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Deploying multiple sinks instead of a single sink is one possible
solution to improve the lifetime and durability of wireless sensor
networks. Using multiple sinks leads to the definition of a problem
known as the sink placement problem. In this context, the goal is to
determine the optimal locations and number of sink nodes in the
network to maximize the network’s lifetime. In this paper, we propose
a dynamic sensor assignment algorithm to address the sink placement
problem and evaluate its performance against existing solution
methods on a diverse set of instances. We conducted experiments in
two stages. In the first stage, based on random instances and compared
to the exact computational method using the CPLEX solver, and in
the second stage, based on real-world instances compared to MC-
JMSP (Model-Based Clustering- Joint Multiple Sink Placement)
method. The results obtained in the first stage of the experiments
indicate the superiority of the dynamic sensor assignment algorithm
in runtime for all instances. Furthermore, the solution obtained by the
dynamic sensor assignment algorithm is very close to the solution
obtained by the CPLEX solver. In particular, the percentage error of
the solution found by the proposed method compared to CPLEX in
all experimented instances is less than 0.15%, indicating the
effectiveness of the proposed method in finding the appropriate
solution for assigning sensors to sinks. Also, the results of the second
stage experiments show the superiority of the proposed method in
both execution time and energy efficiency compared to the MC-JMSP
method.

1. Introduction

Wireless sensor networks consist of a large number
of sensor nodes that are dispersed in an
environment. The primary function of these nodes
is to gather information about their environment
and wirelessly relay it to a central node, referred to
as the sink. This information can include
temperature, light, humidity, and other factors.
Wireless sensor networks have characteristics,
properties, and limitations that distinguish them
from other networks. Among these limitations are
energy consumption, processing speed, data
storage capacity, and communication bandwidth.
Wireless sensor networks can be implemented in

applications such as target tracking, environmental
monitoring, agriculture, industry, and military
uses. Figure 1 illustrates the architecture of
wireless sensor networks.

Given that sensors require energy consumption to
receive information, energy efficiency by sensor
nodes is considered a significant challenge in these
networks. This is because nodes are randomly
deployed in the network, and their distribution in
inaccessible locations can lead to excessive energy
consumption, putting them at risk of failure. When
a node shuts down, its communication with other
nodes will be interrupted, and the information
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received from the surrounding environment will be
incomplete. Consequently, one of the main
challenges in wireless sensor networks is to
enhance the network's longevity by improving
energy efficiency. For this purpose, deploying
multiple sinks instead of using a single sink can be
an effective solution.
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Figure 1. Wireless sensor network architecture.

Moreover, utilizing a single sink in the network has
its drawbacks. For instance, network traffic in most
areas will become excessively known, and the sink
may enter an overflow state. Additionally, due to
high energy consumption, the sink may also shut
down. The use of multiple sinks leads to defining a
problem known as the sink placement problem,
where the number and placement of sinks become
significant. Figure 2 illustrates an example of the
sink placement architecture. As shown in Figure 2,
the solid yellow nodes represent the sensors, the
hollow circles denote potential sink locations, and
the red circles indicate the selected sink locations.

Figure 2. An example of sinks placement architecture.

This paper aims to find the optimal placement and
number of sink nodes in a way that meets defined
constraints and prolongs the operational lifetime of
the network. From a computational complexity
perspective, the sink placement problem belongs to

