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 The underground mining operations at the Obuasi Gold Mine rely heavily 
on the stability of hard rock pillars for safety and productivity. The traditional 
empirical and numerical methods for predicting pillar stability have 
limitations, prompting the exploration of advanced machine learning 
techniques. Hence, this work investigates the applicability of stacked 
generalization techniques for predicting the stability status of hard rock pillars 
in underground mines. Four stacked models were developed, using Gradient 
Boosting Decision Trees (GBDTs), Random Forest (RF), Extra Trees (ET), 
and Light Gradient Boosting Machines (LightGBMs), with each model taking 
turns as the meta-learner, while the remaining three models acted as the base 
learners in each case. The models were trained and tested on a dataset of 201 
pillar cases from the AngloGold Ashanti Obuasi Mine in Ghana. Model 
performance was evaluated using classification metrics, including accuracy, 
precision, recall, F1-score and Matthews Correlation Coefficient (MCC). The 
RF-stacked model demonstrated the best overall performance, achieving an 
accuracy of 93.44%, precision of 94.27%, recall of 93.44%, F1-score of 
93.59%, and MCC of 88.90%. Feature importance analysis revealed pillar 
depth and pillar stress as the most influential factors affecting pillar stability 
prediction. The results indicate that stacked generalization techniques, 
particularly the RF-stacked model, offer promising capabilities for predicting 
hard rock pillar stability in underground mining operations. 
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1. Introduction 

Today, underground mining techniques, like 
self-supported, supported, and caving methods, 
are widely employed as mineral deposits are 
found at greater depths. However, these 
methods can lead to ground subsidence, and 
significant damage to surface structures. 
Therefore, choosing the right underground 
mining method to minimise subsidence is 
essential. Among self-supported techniques, 
partial extraction methods play a key role in 
controlling subsidence [1]. Room and pillar 
mining, a partial extraction method, is effective 
for deposits that are shallow to deep and flat, 
containing durable ores like coal, metals, and 
building stones [2]. In this approach, some ore 

is left as pillars to support the back. The stability 
of these pillars is crucial for their design, as 
instability can lead to serious incidents in 
underground mines such as pillar failures, 
collapses, injuries, fatalities, equipment 
damage, and lost work hours [3]. 

In the past few years, hard rock pillar 
stability has attracted much attention in 
geotechnical engineering and mining. As 
mineral resources get harder to reach, pillar 
failure can have severe economic and 
environmental effects. The problem is not just 
in predicting the stability of these geological 
structures but also in finding ways to increase 
prediction accuracy. Proper management of 
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pillar stability helps keep the surrounding rock 
solid, preventing dangerous collapses that could 
endanger miners and equipment. Hard rock 
pillars can be considered as in situ rock between 
two or more underground openings, which may 
be of any shape and size, and splayed at the top 
and bottom to increase the support area on the 
roof and floor [4]. Martin and Maybee [4] 
reported that if a single pillar accidentally fails, 
the load carried by that pillar is distributed to 
the adjacent pillars, causing them to be 
overloaded. They further suggested that this 
continuous overloading process could give rise 
to an unstable dissemination of the load to the 
pillars, causing areas of the mine to collapse. It 
can now be said that most underground mining 
methods use pillars to extract ore without 
harming employees, thereby deeming it 
necessary to predict the stability of hard rock 
pillars. Hard rock pillar stability can be 
predicted using different methods, which are 
grouped into empirical, numerical, and 
machine-learning techniques. Different 
empirical techniques have been developed over 
time to predict the stability of pillars made of 
hard rock. Several researchers have discussed 
such empirical methods. Some of the reviewed 
articles are the linear shape effect formula 
discussed by Bieniawski et al.[5] and York [6], 
the size effect formula discussed by Hustrulid 
[7], the Hoek–Brown formula by Hoek et al. 
[8], and the power shape effect formula 
discussed by Salamon et al. [9], Hedley and 
Grant [10] and Bieniawski [11]. Pillar stability 
can be assessed by calculating the factor of 
safety (FoS), which is defined as the ratio of the 
average strength to the average stress 
experienced by the pillar [12]. Theoretically, if 
the FoS exceeds one, the pillar is regarded as 
stable. Research has indicated that pillars 
exhibiting a safety factor exceeding 1 may still 
experience failure due to irregular shapes, 
unpredictable material characteristics, and 
variations in mining practices [13]. Empirical 
approaches rely on the interpretation of data 
gathered from current or finished projects found 
in existing databases. As a result, generalising 
the findings beyond the characteristics of the 
initial site proves to be difficult [12]. 

Although empirical formulas are used to 
estimate pillar stress, they consider fewer 
factors, and have been validated at only a 
limited number of engineering sites. As a result, 
they may not be applicable in environments that 
differ from the original conditions [14]. 

When numerical methods are applied to 
assess pillar stability, they facilitate 
consideration of complex boundary conditions 
and material attributes. These techniques offer 
an in-depth analysis of deformation, stress 
distribution, and likely failure mechanisms that 
occur within the rocks and pillars. Numerical 
methods include the Finite Element Method 
(FEM) [15], Discrete Element Method (DEM) 
[15], Boundary Element Method (BEM) [16], 
and Finite Difference Method (FDM).  

