRA 0.8468 0.8377 0.8908 0.7905 

BERT 
AdaLoRA 

0.6978 0.6928 0.7044 0.6815 

mT5 full fine-

tunea 

0.8555 0.8511 0.8781 0.8257 

mT5 LoRA 0.7904 0.7795 0.8221 0.7411 

mT5 DoRA 0.7882 0.7770 0.8205 0.7378 

mT5 AdaLoRA 0.4957 0.6509 0.4977 0.9403 
mGPT LoRA 0.8427 0.8332 0.8868 0.7857 

mGPT DoRA 0.8418 0.8444 0.8307 0.8585 

mGPT 

AdaLoRA 

0.7194 0.7050 0.7431 0.6706 

a The model is over-fitted and the early stopping mechanism is invoked. 

 

7.2. Named Entity Recognition task result 

For NER task, we employed a fine-tuning strategy 

using a classification head that contains 41 output 

neurons, corresponding to the 41 distinct entity 

classes present in the dataset. This approach 

follows the standardized methodology for 

“TokenClassification” [19], where each token in 

the input sequence is classified into one of the 41 

classes (40 entities classes and a non-entity class). 

The classification head receives the token-level 

representations generated by the pre-trained 

language model and uses these to predict the 

appropriate class for each token. We used the 

following hyper-parameters in our experiments: 

 Learning rate: 2e-5 

 Number of epochs: 6 

 Patience: 2 

Table 5. Number of parameters and computational 

resources for Multilingual BERT Base in Named 

Entity Recognition task 

 Parameters and Requirement 

Method Trainable

  
Non-

Trainable 
Total VRAM 

Full fine-

tune 
177M 0 177M 6.00GB 

LoRA 296K 177M 178M 3.80GB 

DoRA 314K 177M 178M 3.76GB 

AdaLoRA 444K 177M 178M 3.20GB 
 

Table 6. Number of parameters and computational 

resources for mT5 Small in Named Entity 

Recognition task 

 Parameters and Requirement 

Method Trainable

  
Non-

Trainable 
Total VRAM 

Full fine-

tune 
146M 0 146M 4.80GB 

LoRA 135K 146M 147M 2.80GB 
DoRA 141K 146M 147M 2.50GB 

AdaLoRA 888K 146M 147M 2.70GB 
 

Table 7. Number of parameters and computational 

resources for mGPT 1.4B in Named Entity 

Recognition task 

 Parameters and Requirement 

Method Trainable  Non-

Trainable 
Total VRAM 

Full fine-
tune 

- - - - 

LoRA 1.7M 1.4B 1.4B 23.8GB 

DoRA 1.8M 1.4B 1.4B 30.7GB 
AdaLoRA 2.4M 1.4B 1.4B 23.9GB 

 

7.3. Question Answering task result 

For the Span Question Answering (QA) task, we 

employed a fine-tuning strategy using a 

classification head with 2 output neurons, 

corresponding to the positions of the start and end 

tokens in the input sequence. This approach 
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follows the standardized methodology for 

extractive “QuestionAnswering” [20], where the 

model identifies the span of text within the input 

passage that contains the answer. The classification 

head receives the token-level representations and 

uses these to predict the start and end positions of 

the answer span in token level. We used the 

following hyper-parameters in our experiments: 

Learning rate: 1e-5, Number of epochs: 10, 

Patience: 5. 
 

Table 8. Post-training metrics on test data in Named 

Entity Recognition task. 

Model      Accuracy F1_score Precision Recall 
BERT full fine-

tunea 
0.9155 0.5512 0.6349 0.5366 

BERT LoRA 0.8755 0.2464 0.3566 0.2183 

BERT DoRA 0.8774 0.2592 0.4040 0.2326 

BERT 
AdaLoRA 

0.8507 0.1919 0.3515 0.1669 

mT5 full fine-

tunea 

0.8972 0.3545 0.4861 0.3058 

mT5 LoRA 0.8265 0.0943 0.1282 0.0845 

mT5 DoRA 0.8244 0.0913 0.1307 0.0823 

mT5 AdaLoRA 0.8002 0.0555 0.0765 0.0518 
mGPT LoRA 0.8564 0.2725 0.4893 0.2269 

mGPT DoRA 0.8572 0.2860 0.4304 0.2475 

mGPT 
AdaLoRA 

0.8398 0.2468 0.4117 0.2032 

a The model is over-fitted and the early stopping mechanism is invoked. 