the class of NP-hard problems [3]. Our approach
utilizes dynamic sensor assignment to tackle this
issue. This algorithm employs the strategy of
turning off active sinks to achieve an efficient
network topology within an acceptable timeframe.
The proposed approach has significant practical
implications across various domains, including
smart cities, environmental monitoring, and
industrial automation. In smart cities, WSNs
(Wireless Sensor Networks) are used for
applications like air quality monitoring, traffic
management, and energy  consumption
optimization. By improving the energy efficiency
and longevity of sensor networks, the proposed
method reduces maintenance costs and ensures
continuous service delivery in these urban
applications.
In environmental monitoring, such as in
agriculture, forest management, and climate
change studies, the enhanced network lifetime
enables long-term data collection, which is critical
for ongoing analysis. The proposed solution
minimizes energy consumption and ensures
uninterrupted data flow, making it ideal for remote
and inaccessible areas. Similarly, in industrial
automation, the approach supports reliable
monitoring of equipment and processes by
reducing latency and ensuring consistent network
performance, which is vital for operational
efficiency and preventing downtime.
Overall, the proposed algorithm not only optimizes
technical performance but also offers tangible
benefits, such as reducing operational costs,
enhancing reliability, and promoting
environmental  sustainability by decreasing
electronic waste through extended network
lifetimes. These advantages make the solution
highly relevant for real-world applications. The
main contributions of this paper are as follows:

e Using a novel algorithm for dynamically
assigning sensors to sinks and selectively
deactivating inefficient sinks to improve
energy efficiency and extend network lifetime.

e Minimizing  overall  network  energy
consumption by reallocating sensors to the
nearest active sink based on energy efficiency
and balancing energy load across the network

e The proposed method is compared with the
CPLEX solver and shown to provide solutions
with an error of less than 0.15% in energy
consumption, demonstrating efficiency and
accuracy.

e The DSA (Dynamic Sensor Assignment)
algorithm significantly reduces execution time
compared to the exact computational method,
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making it suitable for real-time applications in
large-scale networks.

e The proposed method is scalable and can be
effectively applied to various real-world
scenarios such as smart cities, environmental
monitoring, and industrial automation.

The structure of this paper is organized as follows:

Section 2 reviews existing research related to the

sink node placement problem. Section 3 explains

the standard integer programming model for this
issue. Section 4 introduces the proposed algorithm
based on dynamic sensor allocation and examines
its structure. Section 5 evaluates the performance

of the proposed algorithm in comparison to a

standard solver for integer programming models.

Finally, Section 6 presents the results obtained

from performance evaluation.

2. Related Works

This section reviews research conducted on the
sink node placement problem. Jari and Avokh [4]
focused on solving the sink placement problem.
They implemented two algorithms, MPAR (Multi-
sink Placement and Anycast Routing) and EMPAR
(Extended Multi-sink Placement and Anycast
Routing), within their proposed method, which
concurrently addresses clustering challenges, the
deployment of multiple sinks, and load-balanced
routing among these sinks. Bouarourou et al. [5]
modeled the deployment of multiple sinks and
routing from sensors to sinks using clustering
techniques to enhance the lifetime of wireless
sensor networks. In their model, they identified the
optimal locations for sinks and determined the
most efficient routes for data transmission from
sensors to these sinks. Their proposed method was
inspired by ant clustering algorithms as an artificial
intelligence approach.

Singh and Nagaraju [6] addressed the data
transmission difficulties in multi-hop, multi-sink
wireless sensor networks through network coding,
aiming to minimize both delay and energy
consumption.  They  utilized  optimization
algorithms such as network coding to improve
network performance in terms of energy
consumption, data transmission delay, and
communication quality. Houssein et al. [7] applied
Harris’ Hawks optimization algorithm to address
the sink node placement issue in large-scale
wireless sensor networks. They also used Prim's
shortest path algorithm to reconstruct the network
by establishing minimum transmission paths from
the sink node to other sensor nodes.

Yu et al. [8] introduced a method for concurrently
determining the deployment of both sensors and
sinks, aiming to minimize energy consumption
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while maximizing information effectiveness. In
their research, they formulated constrained multi-
objective  optimization as a mixed-integer
programming problem. Hanh et al. [9] examined
the challenges associated with node deployment in
wireless sensor networks with multiple sinks. They
focused on how to deploy the minimum number of
nodes to create a sensor network with multiple
sinks. Al-Salti et al. [10] introduced a mathematical
model for positioning multiple sinks in underwater
wireless sensor networks, considering a three-
dimensional mesh topology. The objective of this
model was to reduce the total number of hops for
each source-sink cell pair. Chen et al. [11]
addressed the multi-sink placement problem with
guaranteed delay and reliability in a wireless sensor
network with data loss.