Numerical modelling techniques are more 
advantageous than the empirical methods in 
complex stress conditions. Some researchers 
have used numerical simulation methods to 
examine pillar stress, stability, and other 
properties [17-19]. However, despite being 
cost-effective and relatively simple to use. 
These methods involve several assumptions 
such as simplified boundary conditions and 
material properties, which can lead to idealised 
results that may not accurately reflect reality. 
Furthermore, the results and their accuracy can 
vary depending on the structural discretisation 
methods used, which means the predictions 
may not be reliable. Hence, applying these 
specially developed models to different 
situations can be challenging [14]. Also the 
anisotropic characteristics of rock masses, 
along with their complex non-linear behavior, 
pose significant challenges in thoroughly 
analysing the model inputs, and constitutive 
equations in numerical simulation approaches, 
thereby restricting the effectiveness of the 
results generated through this method [20]. 
Recently, machine learning techniques have 
shown substantial capability in predicting the 
stability of pillars with higher precision than 
that of traditional methods. This improvement 
is owing to an increase in data accessibility 
involving pillars [20]. Machine learning 
comprises modifications of systems involved in 
tasks associated with Artificial Intelligence (Al) 
including recognition, diagnosis, planning, 
robot control, and prediction, which may 
involve improvements to existing systems or 
the creation of entirely new ones [21]. The 
stability of crown pillars in large excavations 
was predicted by Tawadrous et al. [22] using 
Artificial Neural Networks (ANN). Their 
findings showed that the cloud model discussed 
by Ding et al. [23], presents a workable and 
trustworthy method for a thorough assessment 
of pillar stability. While Artificial Intelligence 
(AI) has been utilised in this domain, alternative 
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techniques remain underexplored. One such 
approach is Stacked Generalization, introduced 
by Wolpert [24]. Stacked generalization is a 
meta-learning technique that integrates multiple 
base-level models with a higher-level model to 
enhance predictive accuracy. This method has 
been successfully applied across various 
machine learning tasks, including classification, 
regression [25], and unsupervised learning [26]. 
The fundamental principle of Stacked 
generalization lies in its ability to analyse and 
mitigate the biases of base models concerning a 
given dataset [24]. By leveraging the 
complementary strengths of multiple well-
performing models, this approach improves 
overall predictive performance. In classification 
and regression tasks, Stacked generalization 
effectively combines the predictive capabilities 
of different models, yielding superior results 
compared to any single model within the 
ensemble. This study employs four advanced 
stacked models using Gradient Boosted 
Decision Trees (GBDT), Random Forest (RF), 
Extra Trees (ET), and LightGBM as meta-
learners. Each of these models takes turns 
serving as the meta-model, while the remaining 
models function as base learners. These models 
were chosen for their complementary strengths: 
GBDT’s iterative error minimisation, RF’s 
robustness against overfitting, ET’s variance 
reduction, and LightGBM’s scalability for large 
datasets. By employing this ensemble learning 
approach, the study aims to enhance predictive 
accuracy and reliability, ultimately contributing 
to improved decision-making in underground 
mining stability assessments. By leveraging 
these models in a stacked generalization 
framework, this study aims to optimise 
predictive performance by combining their 
individual strengths and mitigating potential 
biases inherent in single-model approaches. 

2. Materials and Methods   
2.1. Overview of research location   

The Obuasi Gold Mine of AngloGold 
Ashanti is an underground mine engaged in 
gold mining and recovery activities in the 
Ashanti Region of the Republic of Ghana. The 
mining process began in 1897, and reached its 
end in the last quarter of 2014. Although 
production was stopped, some sections of the 
mine remained operational under restricted 
conditions, which included the development of 

an underground decline [27]. It is 
approximately 60 km south of Kumasi [27] and 
200 km northwest of Accra. The primary means 
of accessing the mine are through shafts and a 
single access decline consisting of inter-level 
development ranging from 15 to 30 m. This 
decline, situated at the southern extremity of the 
mine, is designed to extend to a depth of 
approximately 1500 m [27]. Figure 1 displays 
the mine's location on a Ghana map. 

2.2. Dataset description 

This study utilised secondary data, comprising 
201 datasets sourced from AngloGold Ashanti 
Ghana Limited, located at the Obuasi. The data 
consisted of the Pillar depth, width (W),height 
(H), width height ratio (W/H), Uniaxial 
Compressive Strength (UCS), Rock Mass Rating 
(RMR), pillar stress, and Pillar status. The Pillar 
depth, H, and W were measured in metres, W/H, 
and RMR was dimensionless, UCS and Pillar 
stress were in MPa, and the status can be classified 
as failed, stable, or unstable. Also since the study 
involves classification with a discrete output 
variable, a correlation analysis was performed 
only between input parameters to understand their 
relationships and potential multicollinearity. 
Figure 2 presents the correlation matrix of the 
input parameters, while Figure 3 shows the 
distribution of pillar stability statuses in the 
dataset. Each of the 201 data points was classified 
into one of three categories, failed, stable, or 
unstable, which were collectively termed the 
status of the pillars. For the 201 data points, 70% 
(140) were used to train the stacked models and 
30% (61) were used to test the model. Tables 1 
and 2 provide an overview of the collected dataset 
from AngloGold Ashanti. Table 1 presents a 
sample of the collected database, while Table 2 
summarises the statistical description of the 
dataset, offering key insights into its distribution 
and characteristics. The pillar stress values used in 
this study were obtained from AngloGold Ashanti 
Obuasi Mine's geotechnical database, where stress 
is determined through a combination of tributary 
area theory and numerical modelling verification. 
At the mine, vertical pillar stress (σp) is calculated 
using σp = γh(W + B)(L + B)/WL, where γ is the 
unit weight of overburden rock (0.027 MN/m³), h 
is depth below surface, W is pillar width, L is 
pillar length, and B is mining room width. These 
theoretical calculations are verified using 
FLAC3D numerical modelling that incorporates 
the actual mining geometry, rock mass properties, 
and sequential excavation effects.  
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Figure 1. Location of the AngloGold Ashanti Obuasi Mine. 