Table 9. Number of parameters and computational 

resources for Multilingual BERT Base in Question 

Answering task. 

 Parameters and Requirement 

Method Trainable

  
Non-

Trainable 
Total VRAM 

Full fine-

tune 
177M 0 177M 5.30GB 

LoRA 296K 177M 177M 2.60GB 
DoRA 314K 177M 177M 2.98GB 

AdaLoRA 444K 177M 177M 2.50GB 
 

Table 10. Number of parameters and computational 

resources for mT5 Small in Question Answering task. 

 Parameters and Requirement 

Method Trainable

  
Non-

Trainable 
Total VRAM 

Full fine-
tune 

172M 0 172M 6.20GB 

LoRA 345K 172M 172M 3.57GB 

DoRA 363K 172M 172M 4.00GB 
AdaLoRA 1.9M 172M 174M 4.45GB 

 

Table 11. Number of parameters and computational 

resources for mGPT 1.4B in Question Answering 

task. 

 Parameters and Requirement 

Method Trainable

  
Non-

Trainable 
Total VRAM 

Full fine-
tune 

- - - - 

LoRA 1.6M 1.4B 1.4B 20.0GB 

DoRA 1.7M 1.4B 1.4B 24.6GB 

AdaLoRA 2.4M 1.4B 1.4B 20.1GB 
 

Table 12. Post-training metrics on test data in Question 

Answering task. 

Model      F1_score Rouge Exact_match 
BERT full fine-tunea 0.9684 0.9952 0.9881 
BERT LoRA 0.9010 0.9875 0.9617 
BERT DoRA 0.9497 0.9852 0.9611 

BERT AdaLoRA 0.8255 0.9458 0.8493 

mT5 full fine-tunea 0.9098 0.9884 0.9679 
mT5 LoRA 0.1696 0.2886 0.0704 

mT5 DoRA 0.1864 0.3124 0.0762 

mT5 AdaLoRA 0.0130 0.0785 0.0018 
mGPT LoRA 0.4492 0.6476 0.3633 

mGPT DoRA 0.3747 0.6607 0.3550 

mGPT AdaLoRA 0.2955 0.5388 0.1881 
a The model is over-fitted and the early stopping mechanism is invoked. 

8. Discussion 

8.1. Results overview 

In this section, we discuss the results obtained 

across various fine-tuning methods and models, 

focusing on model sizes, VRAM consumption, and 

learning performance. Despite using the same 

PEFT configurations across models, VRAM usage 

varied across different fine-tuning techniques and 

tasks due to the distinct approaches these methods 

employ. As expected, full fine-tuning consumed 

the most VRAM. Among the parameter-efficient 

methods, DoRA utilized more VRAM than LoRA, 

while AdaLoRA consumed the least. However, 

when examining the number of learned parameters, 

AdaLoRA generally outnumbered the other 

methods, followed by DoRA, with LoRA learning 

the fewest parameters. 

At first glance, AdaLoRA's ability to learn more 

parameters while using less memory seems 

promising. However, our results show that 

AdaLoRA underperformed across all tasks and 

models, sometimes failing to learn effectively, as 

indicated by near-zero progress in certain cases. 

While not definitive, a likely explanation is that 

AdaLoRA’s adaptive parameter allocation may 

sometimes underestimate the importance of key 

weight matrices, leading to an underrepresentation 

of critical features. Additionally, its SVD-based 

parameterization introduces approximations that 

might remove subtle yet important signal details, 

which can be especially impactful in low-budget 

settings. Finally, the sensitivity of its adaptive 

mechanism to hyperparameter settings and model-

specific factors could result in inconsistent 

improvements compared to more uniformly 

distributing methods like LoRA and DoRA. In 

contrast, DoRA consistently yielded better results 

than both LoRA and AdaLoRA, and while its 

performance was not as strong as full fine-tuning, 

it still provided a reasonable trade-off between 

parameter efficiency and memory consumption. 