Tuba et al. [12] focused on determining the
locations of multiple sinks with the aim of reducing
energy consumption and increasing network
lifetime. In their proposed method, they utilized
brain storm optimization algorithms for sink
placement. Sarwar and Chatterjee [13] investigated
the optimal placement of multiple sinks in wireless
sensor networks. The use of multiple sinks was
validated as an efficient technique for extending
network lifetime. They proposed distributed
algorithms to determine the minimum number of
required sinks and their optimal positions within
the installation area while ensuring a specified
delay and fault tolerance level. Furthermore, both
random and deterministic sensor node installation
strategies were explored in this research. Bose and
Gurusamy [14] concentrated on solving the optimal
multi-sink placement problem. They employed a
Bacteria Foraging algorithm to determine the
optimal positions of sinks. Their experimental
results indicated that end-to-end delay was
minimized and the average energy consumption of
sensor nodes was reduced.

As shown in Table 1, the symbols “*’ and ‘-’
indicate whether a metric was considered or not in
the research, respectively. Specifically, a metric
marked with “*’ in each row of Table 1 signifies
that the research focuses on that particular metric,
while ‘-’ indicates the opposite.

3. Mathematical Model of the Problem

This section presents the mathematical framework
for the sink placement problem, providing a precise
characterization of the problem. The model
encompasses a collection of sensors, a set of sinks,
and various potential locations for sink
deployment, denoted by the symbols N, S, and L,
respectively.
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The network is conceptualized as a graph, where
each node represents either a sensor or a sink
location. Specifically, a sensor node and a sink can
be located next to each other at a single node. Each
sensor is connected to only one of the sinks. By
setting a connection capacity limit to the sink,
multiple sensors can send data to a single sink.
Additionally, due to the possibility of failures, each
sink must maintain direct communication with
other sinks. Consequently, the communication
topology among the sinks is structured as a full
mesh.

Table 1. Comparison of past research and our approach
Metrics

Proposed Method

Ref.
Energy
Lifetime
Reliability
Scalability
Dynamics

4] Using MPAR and
EMPAR algorithms
Using the clustering * « «
5] technique )
6] Using three different * -
algorithms
7] ) H_arri_s’ Hawk_ . N
Optimization algorithm
dual-population
8] constrained multi- - -
objective optimization
algorithm
9] Using heuristic N .
algorithms
Mathematical model and
Partitioning Around - -
Medoid approximation
algorithm
Sink placement with
guaranteed delay and * * *
reliability
Brain storm optimization N
algorithm
Distributed algorithms - N -
for multi-sink placement
Bacteria Foraging N -
Algorithm
Use mathematical
modeling and DSA
algorithm

*
*

[10]

[11]
[12]
[13]

[14]

*
*
*

For each sensor n ¢ N, the number of packets
transmitted to the sink is represented by a specific
parameter ¢". Each sink s ¢ S has parameters o, 1°,
e®and ¢°, which represent, respectively, the number
of sensors that can connect to the sink, the number
of packets that can be processed by the sink, the
energy consumed by the sink, and the number of
sinks of type s.

Each sensor node n ¢ N consumes an amount of
energy En) to send t bits of data over a distance d,
which is derived from Equation (1).
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d <d,, "
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tEelect +tgfsd '
En(s) =
d>d,

The energy Eeect is required to activate the
electronic circuits, while & and emp represent the
energy required to activate the power amplifier.
The variable d calculates the Euclidean distance
between each node, and d is a threshold limit that
is approximately equal to 87 meters. Furthermore,
the energy expended by the receiver to process t
bits is derived from Equation (2). Finally, the total
energy consumed by a node is calculated using
Equation (3).