 
Figure 2. Statistical summary of the dataset. 
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Figure 3. Bar chart showing the distribution of the pillar status. 

Table 1. Sample of the collected database. 
Pillar depth W H W/H RMR UCS (U) Pillar stress (P) Status 

621 4 3 1.3 88 239 82 Failed 
163 5 3 2.0 88 93 39 Unstable 
283 23 32 0.7 73 99 30 Unstable 
448 10 5 1.8 88 309 45 Stable 
859 5 5 1.0 88 229 36 Stable 
602 3 1 2.4 68 171 98 Failed 
188 13 22 0.6 53 93 47 Failed 
354 7 4 1.7 68 93 34 Stable 
362 9 3 2.7 88 169 55 Stable 
457 4 4 1.0 88 93 58 Failed 

Table 2. Statistical description of the dataset from AngloGold Ashanti. 

Parameter Unit Statistic 
Min Max Mean Std dev Mode 

Pillar depth m 91 922 383.82 209.80 279 
Width (W) m 1.9 45 10.8 8.03 6.1 
Height (H) m 1.47 112.9 12.03 14.94 3 
RMR - 50 98 79.69 12.25 90 
UCS MPa 70 316 164.72 64.015 94 
Width(H)/Height(H) - 0.31 4.51 1.25 0.66 1 
Pillar Stress (P) MPa 25 127.6 57.81 24.02 93.5 

 
2.3. Data preparation 

The dataset consists of 7 columns and 201 
rows. A thorough investigation was performed 
to ensure the presence of entries in all the rows 
and columns. To avoid errors, commas were 
removed from all the values within the dataset. 
To avoid interference, missing data points were 
eliminated before the models were developed.  

2.4. Methods Used 
2.4.1. Gradient-boosting decision trees  

Ke et al. [28] indicated that Gradient 
Boosting Decision Trees (GBDT) enhance a 
model's predictive accuracy by repeatedly 
applying learning techniques to reduce the loss 

function, which quantifies the discrepancy 
between the predicted and actual target values. 
Each iteration of the decision tree involves 
modifying the coefficients, biases, or weights 
associated with the input variables that are used 
to estimate the target value. The ultimate 
prediction was derived from the aggregate of 
the outputs from all decision trees. Stefanos et 
al. [29] also mentioned that, unlike decision 
trees, every regression tree features a 
continuous score at each leaf node, and for a 
specific dataset, the decision rules within the 
trees are employed to categorise it into leaves. 
Subsequently, the final prediction is calculated 
by summing the scores found in the relevant 
leaves. They also stated that, to acquire the set 
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of functions utilised in the model, they reduced 
the following objective: 

L(ϕ)=  l൫yොi,yi൯
i

+  Ω(fk)
k

 (1) 

Li et al. [27] also mentioned how to form an 
approximate loss function by minimising the 
following objective function at the ݐ-th 
iteration: 

L෩
(t)=  gift(xi)+

1
2 ft

2(xi)൨

n

i=1

+Ω(ft) (2) 

This process continues until either a pre-
determined number of iterations is reached, or 
the convergence criteria are satisfied [30]. 
However, Zhang et al. [31] mentioned a 
limitation of current GBDT implementations, as 
the output of each decision tree consists of a 
single variable. This is because each leaf in the 
decision tree produced only one variable. 

2.4.2. Extra trees 

A subset of candidate features selected at 
random is used in the extra trees technique. 
Rather than determining which thresholds work 
best, it generates thresholds at random for every 
potential characteristic and uses the best of 
these random thresholds as the splitting 
criterion. This generally leads to a reduction in 
the model variance, although it may slightly 
elevate the bias [32]. This increases the 
randomness of the Extra Trees (ET) by 
eliminating the preference associated with 
choosing the most optimal feature. As a result, 
it reduces the possibility of the dataset being 
overfitted, but it might have a little bit more bias 
[33]. 

2.4.3. Random forest 

Tree-based models are the basis of the 
Random Forest (RF) method. Until a pre-
determined stopping requirement is met, a tree-
based model systematically splits a given 
dataset into two subsets according to a 
particular criterion. They are referred to as leaf 
nodes or leaves at the end of the decision trees 
[34]. Random forest is mostly used in 
regression or classification tasks. Hastie et al. 
[35] explained that making a prediction at a new 
point x for the regression, the formula is as 
follows:  

frf
B(x) =

1
B  Tb(x)

B

b=1
 (3) 

and for classification purposes, the b-th 
random-forest-tree class prediction is ܥመ  (ݔ)
next. 

