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 Deploying multiple sinks instead of a single sink is one possible 

solution to improve the lifetime and durability of wireless sensor 

networks. Using multiple sinks leads to the definition of a problem 

known as the sink placement problem. In this context, the goal is to 

determine the optimal locations and number of sink nodes in the 

network to maximize the network's lifetime. In this paper, we propose 

a dynamic sensor assignment algorithm to address the sink placement 

problem and evaluate its performance against existing solution 

methods on a diverse set of instances. We conducted experiments in 

two stages. In the first stage, based on random instances and compared 

to the exact computational method using the CPLEX solver, and in 

the second stage, based on real-world instances compared to MC-

JMSP (Model-Based Clustering- Joint Multiple Sink Placement) 

method. The results obtained in the first stage of the experiments 

indicate the superiority of the dynamic sensor assignment algorithm 

in runtime for all instances. Furthermore, the solution obtained by the 

dynamic sensor assignment algorithm is very close to the solution 

obtained by the CPLEX solver. In particular, the percentage error of 

the solution found by the proposed method compared to CPLEX in 

all experimented instances is less than 0.15%, indicating the 

effectiveness of the proposed method in finding the appropriate 

solution for assigning sensors to sinks. Also, the results of the second 

stage experiments show the superiority of the proposed method in 

both execution time and energy efficiency compared to the MC-JMSP 

method. 
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1. Introduction 

Wireless sensor networks consist of a large number 

of sensor nodes that are dispersed in an 

environment. The primary function of these nodes 

is to gather information about their environment 

and wirelessly relay it to a central node, referred to 

as the sink. This information can include 

temperature, light, humidity, and other factors. 

Wireless sensor networks have characteristics, 

properties, and limitations that distinguish them 

from other networks. Among these limitations are 

energy consumption, processing speed, data 

storage capacity, and communication bandwidth. 

Wireless sensor networks can be implemented in 

applications such as target tracking, environmental 

monitoring, agriculture, industry, and military 

uses. Figure 1 illustrates the architecture of 

wireless sensor networks. 

Given that sensors require energy consumption to 

receive information, energy efficiency by sensor 

nodes is considered a significant challenge in these 

networks. This is because nodes are randomly 

deployed in the network, and their distribution in 

inaccessible locations can lead to excessive energy 

consumption, putting them at risk of failure. When 

a node shuts down, its communication with other 

nodes will be interrupted, and the information 
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received from the surrounding environment will be 

incomplete. Consequently, one of the main 

challenges in wireless sensor networks is to 

enhance the network's longevity by improving 

energy efficiency. For this purpose, deploying 

multiple sinks instead of using a single sink can be 

an effective solution. 

 

Figure 1. Wireless sensor network architecture. 

Moreover, utilizing a single sink in the network has 

its drawbacks. For instance, network traffic in most 

areas will become excessively known, and the sink 

may enter an overflow state. Additionally, due to 

high energy consumption, the sink may also shut 

down. The use of multiple sinks leads to defining a 

problem known as the sink placement problem, 

where the number and placement of sinks become 

significant. Figure 2 illustrates an example of the 

sink placement architecture. As shown in Figure 2, 

the solid yellow nodes represent the sensors, the 

hollow circles denote potential sink locations, and 

the red circles indicate the selected sink locations. 

 

 
Figure 2. An example of sinks placement architecture. 

This paper aims to find the optimal placement and 

number of sink nodes in a way that meets defined 

constraints and prolongs the operational lifetime of 

the network. From a computational complexity 

perspective, the sink placement problem belongs to 

the class of NP-hard problems [3]. Our approach 

utilizes dynamic sensor assignment to tackle this 

issue. This algorithm employs the strategy of 

turning off active sinks to achieve an efficient 

network topology within an acceptable timeframe. 

The proposed approach has significant practical 

implications across various domains, including 

smart cities, environmental monitoring, and 

industrial automation. In smart cities, WSNs 

(Wireless Sensor Networks) are used for 

applications like air quality monitoring, traffic 

management, and energy consumption 

optimization. By improving the energy efficiency 

and longevity of sensor networks, the proposed 

method reduces maintenance costs and ensures 

continuous service delivery in these urban 

applications. 