En( r) =tEglect 2)
En:En(s)+En(r) (3)

Based on the definitions of sets and parameters, the
decision variables for this problem are established:

1 |If sink s is located at location I,
X sl =
0 Otherwise,

If the connection between the sensor n

[1 and the sink at location | is established,
an =
0 Otherwise,
If there is a connection between place |
1 and place k,
ZIk =
0 Otherwise,

The primary objective is to minimize energy
consumption to extend the operational lifetime of
the wireless sensor network. This energy
encompasses that consumed by sinks, the energy
used in communication between sensors and sinks,
as well as the energy spent in interactions among
sinks, denoted by symbols Es(X), En(V), and Eq(Z),
respectively. The amount of energy consumed is
for processing and transmitting information.
Energy consumption is required for processing
operations such as data extraction and processing,
executing various algorithms, and performing
calculations. Energy consumption is also needed
for communication activities such as sending data,
receiving data, managing data transmission media,
and maintaining network connectivity. Equations
(4), (5), and (6) describe how to calculate each of
these energy consumptions.
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<

The following section presents the objective
function of the problem along with its associated
constraints.

Minimize(E((X ) +E (V) +Eq(Z)) ()

s Xy <1, Vel ®)
seS
S(Zy+Zy)+ =V, <z a’X,, Vliel 9)
kel

neN seS

*Vau =1, VneN (10)
leL
> oy <z Xy, VlelL (11)
neN seS
> X <¢°, VseS (12)
leL
(13)

T Xg+ X Xy<Z, +1,
seS se

(k<l,vkelL,vVlel)
Xq €{0,1}, VseS,VlelL

Vo, e{0,1}, vneN, VlelL
Z, €{0,1}, vlelL,vVk eL

Constraints (8) and (9) outline the restrictions on
the number of sinks that can be deployed at each
location, as well as the capacity limitations for
sensors to connect to those sinks. Constraint (8) in
the presented mathematical model states that only
one sink can be deployed at each location.
Constraint (10) indicates the connection limitation
of sensors to sinks. This constraint specifies that
each sensor must be connected to only one sink.
Constraints (11) and (12) represent the limitation
on the number of packets that can be processed by
the sink and the limit on the number of available
sinks for deployment, respectively. Constraint (13)
shows the topology limitation of the sinks'
connections, meaning that the topology among the
sinks must be a complete mesh. Any binary
assignment to the problem’s variables that satisfies
constraints (8) through (13) is termed a feasible
solution to the problem, or simply a solution.
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4. Proposed Algorithm: Dynamic Sensor

Assignment

In this section, the Dynamic Sensor Assignment

algorithm is used to solve the sink placement

problem. This algorithm can select the best active
sinks and assign sensors to them while turning off
other sinks. The goal of this algorithm is to
optimally allocate sensors to sinks in a way that
reduces network energy consumption and increases
network lifetime. The proposed algorithm can find

an appropriate solution by searching through all 2

subsets composed of sinks.

The steps of the DSA algorithm are as follows:

e Initialization of Active Sinks: The algorithm
begins by selecting a subset of active sinks
from the total available sinks. This is done by
generating a random number (denoted as r) for
each sink, and sinks with a random value r >0.8
are marked as active. The threshold (6) for this
process is set at 0.8.

e Sensor Assignment to Active Sinks: Once the
active sinks are determined, each sensor is
assigned to its nearest active sink based on the
Euclidean distance and the energy
consumption required for communication.
This ensures that the sensor assignment is both
energy-efficient and minimizes
communication delays.

e Evaluation of Active Sinks: The next step
involves evaluating whether any of the active
sinks should be deactivated to reduce overall
energy consumption. For each active sink, the
algorithm checks if the sensors connected to it
can be reassigned to other active sinks.

A sink will be turned off if the following conditions

are met:

1. Reassignment Feasibility: The sensors
connected to the sink can be reassigned to other
active sinks without disrupting network
performance.