Crf
B(x)=majority vote ൛Cb(x)ൟ

1

B
 (4) 

2.4.4. Light gradient boosting machines 

Microsoft's machine learning ensemble 
algorithm LightGBM provides a solid 
implementation of the gradient boosting 
method. This framework makes use of tree-
based learning techniques and is built using two 
cutting-edge strategies for distributed 
efficiency: Exclusive Feature Bundling (EFB) 
and Gradient-based One-Side Sampling 
(GOSS) [28]. According to Ke et al. [28], 
GOSS analyses only the remaining data 
instances to obtain the information obtained, 
excluding a substantial fraction of those with 
minor gradients. GOSS can accurately estimate 
the information gained on a smaller dataset 
because data records with larger gradients are 
crucial to the computation of information gain. 
To reduce the total number of features, mutually 
exclusive features were consolidated, using the 
EFB. Because the LightGBM operates at high 
speed, it is prefixed with ‘light’.  

Tingting et al. [36] stated that if we aim to 
build a LightGBM model comprising T trees, 
the additive training procedure for a dataset 
containing n examples can be outlined as 
follows: 

yොi
(t)=  fk(xi)

t

k=1

=yොi
(t-1)+ft(xi) (5) 

where ௧݂  represents the function obtained 
from the t-th decision tree, and  ݕො

(௧) is the 
estimated value for the ݅-th example at the ݐ-th 
iteration. He also mentioned that by reducing 
the following goal, the ݂s of every iteration can 
be discovered: 

L(t)=  l൫yi,yොi
(t)൯

n

i

+  Ω(ft)
T

t=1

 (6) 

2.4.5. Stacked generalisation technique 

Stacked generalisation, or stacking, is a 
significant ensemble learning method that 
constructs a new model by combining 
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predictions from multiple base models, thereby 
enhancing overall performance [26]. According 
to Dietterich [37], ensemble methods are 
learning algorithms that generate a group of 
classifiers and classify new data instances by 
amalgamating their predictions through a 
weighted voting process. Ensemble techniques 
are broadly classified into simple and advanced 
methods, with simple techniques like bagging 
and boosting forming the foundation of 
ensemble machine learning. Bagging, as 
described by Breiman [25], reduces variance by 
training several models on various subsets of 
the data and then combining their predictions by 
averaging. According to Freund and Schapire 
[38], boosting involves training models 
sequentially, where each model corrects the 
errors of its predecessor, thereby reducing bias. 
These simple ensemble methods improve 
model robustness and performance by 
leveraging multiple models. Advantages of 
stacked generalisation include improved 
accuracy, reduced risk of overfitting and 

underfitting, the ability to utilise diverse 
models, and adaptability to specific problems 
[39]. 

2.5. Model development process 

Building a strong predictive model involves 
completing a number of basic steps in the model 
development process. The loading of the dataset 
became the starting point, and preparing the 
data to guarantee its purity and preparation for 
analysis was successful. After that, the data was 
used to train several base models, each of which 
found a different pattern. After being trained to 
effectively combine these outputs, a meta-
model is trained using the generated predictions 
as inputs. Lastly, the performance of the stacked 
model was examined to guarantee correctness 
and dependability before it was used to create 
predictions for fresh data. The processes in the 
development of the stacked model are shown in 
Figure 4. 

 

 
Figure 4. Model development process. 
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2.5.1. Data cleaning 

The process of data cleaning is essential for 
discovering and correcting inaccuracies, 
inconsistencies, and mistakes in a dataset. This 
step is important in machine learning since the 
quality of the data impacts both the performance 
and trustworthiness of the machine learning 
models. In this study, the data was meticulously 
cleaned. This process entails rectifying missing 
values, discarding duplicates, and fixing errors 
like typographical mistakes and formatting 
issues. Additionally, the thorough handling of 
outliers ensures a strong dataset, which 
improves the reliability and accuracy of the 
ensuing machine learning analyses. 

2.5.2. Data splitting 

The dataset, consisting of 201 pillar cases, 
was divided into training and testing sets. From 
these cases, 140 samples (70%) were used as the 
learning dataset, where the models learn the 
relationships between the input parameters 

(pillar depth, width, height, UCS, RMR, W/H, 
and pillar stress) and the output (pillar status - 
failed, unstable, or stable). The remaining 61 
samples (30%) were reserved as independent 
testing data. This split ensures sufficient data 
for model training while enabling evaluation of 
the models' ability to predict pillar stability 
status for unseen cases, simulating real-world 
applications. 

2.5.3. Hyperparameter tuning 

The optimal hyperparameter values were 
determined through grid search optimization 
with cross-validation on the training dataset. 
For each model, a range of potential values was 
tested for each hyperparameter, and the 
combination that yielded the highest 
classification accuracy was selected. The 
learning rate of 0.1 was found to provide the 
best balance between model convergence and 
training time across all models (Table 3).  