Throughout the experiments, we used fixed hyper-

parameters for all tasks to maintain a controlled 
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comparison across models and methods. While 

tuning hyper-parameters individually for each 

model might have improved performance, we 

opted for fixed settings to ensure fairness in our 

comparisons. As shown in Tables 4, 6, and 12, full 

fine-tuning delivered the best results in all tasks. 

However, it exhibited signs of early overfitting, 

which suggests that training could be halted earlier. 

On the other hand, models trained with DoRA and 

LoRA did not show signs of overfitting, which is 

promising, as it indicates these models could 

continue to improve with additional training while 

significantly reducing computational resources. 

When examining model performance, BERT 

consistently outperformed all other models across 

tasks, regardless of the fine-tuning method. The 

full fine-tuned mT5 was competitive with the 

LoRA and DoRA versions of BERT, but it did not 

reach the performance of the full fine-tuned BERT. 

Moreover, the parameter-efficient versions of mT5 

generally performed worse than their BERT 

counterparts, and the learning speed of mT5 was 

noticeably slower compared to BERT. 

mGPT, on the other hand, showed significant 

improvement across metrics, but due to its 

substantially larger number of parameters, the 

allocated number of epochs was insufficient for 

thorough training. This under-fitting was evident in 

the validation and test loss curves. Despite this, we 

believe mGPT has the potential to surpass BERT 

given enough training time, although its 

computational requirements are far higher. In our 

experiments, parameter-efficient versions of 

mGPT required between 20GB to 40GB of VRAM 

for training, and we were unable to fully fine-tune 

mGPT on an A100 GPU with 40GB VRAM due to 

these demands. 

 

8.2. Performance-Efficiency Score 

While metrics like F1-score, accuracy, precision, 

etc are essential for evaluating task-specific 

performance, they do not account for the 

significant variations in computational resources 

required by different models. The trade-off 

between model performance and computational 

efficiency is a crucial consideration, especially 

with the increasing deployment of large-scale pre-

trained models. To address this gap, we propose the 

Performance-Efficiency Score (PES) —a novel 

metric designed to capture both model 

effectiveness and resource efficiency. PES 

integrates traditional performance metrics with the 

total number of trainable parameters and VRAM 

usage, providing a more holistic evaluation. By 

incorporating a logarithmic scaling of resource 

usage, PES ensures that models with excessive 

resource demands are appropriately penalized, 

while still rewarding smaller, more efficient 

models that achieve competitive performance. A 

possible formula and structure for it is shown in 

Equations (1): 

𝑃𝐸𝑆 =  
∑ 𝑊𝑖𝑀𝑖𝑖

log 𝑃 × log 𝑉 × ∑ 𝑊𝑖𝑖

 (1) 

Where 𝑀𝑖 represents task performance metrics 

such as F1 score, accuracy, or any other relevant 

evaluation metric. The impact coefficient 𝑊𝑖 is 

dynamically adjusted according to the relative 

importance and contribution of each metric to the 

specific task, ensuring a balanced evaluation across 

different performance dimensions. 𝑃 denotes the 

number of LLM parameters in millions, and 𝑉 

represents the VRAM usage in gigabytes. 

For the Sentiment Analysis (SA) task, we assigned 

an equal weight of 2.5 to each metric, as it is a 

binary as symmetric classification problem. For 

Named Entity Recognition (NER), we used a 

weight of 1 for accuracy, 3 for F1 score, 2 for 

precision, and 4 for recall, prioritizing the correct 

identification of entities rather than non-entities, 

given that the majority of tokens are non-entities. 

In the Question Answering (QA) task, we applied 

a weight of 3 to the F1 score, 2 to the ROUGE 

score, and 5 to exact match, as more stringent 

metrics like exact match hold greater significance. 

The results are shown in Figure 1. 

 

Figure 1. Performance-Efficiency Score for Models 

BERT, mT5, and mGPT in tsaks Sentiment Analysis, 

Named Entity Recognition, and Question Answering with 

fine-tuning methods full fine-tuning, LoRA, DoRA, and 

AdaLoRA. 