2. Energy Optimization: Turning off the sink and
reallocating its sensors leads to a decrease in
total network energy consumption.

e Reallocation of Sensors: If a sink is to be
turned off, the sensors assigned to that sink are
reallocated to the other active sinks based on
the same criteria—proximity to the sink and
energy efficiency. After reassignment, the total
energy consumption of the network is re-
evaluated to ensure that the solution is still
optimal or near-optimal.

e lteration and Convergence: The process is
repeated for a fixed number of iterations
(denoted as k). During each iteration, the active
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sinks are assessed, and sensors are reassigned
as needed. The algorithm continues to adjust
the active sinks dynamically until it converges
to an optimal configuration.

. Criteria for Decision Making:

o Active Sink Selection: The decision to activate
or deactivate a sink is based on a random
selection process (threshold r >0.8) and the
energy consumption of sensors connected to
the sink.

o Sensor Reallocation: Sensors are reassigned to
active sinks that are closer or require less
energy for communication. This is based on the
Euclidean distance between the sensor and the
sink, as well as the energy required to transmit
data.

e Sink Deactivation: A sink is deactivated if its

associated sensors can be reassigned to other

sinks without increasing total energy
consumption or network latency.

4.2. Assumptions:

e Energy Consumption: The energy

consumption is primarily based on the distance
between a sensor and the sink, as well as the
energy required for transmission and reception
of data. The assumption is that communication
over shorter distances consumes less energy.

o Fixed Number of Sinks: The number of sinks is
fixed at the start of the process, and the
algorithm works with this predefined number
of sinks to optimize their locations and energy
usage.

e Sensor Reallocation: It is assumed that sensors
can be easily reallocated to other active sinks
without significantly impacting network
performance. The algorithm ensures that each
sensor is only connected to one sink at a time.

By dynamically assigning sensors to sinks and
optimizing sink activation, the algorithm
significantly improves the energy efficiency and
operational lifetime of wireless sensor networks.
Finally, the details of the Dynamic Sensor
Assignment algorithm are illustrated in Algorithm
1.

In each iteration from lines 1 to 19, active sinks are
initially selected randomly from the set of sinks S,
according to a designated r value. Sinks with an r
value exceeding the threshold & are designated as
active sinks. Then, in each loop from lines 4 to 18,
sensors are allocated to the active sinks based on
the nearest distance and energy consumption. The
active sink with the fewest connected sensors is
selected. For all sensors served by this sink, it is
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checked whether they can be reallocated to other
active sinks. If there are no sensors that can be
transferred to other active sinks, this active sink
will remain. Otherwise, it will be evaluated
whether it can be turned off or not.

Algorithm 1 Dynamic Sensor Assignment (DSA)
Algorithm

Input: SN XV .Z, .6 o i, ¢
Vs eS,vneN, VIl elL
Eis 1€mp *dco ;
Output: XV, ,Z, VseS,vneN,vlel,vk eL;

1: Fork=1 ... 1000 do

2:  Compute S; // Select active sinks between set of
sinks based onr > 0.8

3: Best_Lifetime® =, §" =S

4: While S"#0do

a Vi Ly VseS,
vVl eL,Vk eL,VneN;
//allocation sensors with sinks

5: Compute X _ V

6: SelectS —argmin T XV, VseS ,Vlel;
neN

7. S =S8 {S"};

8:  Ifsensors connected to S* can be moved to other
sinks then

0: S =S {s"}

10: Compute XV ,Z, ,
Vs es"VI eL,Vk eL,VneN;

11: Compute Best_Lifetime;

12: If Best_Lifetime < Best_Lifetime” then

13: Best_Lifetime® = Best_Lifetime,

Xag =Xg NV Vo Ly =2y ;
14: else

15: S =S +{S"};
16: end if

17: end if

18: end while

19: end for

To assess each sink (lines 9 to 16), it is assumed
that this sink is removed from the set of active
sinks, and its sensors are reallocated to other active
sinks based on the nearest distance and energy
consumption. If the total energy consumption of
the network decreases, then this active sink is
turned off. Otherwise, it will remain active. This
procedure continues until all active sinks have been
evaluated for whether they can be turned off to
reduce the overall energy consumption of the
network. All steps for selecting active sinks and
checking whether to turn them off or keep them
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active are executed in a loop for a total of k
iterations. Thus, the DSA algorithm can quickly
converge to the final optimal solution.