Table 3. Critical hyperparameters and their optimal values. 
Model Hyperparameters Optimal values 

GBDT-Stacked 
Learning_rate 0.1 
n_estimaters 100 
max_depth 3 

RF-Stacked 
Learning_rate 0.1 
Max_depth None, 10, 20 
n_estimaters 50, 100, 20…0 

ET-Stacked 
Learning_rate 0.1 
n_estimaters 100 
Max_depth -1 

LightGBM-Stacked 

Learning_rate 0.1 
Max_depth -1 
n_estimators 100 
Min_samples_split 20 

 
2.5.4. Evaluation 

A confusion matrix was used to assess the 
stacked classification models' performance, as 
seen in Figure 5. Precision, accuracy, FI-score, 
Mathews Correlation Coefficient (MCC), and 
confusion matrix were used to calculate these 
metrics. After that, ranking was applied to 
identify the top-performing model. 
Confusion matrix 

A confusion matrix is a size n × n square 
matrix that shows how well a categorisation 
model works. The confusion matrix for this 
classification task was a 3x3 matrix, where each 
row represented the actual class, and each 
column indicated the projected class. The 
results were classified as stable, failed, or 

unstable. An illustration of a confusion matrix 
is presented in Figure 5. 

The confusion matrix is made up of diagonal 
predictions Cii, representing the number of 
instances correctly predicted for each status, 
that is, CAA for status A, CBB for status B, CCC 
for status C and for the predictions that are not 
diagonal Cij, which indicate misclassifications 
where the actual Status “i” is predicted as Status 
“j”. With example being CAB for instances, 
where status A is predicted as status B, CAC for 
status A predicted as Status C, CBA for Status B 
predicted as Status A, CBC for Status B 
predicted as Status C, CCA for Status C predicted 
as status A and CCB for status C predicted as 
status B. The confusion matrix was used to 
determine performance parameters like 
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accuracy, precision, F1-score, recall and 
Mathews Correlation Coefficient (MCC). 
These can be expressed numerically using 

Equations (7) through (15). The components for 
each class are shown in a confusion matrix in 
Table 4. 

 

 
 

Predicted Values (j) 

Stable (A) Failed (B) Unstable (C) 
A

ct
ua

l V
al

ue
s 

(i)
 

Stable (A) CAA CAB CAC 

Failed (B) CBA CBB CBC 

Unstable (C) CCA CCB CCC 

Figure 5. Confusion matrix. 

Accuracy: 

Accuracy = 
CAA+CBB+CCC

CAA+CAB+CAC+CBA+CBB+CBC+CCA+CCB+CCC
 (7) 

 
Precision: 

Precision for status “A” is calculated as: 

PrecisionA  = 
CAA

CAA+CBA+CCA
 (8) 

The precision of statuses B and C follow the 
same format. 

The equation for Weighted Average 
Precision (WAP): 

 

WAP = 
PrecsionA× ൫tpA+ fnA൯ + PrecsionB × ൫tpB+ fnB൯ + PrecsionC ×  ൫tpC+ fnC൯

Total number oi nstances  (9) 

 
Recall: 

Recall for status “A” is calculated as: 

RecallA = 
CAA

CAA+CAB+CAC
 (10) 

The precision of statuses B and C follow the 
same format: 

The equation for Weighted Average Recall 
(WAR): 

 

WAR = 
RecallA× ൫tpA+ fnA൯ + RecallB× ൫tpB+ fnB൯ + RecallC × ൫tpC+ fnC൯

Total number of instances  (11) 

 
F1-Score: 

The F1-Score for Status “A” is calculated as: 

F1A= 2 ×
PrecisionA× RecallA
PrecisionA+ RecallA

 (12) 

The F1-Score of Statuses B and C follows 
the same format. 

The Equation for Weighted Average F1-
Score (WAF): 

F1A= 2×
PrecisionA× RecallA

PrecisionA+ RecallA
 (13) 

Matthews Correlation Coefficient (MCC): 

The MCC for status “A” is calculated as: 
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MCCA  = 
tpA× tnA - fpA× fnA

ට൫tpA+ fpA൯൫tpA+ fnA൯൫tnA+ fpA൯(tnA+ fnA)
 (14) 

 
The equation for average MCC: 

Average MCC = 
MCCA+ MCCB+ MCCC

3
 (15) 

 

Table 4. Confusion matrix components for each class.  
Class A Class B Class C 

True Positive (tp) CAA CBB CCC 
False Positive (fp) CBA + CCA CAB + CCB CAC + CBC 
False Negative (fn) CAB + CAC CBA + CBC CCA + CCB 
True Negative (tn) CBB + CBC + CCB + CCC CAA + CAC + CCA + CCC CAA + CAB + CBA + CBB 

 
Ranking 

The ranking method of evaluation is a 
performance appraisal technique, in which the 
performances of stacked models are compared 
against each other and then ranked in order of 
performance. In this method, each model is 
placed in a hierarchy based on its performance 
in classification metrics. This approach helps in 
identifying the top-performing model as well as 
those who may need improvement by creating a 
clear distinction between different levels of 
performance. 

2.6. Selection of features and dependent 
variable 

The input parameters were selected at this 
point. Since these variables are thought to have 
the biggest effects on pillar stability, the study's 
parameters were Depth, Width (W), Height (H), 
Rock Mass Rating (RMR), Uniaxial 
Compressive Strength (UCS), and Pillar Stress 
(P). Additionally, the pillars' condition was 
chosen as the target variable and divided into 
three groups: failed, unstable, or Stable. The 
independence of input parameters was 
considered during feature selection. Although 
pillar depth and pillar stress are theoretically 
correlated, both parameters were retained in the 
model development because local variations in 
geology, mining sequence, and pillar geometry 
can cause significant deviations in their 
relationship. The inclusion of both parameters 
improved the model's predictive capability by 
capturing these site-specific variations. 