 

Based on the results obtained across all tasks, it is 

evident that BERT fine-tuned with LoRA, 

followed closely by DoRA, emerges as the most 

effective and resource-efficient approach. LoRA 

demonstrates a strong balance between 

performance and computational efficiency, 
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offering competitive accuracy with a significantly 

lower number of trainable parameters and reduced 

VRAM usage compared to full fine-tuning. DoRA, 

while slightly more resource-intensive than LoRA, 

shows comparable performance and adapts well to 

the complexity of the tasks, making it a viable 

alternative where more flexibility is required. 

 

9. Conclusion and Future work 

In this paper, we evaluated the performance of 

several parameter-efficient fine-tuning methods—

LoRA, DoRA, and AdaLoRA—on three different 

tasks: Sentiment Analysis, Named Entity 

Recognition (NER), and Question Answering 

(QA). Our results demonstrate that full fine-tuning 

consistently offers the highest performance in 

terms of accuracy and task-specific metrics across 

all tasks. However, parameter-efficient methods 

like LoRA and DoRA provide competitive results 

while significantly reducing computational costs, 

particularly in terms of the number of trainable 

parameters and VRAM consumption. 

BERT-based models, particularly with LoRA and 

DoRA fine-tuning, emerged as the most efficient 

solutions, balancing performance and resource 

efficiency. This is especially important for 

resource-constrained environments, where full 

fine-tuning is impractical. Our findings show that 

lightweight fine-tuning methods like LoRA and 

DoRA offer the best overall balance, with LoRA 

being the most resource-efficient while 

maintaining competitive performance, followed 

closely by DoRA, which showed slightly better 

results at a marginally higher resource cost. 

In addition, we introduce the Parameter Efficiency 

Score (PES) to quantify the trade-offs between 

performance and computational resources. PES 

allowed us to evaluate and compare the efficiency 

of different models and fine-tuning methods by 

incorporating both task performance metrics and 

resource usage. Our results show that LoRA and 

DoRA outperform other methods in terms of PES, 

making them highly attractive for low-resource 

settings. 

Furthermore, we suggest that for downstream and 

embedding-based tasks in low-resource 

environments, using small Encoder models like 

BERT with full fine-tuning is a highly effective 

option. For scenarios involving larger models, 

where hardware limitations are a concern, using 

LoRA family adapters, especially LoRA and 

DoRA, proves to be a very efficient approach. 

However, it is crucial to consider the potential 

trade-offs such as longer training times and the 

need for more data to avoid under-fitting when 

using these efficient fine-tuning methods. These 

findings can guide future efforts in adapting large 

language models for resource-constrained 

environments. 

In future work, we aim to explore additional 

parameter-efficient fine-tuning methods and revisit 

existing techniques, applying them to other 

multilingual language models with hyper-
parameters and training settings specifically 

optimized for each model and method to achieve 

optimal performance. We also plan to improve 

AdaLoRA's performance by refining its adaptive 

parameter allocation and reducing approximation 

errors resulting from the SVD-based 

parameterization. These refinements will facilitate 

more accurate identification of critical weight 

matrices and contribute to more robust outcomes. 

Our approaches will be evaluated on more complex 

tasks and larger datasets. Additionally, expanding 

our research to include languages beyond Persian 

and the multilingual models already tested will 

allow us to generalize our findings across diverse 

linguistic contexts. To further enhance the model's 

practical applicability, future evaluations will 

involve testing on completely unseen datasets. We 

also intend to investigate the impact of fine-tuning 

methods on the interpretability of Persian-specific 

linguistic structures, such as morphology and 

syntax, to gain a deeper understanding of how these 

techniques influence language representation and 

task-specific performance. Furthermore, we aim to 

enhance the PES metric by incorporating additional 

factors related to hardware resource consumption. 