5. Simulation Results

This section compiles the experiments and
calculations performed to assess the effectiveness
of various methods for solving the placement
problem. The experiments are conducted in two
stages. In the first stage, based on random instances
and compared with the exact computational
method using CPLEX solver, and in the second
stage, based on real-world instances compared with
MC-JMSP method [5].

5.1. The First Stage Experiment:

In this regard, the execution time and solution
guality metrics for each of the problem-solving
methods using CPLEX [15] [16] [17] and the DSA
algorithm are computed and reported in
comparison with each other on a set of standard
problem instances. The method for constructing the
experimented instances is described as follows:
For each scenario, the network topology is
randomly generated from a 20x20 grid network.
This implies that each node within the specified
grid has a probability pr of being included as a node
in the network graph, with p; set to 0.25 for these
instances. This means that each node from the
specified grid will be a node in the network graph
with probability p. The value of p; is set to 0.25 for
the instances. After selecting the designated nodes,
the corresponding complete graph for the given
network topology will be generated from the
instance. The weight of each edge in the graph is
determined by the Euclidean distance between its
endpoints. The next step involves identifying nodes
equipped with sensors on this graph. Specifically,
for an instance with i sensors, i nodes are randomly
chosen from the graph, and a sensor is installed at
each selected node.

The parameter i, denoting the number of sensors
installed in the network for constructing these
instances, is selected from the set {5k | k=0, 1, 2,
..., 20}.

The computations in this section were executed on
a single-processor Intel Core i5 system running a
Windows operating system with 8 GB of RAM.
The dynamic sensor assignment algorithm was
implemented using the C programming language.
For CPLEX, a time limit of 3600 seconds was set.
Additionally, due to the random selection of active
sinks in the DSA algorithm, to achieve an optimal
solution, this algorithm is executed 10 times, and
the average of these runs is considered as the final
optimal solution. The parameters used for solving
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the problem in CPLEX, as well as those for the
proposed DSA algorithm, are detailed in Table 2.

Table 2. Problem parameters

The name of the parameter Value
Electrical processing energy (Ecject) 50 nj/bit
Energy of near-distance communication 10 pj/bit/m?
(Efs)

Energy of long-distance communication 0.001 pj/bit/m*
(Emp)
Energy consumed by the sink (e*) 0.1]j

Number of sinks
Battery model Constant
Simulation time <3600 s
The number of sensors that can be 20
connected to the sink (a®)

Single & Multiple

The number of packets that can be 50000 bits
processed by the sink (1)

The number of sinks (¢*) 10
Threshold (d,,) 87m
Amount of data sent (t) 2000 bits
Transmission type Constant bit rate
Transmission range 5m
Number of nodes (N) 100

Node distribution method in the area Random
Simulation area 20mx20m

The results obtained from these experiments are
compiled in Table 3 based on the instances. In this
table, for each problem instance, the following
metrics are reported:

power: The optimal amount of energy consumed
for these instances.
time: The duration taken for these instances.

% Err:The error percentage of the proposed DSA
algorithm, in comparison to CPLEX regarding the

optimal energy consumption for these instances, is
calculated as follows.

powerpsa ( £) — Powerep ex (£) 100 (14)
powercpgx ()

In the calculation of this quantity, each of the
functions powerpsa () and powerceiex (.)
respectively represent the optimal energy
consumption obtained from the execution of the
proposed DSA algorithm and the CPLEX solver.