 

3. Results and Discussion 
3.1. Model performance analysis 

The performance evaluation of the four 
stacked generalisation models revealed distinct 
capabilities in predicting pillar stability. The 
GBDT-stacked model demonstrated strong 
predictive performance, particularly in 
identifying unstable cases, as shown in its 
confusion matrix in Figure 6. It achieved an 
average accuracy of 91.80% and an MCC of 
85.51%, ranking second overall with a total 
rank of 13, as detailed in Table 11. In contrast, 
the RF-stacked model emerged as the top 
performer, surpassing other models with a 
precision of 94.27%, recall of 93.44%, F1-score 
of 93.59%, and MCC of 88.90%. Its robustness, 
highlighted in Figure 7 and Table 6, secured it 
the highest total rank of 19, reflecting its 
superior generalization across metrics. 

The ET-Stacked model exhibited moderate 
performance, with an average accuracy of 
86.89% and precision of 88.49%. Despite its 
confusion matrix in Figure 8 showing 
reasonable correct predictions, it ranked lowest 
overall with a total rank of 5, attributed to its 
lower recall of 86.89% and MCC of 78.61%, as 
summarized in Table 7. Conversely, the 
LightGBM-Stacked model delivered 
competitive results, achieving the highest 
testing accuracy of 93.77% alongside balanced 
recall of 90.16%, precision of 91.36%, and F1-
score of 90.48%. Its performance, visualized in 
Figure 9 and Table 8, earned it a joint second-
place ranking with a total rank of 13. 
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Figure 6. Confusion matrix of GBDT-Stacked 

model 
Figure 7. Confusion matrix of RF-Stacked model 

  
Figure 8. Confusion matrix of ET-Stacked 

model 
Figure 9. Confusion matrix of LightGBM-Stacked 

model 

Table 5. Summary of GBDT-Stacked model. 
Status/Metric Accuracy Precision Recall F1-score MCC 

Stable 0.95082 0.91667 0.95652 0.93617 0.89674 
Failed 0.96721 1.00000 0.92593 0.96154 0.93514 
Unstable 0.91803 0.75000 0.81818 0.78261 0.73327 
Average 0.91803 0.92350 0.91803 0.91971 0.85505 

Table 6. Summary of RF-Stacked model. 
Status/Metric Accuracy Precision Recall F1-score MCC 

Stable 0.98361 0.95833 1.00000 0.97872 0.96598 
Failed 0.95082 1.00000 0.88889 0.94118 0.90378 
Unstable 0.93443 0.76923 0.90909 0.83333 0.79716 
Average 0.93443 0.94268 0.93443 0.93589 0.88897 

Table 7. Summary of ET-Stacked model. 
Status/Metric Accuracy Precision Recall F1-score MCC 

Stable 0.95082 0.91667 0.95652 0.93617 0.89674 
Failed 0.90164 0.95652 0.81481 0.88000 0.80493 
Unstable 0.88525 0.64286 0.81818 0.72000 0.65660 
Average 0.86885 0.88493 0.86885 0.87233 0.78609 
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Table 8. Summary of LightGBM-Stacked model. 
Status/Metric Accuracy Precision Recall F1-score MCC 

Stable 0.95082 0.95455 0.91304 0.93333 0.89496 
Failed 0.93443 0.96000 0.88889 0.92308 0.86803 
Unstable 0.91803 0.71429 0.90909 0.80000 0.75800 
Average 0.93765 0.91363 0.90164 0.90475 0.85834 

 
Analysis of training and testing metrics in 

Tables 9 and 10 underscores the RF-Stacked 
model’s consistency, with minimal overfitting 
and superior generalization, maintaining an 
MCC of 88.90% in both training and testing 
phases. While the LightGBM-Stacked model 
achieved the highest testing accuracy, its 
slightly lower MCC of 85.83% compared to the 

RF-Stacked model indicates marginally weaker 
class-balanced performance. The GBDT-
Stacked model showed stable results across 
datasets, whereas the ET-Stacked model lagged 
in critical metrics, including an F1-score of 
87.23% and MCC of 78.61%, as shown in 
Tables 7 and 9. 

Table 9. Models Performance Results for the Testing Dataset. 
Stacked generalization 
Model 

Classification metrics 
Accuracy Precision Recall F1-score MCC 

GBDT 0.91803 0.92350 0.91803 0.91971 0.85505 
Random Forest 0.93443 0.94268 0.93443 0.93589 0.88897 
ET 0.86885 0.88493 0.86885 0.87233 0.78609 
LightGBM 0.93765 0.91363 0.90164 0.90475 0.85834 

Table 10. Models performance Results for the Training Dataset. 
Stacked generalization 
Model 

Classification Metrics 
Accuracy Precision Recall F1-score MCC 

GBDT 0.97857 0.97981 0.97857 0.97850 0.96817 
Random Forest 0.93443 0.94268 0.93443 0.93589 0.88897 
ET 0.97143 0.97142 0.97143 0.97135 0.95656 
LightGBM 0.93765 0.91363 0.90164 0.90475 0.85834 

Table 11. Ranking of models. 