Specifically, we will consider factors such as 

training time, energy usage, memory requirements, 

and GPU utilization. These considerations will 

enable a more comprehensive and accurate 

assessment of model efficiency. By integrating 

these factors, we seek to ensure that the PES metric 

evaluates not only the model's performance in 

terms of accuracy and parameters but also provides 

a more holistic view of the computational resources 

required to achieve that performance. These 

improvements will be tested and incorporated into 

PES in future experiments to ensure proper 

accounting of resource efficiency when evaluating 

model performance. This will offer a more well-

rounded perspective on both performance and 

resource optimization in practical applications. 
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 قیدق میتنظ یهاکیعملکرد تکن سهی: مقایفارس یعیچندزبانه در پردازش زبان طب یزبان یهامدل

 

 *ی سرتختیمجواد سلی و یرضا قاسمیلع

 .کاشان، کاشان، ایراندانشگاه  ،، دانشکده مهندسی برق و کامپیوترگروه هوش مصنوعی

 12/02/2025 پذیرش؛ 17/01/2025 بازنگری؛ 09/12/2024 ارسال

 چکیده:

. در پردازدیم یزبان فارس    یعیپردازش زبان طب فیچندزبانه در وظا یزبان یهامدل یبرا قیدق میمختلف تنظ یهاعملکرد روش یابیمقاله به ارز نیا

 قیدق میمناسب تنظ یهاکیتکنبزرگ مواجه هستند، انتخاب  یهاآموزش مدل یبرا یو کاف یغن یهاکه با کمبود داده یمنبع مانند فارسکم یهازبان

پژوهش  نیا یدارد. هدف اص  ل یادیز تیاهم ش  وند،یتوس  م مدل م فیو ض  ع یس     یالگوها یریادگیکرده و مانع از  یریجلوگ برازششیکه از ب

ست. ا فیوظا کردمدل و عمل یریادگیدر  DoRA و  Full-Finetune ،LoRA ،AdaLoRA مانند قیدق میتنظ یکردهایرو ییکارا سهیمقا  نیمختلف ا

سه وظ هاکیتکن س یعیمختلف پردازش زبان طب فهیدر  شخ لیشامل ت ل یفار سات، ت سؤالات متن  نامدار یهاتیموجود صیاحسا سخ به  اعمال  یو پا

متفاوت انجام  یپارامتر یهااسیبا س  ااتارها و مق Transformer یمعماربر  یس  ه مدل چندزبانه مبتن یرو ییهاشیمنظور، آزما نیا یاند. براش  ده

رمزگشا -پارامتر( با سااتار رمزگذار ونیلیم 300~) mT5-small،  پارامتر( با سااتار تنها رمزگذار ونیلیم 168~چندزبانه ) BERT-base :شده است

 یازهایاما تفاوت در س  ااتار و ن کنندیم یبانیپش  ت یفارس   انها از زبمدل نیاز ا کیهر  پارامتر( با س  ااتار تنها رمزگش  ا. اردیلیم 1.4~) mGPT و

سبات شان م جی. نتاگذاردیم ریتأث قیدق میمختلف تنظ یهاروش ییها بر کاراآن یم ا کامل، به  قیدق میچندزبانه با تنظ BERT-base که مدل دهدین

 یس  ازهیتعببر  یمبتن فیوظا نیااص ا یهابا توجه به چالش ژهیبه و رد،یگیم یش  یپ هیپا یارهایها در معمدل ریاز س  ا فیوظا یطور مداوم در تمام

س   ربار  یکه به طور قابل توجه یدر حال دهند،یرا ارائه م ییبالا یرقابت عملکرد DoRA و LoRA س   بک مانند قیدق میتنظ یهاروش ن،یعلاوه بر ا

 یهام العه به درک بهتر روش نی. اکنندیها بهتر عمل ممدل ریمقاله، از س  ا نیدر ا ش  دهیرفعملکرد مع-ییکارا ازیرا کاهش داده و در امت یم اس  بات

در  یدس  تنییپا فیبزرگ در وظا یزبان یهامدل یریکارگبه یبرا یعمل یهاییو راهنما کندیکمک م ،یپردازش زبان فارس   یبرا ژهیبه و ق،یدق میتنظ

 .دهدیمنبع ارائه مکم یهازبان

 .چندزبانه BERT، چندزبانه یزبان یهامدل، منبعکم یهابزرگ در زبان یزبان یهامدل، قیدق میتنظ یهاکیتکن :کلمات کلیدی

 