In Table 3, the first column lists the names of the
experimented instances. The second column shows
the execution time of CPLEX on the instances. The
third column presents the best energy consumption
value achieved for each instance by CPLEX, under
a maximum execution time of 3600 seconds. The
fourth and fifth columns show the execution time
and the optimal energy consumption value attained
by the proposed DSA algorithm, respectively.
Lastly, the sixth column indicates the error
percentage of the proposed DSA algorithm relative
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to CPLEX in terms of identifying the best energy
consumption value for each instance.

Table 3. The results of running the DSA and CPLEX
algorithms on the instances.

DSA vs
CPLEX DSA CPLEX
Instance Time  Power Time  Power Err
Sensors (sec.)  Joule (sec.)  Joule %

5 0.31 5.15 0.53 5.15 0.03
10 0.30 10.22 0.53 10.24 0.14
15 3.33 15.25 0.53 15.25 0.00
20 0.39 20.40 0.56 20.40 0.00
25 41.78 26.44 0.54 26.45 0.03
30 20.05 31.40 0.67 31.42 0.07
35 365.42 36.52 0.60 36.53 0.04
40 3600 43.56 0.62 43.56 0.01
45 3600 48.55 0.60 48.56 0.01
50 3600 53.62 0.68 53.65 0.06
55 3600 61.68 0.71 61.73 0.07
60 3600 66.71 0.80 66.72 0.02
65 3600 7173 0.76 71.76 0.05
70 3600 80.87 0.76 80.93 0.08
75 3600 85.89 0.81 85.98 0.10
80 3600 90.93 0.89 91.02 0.10
85 3600 101.16 0.84 101.12 0.00
90 3600 106.13 0.87 106.25 0.11
95 3600 117.32 0.90 117.47 0.12
100 3600 129.55 0.90 129.66 0.08

The results obtained from Table 3 demonstrate the
superiority of the DSA algorithm in execution time
for all instances. Additionally, the solution
obtained by the DSA algorithm is very close to the
solution derived from the exact computational
method using the CPLEX solver. Notably, the error
percentage of the solution derived from the
proposed method remains below 0.15% for all
instances experimented, indicating the optimal
performance of the proposed method in finding a
suitable solution for the problem of allocating
sensors to sinks.

Figure 3 depicts the error percentage of the
proposed DSA algorithm compared to CPLEX
across various instances, with the horizontal axis
representing instance sizes based on the number of
sensors within the network, while the vertical axis
shows the error percentage for each instance.
According to this chart, the DSA algorithm
performs well in finding solutions close to the exact
answer, such that, based on the maximum value
shown in the graph, the error percentage does not
exceed 0.15. However, in most instances, this error
percentage drops below 0.1%, and in some cases, it
even reaches zero.

Figure 4 shows the execution time of the DSA
algorithm compared to CPLEX. The horizontal
axis in this figure represents the instance size based
on the number of sensors, while the vertical axis
indicates the execution time in seconds for the
instances. The results presented in this figure
underscore the time efficiency of the proposed
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method. In other words, the proposed algorithm
can identify solutions with a minimal error
percentage relative to the exact computational
approach, all while optimizing the use of time
resources. This notable benefit establishes the
proposed method as an effective solution for
addressing the sink location problem.

Instance

Figure 3. Error percentage of results obtained by DSA
algorithm in comparison with CPLEX
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Figure 4. Execution time of the DSA algorithm on
instances compared to CPLEX.

5.2. The Second Stage Experiment:

In this step, we use topology models obtained from
Topology Zoo [18] to investigate the proposed
solution in a real-world. Details of the topologies
used in these experiments are given in Table 4.

Table 4. Topology information

Topology [N |F| ]
iSTAR-A 18 3 15
iSTAR-B 18 4 14
iSTAR-C 18 5 13
NTELOS-A 48 5 43
NTELOS-B 48 10 38
NTELOS-C 48 15 33

The values of the problem-solving parameters and
hardware equipment for performing the
experiments are the same as in the first stage.