Model Rank 
Accuracy Precision Recall F1-score MCC Total rank 

GBDT 2 3 3 3 2 13 
Random Forest 3 4 4 4 4 19 
ET 1 1 1 1 1 5 
LightGBM 4 2 2 2 3 13 

 
3.2 Practical implications and limitations  

The comparative performance analysis 
reveals several important implications for 
practical applications in underground mining 
operations. The RF-Stacked model's superior 
performance, with an MCC of 88.90%, 
precision of 94.27%, and F1-score of 93.59%, 
makes it particularly suitable for critical 
stability assessments where high prediction 
accuracy is essential. The GBDT-stacked 
model, achieving a recall of 91.80% for failed 
pillars, suggests its potential use in early 
warning systems, though its unstable-class F1-
score of 78.26% limits standalone utility. The 
LightGBM-Stacked model, with the highest 
testing accuracy of 93.77% and balanced 
precision of 91.36%, is well-suited for general 

stability monitoring. However, the ET-Stacked 
model, with the lowest total rank of 5 and an 
MCC of 78.61%, is not recommended for 
deployment without refinement. 

A persistent limitation across all models is 
their reduced efficacy in classifying "Unstable" 
pillars. For example, the RF-stacked model 
achieves an unstable-class F1-score of 83.33%, 
while the LightGBM-stacked and GBDT-
stacked models score 80.00%, and 78.26%, 
respectively. This highlights the need for 
improved feature engineering or expanded 
datasets capturing intermediate stability states, 
while the traditional Factor of Safety (FoS) 
approach remains a practical baseline, the RF-
Stacked model’s MCC of 88.90% demonstrates 
machine learning’s ability to capture nuanced 
stability factors that FoS might overlook in 
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complex environments like deep mining. It is 
proposed that integrating FoS with advanced 
models, rather than relying solely on empirical 
thresholds, to enhance decision-making. 

Again, some key limitations include 
sensitivity to data distribution, as evidenced by 
the GBDT-stacked model’s MCC drop from 
96.82% (training) to 85.51% (testing), and the 
lightGBM-stacked model’s MCC of 85.83%, 
which reflects slightly weaker class-balanced 
performance. The ET-Stacked model’s low 
recall of 86.89% further emphasises risks in 
deploying underperforming models without 
validation. These limitations underscore the 
importance of external dataset validation to 
ensure generalisability across geological 
conditions. Careful model selection, prioritising 
the RF-Stacked model for critical tasks and 
LightGBM-stacked for efficiency, remains vital 
for real-world mining applications. 

This study goes on to demonstrate the 
potential of stacked generalisation techniques 
for pillar stability prediction, rather than 
providing a universal model; the methodology 
presented here serves as a framework that 
mining operations can adapt to develop their 
own site-specific models using their historical 
pillar performance data. This approach is 
particularly valuable since each mine has 
unique geological and operational conditions 
that influence pillar stability. Mining operations 
can implement this methodology to create 
customised prediction models that account for 
their specific rock mass characteristics, mining 
methods, and depth of operations. 

3.3. Interpretations of sensitivity analysis 

The sensitivity analysis, conducted through 
feature importance evaluation of the RF-
stacked model, revealed significant insights into 
the factors influencing pillar stability 
prediction. As illustrated in Figure 10, pillar 
depth emerged as the most influential 
parameter, followed closely by pillar stress, 
while other parameters demonstrated relatively 
lower importance in the prediction process. This 

finding aligns with fundamental rock 
mechanics principles, where increasing depth 
typically correlates with higher in-situ stresses 
and more complex ground conditions. The 
dominant influence of pillar depth underscores 
the increasing challenges faced in deeper 
mining operations, particularly relevant to the 
AngloGold Ashanti Obuasi Mine context, 
where mining depths extend to approximately 
1500 m, as depicted in Figure 1. 

The substantial influence of pillar stress as 
the second most significant parameter 
emphasizes the critical role of stress distribution 
in pillar stability assessment. This finding is 
particularly pertinent given the geological 
characteristics of the Obuasi Mine, where the 
relationship between depth and pillar stress may 
be complicated by varying rock mass 
conditions, as evidenced by the range of Rock 
Mass Rating values shown in Figure 2. The 
identification of these key parameters through 
sensitivity analysis provides valuable guidance 
for prioritizing monitoring efforts and resource 
allocation in underground mining operations, 
particularly in deep environments where stress-
related challenges are pronounced. 

These insights from the sensitivity analysis 
have significant implications for practical 
applications and future research. The clear 
prioritization of depth and pillar stress as 
primary factors suggests these parameters 
should be central to monitoring systems and 
stability protocols. Furthermore, this 
understanding could guide the development of 
streamlined predictive models that focus on 
these critical inputs while maintaining high 
accuracy, as demonstrated by the RF-stacked 
model’s performance metrics in Tables 6 and 9 
including an MCC of 88.90% and F1-score of 
93.59%. However, while parameters such as 
pillar width and rock mass quality showed 
lower importance in Figure 10, their collective 
contribution remains essential to the model’s 
overall predictive capability, reinforcing the 
need for comprehensive data integration in 
stability assessments. 
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Figure 10. Feature importance of RF-stacked model. 

