Numerical Modeling of Discontinuities to Determine the Optimal Direction of Dimension Stone Extraction (Case Study: Melika Kerman Marble Quarry, Central Iran) | ||
Journal of Mining and Environment | ||
مقاله 13، دوره 16، شماره 5، مهر و آبان 2025، صفحه 1729-1740 اصل مقاله (7.99 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22044/jme.2025.14954.2850 | ||
نویسندگان | ||
Sina Alizadeh1؛ Mohammad Reza Ghassemi2؛ Mehran Arian* 3؛ Ali Solgi1؛ Zahra Maleki1؛ Reza Mikaeil4 | ||
1Department of Earth Sciences., Science and Research Branch, Islamic Azad University, Tehran, Iran | ||
2Research Institute for Earth Sciences, Tehran, Iran | ||
3Department of Earth Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran | ||
4Department of Mine Engineering, Urmia University of Technology, Iran | ||
چکیده | ||
One of the most significant risks for investors in the dimension stone industry is the presence of natural discontinuities in the rock mass, which affect the quality of the extracted stone blocks. These discontinuities not only reduce extraction efficiency but also hinder the optimal utilization of the quarry. Therefore, it is essential to identify and analyze discontinuities in the rock before initiating any extraction activities and to assess the optimization of the extraction direction in dimension stone quarries. This study examines the key characteristics of discontinuities and joint sets, including their coordinates, strike, dip, spacing and aperture, in the Melika marble dimension stone quarry in Kerman. The collected data are then analyzed using 3DEC software to construct a quarry block model. Additionally, the azimuth rotation of different joint sets is investigated in four categories. The results obtained from the modeling indicate that, to achieve maximum blocking, the current extraction direction should be shifted 70° westward. This adjustment increases the number of blocks to 14,550, the average block volume to 5.5 m³, and the total volume of extracted stone to 79,918.9 m³. These changes are projected to generate approximately $3,180,000 in revenue for the quarry. The study highlights a practical optimization strategy that can significantly enhance the efficiency and profitability of dimension stone quarries by improving extraction direction based on discontinuity analysis. | ||
کلیدواژهها | ||
Dimension stone؛ Discontinuities؛ Optimal extraction direction؛ Numerical modeling؛ Central Iran | ||
مراجع | ||
[1]. Bogdanowitsch, M., Sousa, L., & Siegesmund, S. (2022). Building stone quarries: resource evaluation by block modelling and unmanned aerial photogrammetric surveys. Environmental Earth Sciences, 81(1), 16-24.
[2]. Akara, M.E., Reeves, D.M., Parashar, R. (2020). Enhancing fracture-network characterization and discrete-fracture-network simulation with high-resolution surveys using unmanned aerial vehicles. Hydrogeol J. 28, 2285–2302.
[3]. Elkarmoty, M., Bonduà, S., & Bruno, R. (2020). A 3D brute-force algorithm for the optimum cutting pattern of dimension stone quarries. Resources Policy, 68, 101761.
[4]. Schneider-Löbens, C., Siegesmund, S., Stein, K. J., & Löbens, S. (2022). Joint analysis as an important tool for an optimizing block extraction of natural stones. Environmental Earth Sciences, 81(3), 94-102.
[5]. Hazrat Hosseini, A., and Mahdavi, (2018). Using genetic algorithm to introduce a new indicator to determine the crushing of building stone quarries and find the optimal extraction direction. Journal of Mining Engineering 13 (41), 92-101.
[6]. Şen, Z., & Eissa, E. A. (1992). Rock quality charts for log-normally distributed block sizes. International journal of rock mechanics and mining sciences & geomechanics, 29, 1, 1-12.
[7]. Kim, B. H., Cai, M., Kaiser, P. K., & Yang, H. S. (2007). Estimation of block sizes for rock masses with non-persistent joints. Rock mechanics and rock engineering, 40(2),169-192.
[8]. Sousa, L. M. O. (2010). Evaluation of joints in granitic outcrops for dimension stone exploitation. Quarterly Journal of Engineering Geology and Hydrogeology, 43(1), 85-94.
[9]. Mosch, S., Nikolayew, D., Ewiak, O., & Siegesmund, S. (2011). Optimized extraction of dimension stone blocks. Environmental Earth Sciences, Vol. 63(7-8): p. 1911-1924.
[10]. Elmouttie, M. K. and Poropat, G. V. (2012). A method to estimate in situ block size distribution. Rock mechanics and rock engineering, 45(3),401-407.