The results obtained from these experiments are
compiled in Table 5.
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% imp: The percentage improvement of the

proposed formulation over the Joint Multiple Sink
method is calculated as:

POWermc_jmsp —POWerpro *100 (15)

Powerpro

In calculating this quantity, Powermcjmsp and
Powerpro functions, give the optimal energy
consumption found by the MC-JMSP method and
the proposed method, respectively.

Table 5. Experimental results comparing the proposed,
MC-JMSP method.

DSA vs

DSA MC-JMSP MC-

JMSP

Topology Time  Power Time  Power Imp
(sec.)  Joule (sec.)  Joule %

iSTAR-A 0.50 17.65 0.92 17.65 0.00
iSTAR-B 0.49 16.56 2.96 16.56 0.00
iSTAR-C 0.53 15.34 4.13 15.61 1.76
NTELOS-A 0.80 49.01 53.23 49.02 0.02
NTELOS-B 0.77 41.01 103.50  41.02 0.02
NTELOS-C 0.73 36.01 102.57 36.02 0.03

In Table 5, the first column presents the names of
the topologies. The second and third columns show
the execution time and the best solution obtained
by the proposed method for the tested examples,
respectively. Similarly, the fourth and fifth
columns display the corresponding values for the
compared method.

As shown in Table 5, the proposed method
generally performs better than MC-JMSP method,
especially in topologies with more nodes. This is
because the proposed method consumes less
energy for connections compared to MC-JMSP
method due to the proper assignment of sensors to
sinks and the elimination of active sinks with too
few sensors.

Figure 5 shows the average percentage
improvement of the proposed method compared to
MC-JMSP method for different topologies.

In Figure 5, the horizontal axis represents the
names of the topologies and the vertical axis
represents the percentage improvement. As shown
in figure 5, from topology iISTAR-C onwards, the
proposed method shows better performance. The
fluctuation observed in the graph in Figure 5 can be
attributed to the random placement of sinks and
sensors in the experimented topologies. As a result,
some sensors may be positioned closer to potential
sink deployment locations, while others may be
farther away. This variability directly impacts the
overall energy consumption of the network.
Figure 6 shows the average runtime of the DSA
algorithm compared to the MC-JMSP method. The

horizontal axis represents the names of the
topologies, and the vertical axis represents the
average runtime. The results in Figure 6 show that
the proposed method for larger topologies responds
better than the compared method. As a result, it can
be said that the proposed method is suitable for
solving the problem of locating sinks in large-scale
wireless sensor networks.

2

ercentnge Improvement

000 a00 0.02 a0 003

LU ———— — —
STARA  STARE  STARC NTELOSA NTELOS-B NTELOSA

Tapologies

B avemge percentage mmprov ement

Figure 5. Average percentage improvement of the
proposed method compared to MC-JMSP

Figure 6 shows the average runtime of the DSA
algorithm compared to the MC-JMSP method. The
horizontal axis represents the names of the
topologies, and the vertical axis represents the
average runtime. The results in Figure 6 show that
the proposed method for larger topologies responds
better than the compared method. As a result, it can
be said that the proposed method is suitable for
solving the problem of locating sinks in large-scale
wireless sensor networks.
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Figure 6. Average runtime of the proposed method
compared to MC-JMSP

6. Conclusion

This paper examines the sink placement challenge
in wireless sensor networks and introduces a
dynamic sensor assignment-based algorithm to
tackle it. The proposed algorithm utilizes the
method of deactivating active sinks to achieve an
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efficient network topology within an acceptable
timeframe. To evaluate the performance of the
proposed algorithm, the experiments were
conducted in two stages. In the first stage, various
network instances were randomly generated. In the
second stage, the topologies designed in Internet
Topology Zoo were utilized. The experimental
results of the proposed algorithm were then
compared with those obtained from CPLEX and
MC-JMSP method. The findings from the first
stage revealed that the proposed method achieves
optimal solutions in less time and with a lower error
percentage compared to CPLEX. Additionally, the
results from the second stage demonstrated the
superiority of the proposed method over MC-JMSP
method in terms of both execution time and
minimizing energy consumption.
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