4. Conclusions 

The current study has successfully 
demonstrated the applicability and 
effectiveness of stacked generalisation 
techniques in predicting hard rock pillar 
stability in underground mining operations. 
Four advanced stacked models were developed 
using GBDT, RF, ET, and LightGBM as meta-
learners, with each taking turns as the meta-
model while the others served as base learners. 
Rigorous evaluation using classification 
metrics—including Matthews Correlation 
Coefficient (MCC), precision, accuracy, F1-
score, and recall—provided robust validation of 
their predictive capabilities. 

Among the tested models, the RF-Stacked 
Model demonstrated superior performance, 
achieving an accuracy of 93.44%, precision of 
94.27%, recall of 93.44%, F1-score of 93.59%, 
and MCC of 88.90%. This outstanding 
performance, coupled with its highest overall 
ranking of 19 in the comparative analysis (Table 
11), establishes the RF-Stacked Model as the 
most reliable choice for pillar stability 
prediction in critical applications. The 
LightGBM-Stacked Model achieved the highest 
testing accuracy of 93.77%, making it suitable 
for general monitoring, while the GBDT-
Stacked Model showed strong recall of 91.80% 
for failed pillars, supporting its use in early 
warning systems. However, the ET-Stacked 
Model, with the lowest total rank of 5 and MCC 

of 78.61%, requires significant refinement for 
practical deployment. 

Feature importance analysis (Figure 10) 
identified pillar depth and pillar stress as the 
most influential factors, aligning with rock 
mechanics principles and the geological context 
of the AngloGold Ashanti Obuasi Mine, where 
depths exceed 1500 m (Figure 1). These 
insights underscore the need to prioritize these 
parameters in monitoring and risk assessment 
strategies, particularly in deep mining 
environments with complex stress distributions, 
as reflected in the Rock Mass Rating variability. 

The findings advance intelligent systems in 
geotechnical engineering by offering a machine 
learning-driven alternative to traditional 
empirical methods like the Factor of Safety 
(FoS). However, the models’ reduced efficacy 
in classifying "unstable" pillars (e.g., RF-
stacked F1-score of 83.33%) highlights 
opportunities for refinement through improved 
feature engineering or hybrid approaches 
integrating FoS with machine learning. Future 
research should focus on temporal data 
integration, validation across diverse geological 
conditions, and addressing class imbalance 
challenges. This study provides a foundation for 
enhancing safety and efficiency in underground 
mining, bridging empirical practices with next-
generation predictive analytics. 
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  چکیده:

  ی تجرب يهااست. روش یمتک يورو بهره یمنیا يسنگ سخت برا يهاستون ي داریبه شدت به پا Obuasi يدر معدن طلا ینیرزمیز يمعدنکار اتیعمل
رو،    نی. از اشوندی م  ن یماش يریادگی  شرفتهیپ  يهاک یهستند که باعث اکتشاف تکن   ییهات یمحدود يستون دارا  يداریپا  ینیبش ی پ  يبرا یسنت  يو عدد

. چهار مدل پردازدی م  ینیرزمیسنگ سخت در معادن ز  يهاستون  يداریپا  تی وضع  ینیبش یپ  يانباشته برا  میتعم  يهاک یکاربرد تکن  یکار به بررس  نیا
  ان یادگر تیتقو يهان ی) و ماشET( یاضاف يها)، درخت RF( ی)، جنگل تصادفGBDTs( انیگراد شیافزا يریگم یتصم يهابا استفاده از درخت ياپشته
در هر   هیپا  رندهیادگیعنوان  به  ماندهی که سه مدل باق  یدر حال  شد،ی که هر مدل به نوبت به عنوان فراآموز انتخاب م  افتند،ی) توسعه  LightGBMsنور (

شدند.   ش یو آزما زشدر غنا آمو AngloGold Ashanti Obuasiاز معدن  یستون سی ک 201از  يامجموعه داده  يها بر رومدل  نی. اکردندی مورد عمل م
قرار گرفت.    یابی) مورد ارزMCC(  وزیمت  یهمبستگ  بیو ضر  F1  ازیامت  ،ي ادآوریاز جمله دقت، دقت،    ،يطبقه بند  يارهایعملکرد مدل با استفاده از مع

را به دست   ٪  MCC 88.90و    ٪  F1 93.59  ازامتی  ،٪ 93.44  يادآوری  ، ٪94.27  دقت  ،٪ 93.44را نشان داد و دقت    یعملکرد کل  نیبهتر  RFمدل انباشته  
نشان   ج یستون نشان داد. نتا يداریپا ینیب شیعوامل مؤثر بر پ نیرگذارتریعمق ستون و تنش ستون را به عنوان تأث یژگیو تیاهم لیو تحل هیآورد. تجز

 اتیستون سنگ سخت در عمل  يداریپا  ینیبشیپ  يرا برا  يادوارکننده یام  يهات ی ، قابلRF  مدل انباشته  ژهیانباشته، به و  میتعم   يهاک یکه تکن  دهدی م
 . دهندی ارائه م ینیرزمیز يمعدنکار

  .یدرخت اضاف ،ینیرزمیمعدن ز ،انباشته میتعم ،ستون هارد راك ،وزیمت یهمبستگ بیضر کلمات کلیدي:

 

 

 

 
 
 
 