[11]. Saliu, M. A. (2014). Investigating the effect of fracture on rock fragmentation efficiency: a case study of Kopec Granite Quarries, South Western, Nigeria.
[12]. Yarahmadi, R., Bagherpour, R., Kakaie, R., Mirzaie, N. H., & Yari, M. (2014). Development of 2D computer program to determine geometry of rock mass blocks. International Journal of Mining Science and Technology 24(2), 191-194.
[13]. Yarahmadi, R., Bagherpour, R., Sousa, L. M., & Taherian, S. G. (2015). How to determine the appropriate methods to identify the geometry of in situ rock blocks in dimension stones. Environmental Earth Sciences 74(9), 6779-6790.
[14]. Yarahmadi, R., Bagherpour, R., Khademian, A., Mirzaie, H., & Kakaie, R. (2015). Developing a MatLab code for determine geometry of rock mass blocks and its applications in mining and rock mechanic engineering. Journal of Mining and Metallurgy A: Mining 51(1), 41-49.
[15]. Shahvarvarqi Farahani, H., and Babanuri, N., (2015). Optimization of building stone extraction direction using block analysis (Case study: Dingle Kahriz travertine quarry). 4th International Congress of Civil Engineering, Architecture and Urban Development. Tehran, Permanent Secretariat of the Conference.
[16]. Yarahmadi, R., Bagherpour, R., Taherian, S. G., & Sousa, L. M. (2018). Discontinuity modelling and rock block geometry identification to optimize production in dimension stone quarries. Engineering Geology, 232, 22-33.
[17]. Azarafza, M., Ghazifard, A., Akgün, H., & Asghari-Kaljahi, E. (2019). Development of a 2D and 3D computational algorithm for discontinuity structural geometry identification by artificial intelligence based on image processing techniques. Bulletin of Engineering Geology and the Environment, 78, 3371-3383.
[18]. Saleh Abadi. H, Ataei, M, Rafiei, (2021) Determination of the optimal extraction direction in order to maximize building stone excavation using modeling discontinuities (Case study of Capitol travertine quarry), Scientific-Research Journal of Iranian Geological Engineering Association.
[19]. Samarakoon, K. G. A. U., Chaminda, S. P., Jayawardena, C. L., Dassanayake, A. B. N., Kondage, Y. S., & Kannangara, K. A. T. T. (2023). A review of dimension stone extraction methods. Mining, 3(3), 516-531.
[20]. Van Pham, V., Nguyen, T. A., Tran, B. D., Le, H. T. T., Le, T. Q., Nguyen, T. T., & Phan, V. H. (2023). Determining the size and shape of a dimension stone block under consideration on the spatial relationship of joint sets. Journal of Mining and Earth Sciences, 64(3), 59-69.
[21]. Tanzadeh, P., Saein, A. F., & Vatandoust, M. (2023). Fracture analysis at different scales, a crucial technique for optimizing site selection and quarrying of natural stone, Lashotor limestone quarry, Iran. Bulletin of Engineering Geology and the Environment, 82(8), 324.
[22]. Ranjkesh Adarmanabadi, H., Rasti, A., Mojtabai, N., Tabaei, M., & Razavi, M. (2024). Effects of discontinuities on the rock block geometry of dimension stone quarries: a case study. Geomechanics and Geoengineering, 19(2), 110-122.
[23]. Jalalian, M. H., Bagherpour, R., & Khoshouei, M. (2024). Geological investigations and production planning by identification of the discontinuities and rock mass blocks in dimension stone quarries: a case study. Rudarsko-geološko-naftni zbornik, 39(2), 85-95.
[24]. Arian, M., Bagha, N., Khavari, R., & Noroozpour, H. (2012). Seismic sources and neo-tectonics of Tehran area (North Iran). Indian Journal of Science and Technology, 5(3), 2379-2383.
[25]. Razaghian, G., Beitollahi, A., Pourkermani, M., & Arian, M. (2018). Determining seismotectonic provinces based on seismicity coefficients in Iran. Journal of Geodynamics, 119, 29-46.
[26]. Aram, Z., & Arian, M. (2016). Active tectonics of the Gharasu river basin in Zagros, Iran, investigated by calculation of geomorphic indices and group decision using analytic hierarchy process (AHP) software. Episodes, 39(1), 39-44. | ||
آمار تعداد مشاهده مقاله: 152 تعداد دریافت فایل اصل مقاله: 101 |