In environmental monitoring, such as in 

agriculture, forest management, and climate 

change studies, the enhanced network lifetime 

enables long-term data collection, which is critical 

for ongoing analysis. The proposed solution 

minimizes energy consumption and ensures 

uninterrupted data flow, making it ideal for remote 

and inaccessible areas. Similarly, in industrial 

automation, the approach supports reliable 

monitoring of equipment and processes by 

reducing latency and ensuring consistent network 

performance, which is vital for operational 

efficiency and preventing downtime. 

Overall, the proposed algorithm not only optimizes 

technical performance but also offers tangible 

benefits, such as reducing operational costs, 

enhancing reliability, and promoting 

environmental sustainability by decreasing 

electronic waste through extended network 

lifetimes. These advantages make the solution 

highly relevant for real-world applications. The 

main contributions of this paper are as follows: 

 Using a novel algorithm for dynamically 

assigning sensors to sinks and selectively 

deactivating inefficient sinks to improve 

energy efficiency and extend network lifetime. 

 Minimizing overall network energy 

consumption by reallocating sensors to the 

nearest active sink based on energy efficiency 

and balancing energy load across the network 

 The proposed method is compared with the 

CPLEX solver and shown to provide solutions 

with an error of less than 0.15% in energy 

consumption, demonstrating efficiency and 

accuracy. 

 The DSA (Dynamic Sensor Assignment) 

algorithm significantly reduces execution time 

compared to the exact computational method, 
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making it suitable for real-time applications in 

large-scale networks. 

 The proposed method is scalable and can be 

effectively applied to various real-world 

scenarios such as smart cities, environmental 

monitoring, and industrial automation. 

The structure of this paper is organized as follows: 

Section 2 reviews existing research related to the 

sink node placement problem. Section 3 explains 

the standard integer programming model for this 

issue. Section 4 introduces the proposed algorithm 

based on dynamic sensor allocation and examines 

its structure. Section 5 evaluates the performance 

of the proposed algorithm in comparison to a 

standard solver for integer programming models. 

Finally, Section 6 presents the results obtained 

from performance evaluation. 

 

2. Related Works 

This section reviews research conducted on the 

sink node placement problem. Jari and Avokh [4] 

focused on solving the sink placement problem. 

They implemented two algorithms, MPAR (Multi-

sink Placement and Anycast Routing) and EMPAR 

(Extended Multi-sink Placement and Anycast 

Routing), within their proposed method, which 

concurrently addresses clustering challenges, the 

deployment of multiple sinks, and load-balanced 

routing among these sinks. Bouarourou et al. [5] 

modeled the deployment of multiple sinks and 

routing from sensors to sinks using clustering 

techniques to enhance the lifetime of wireless 

sensor networks. In their model, they identified the 

optimal locations for sinks and determined the 

most efficient routes for data transmission from 

sensors to these sinks. Their proposed method was 

inspired by ant clustering algorithms as an artificial 

intelligence approach.  

Singh and Nagaraju [6] addressed the data 

transmission difficulties in multi-hop, multi-sink 

wireless sensor networks through network coding, 

aiming to minimize both delay and energy 

consumption. They utilized optimization 

algorithms such as network coding to improve 

network performance in terms of energy 

consumption, data transmission delay, and 

communication quality. Houssein et al. [7] applied 

Harris’ Hawks optimization algorithm to address 

the sink node placement issue in large-scale 

wireless sensor networks. They also used Prim's 

shortest path algorithm to reconstruct the network 

by establishing minimum transmission paths from 

the sink node to other sensor nodes. 

Yu et al. [8] introduced a method for concurrently 

determining the deployment of both sensors and 

sinks, aiming to minimize energy consumption 

while maximizing information effectiveness. In 

their research, they formulated constrained multi-

objective optimization as a mixed-integer 

programming problem. Hanh et al. [9] examined 

the challenges associated with node deployment in 

wireless sensor networks with multiple sinks. They 

focused on how to deploy the minimum number of 

nodes to create a sensor network with multiple 

sinks. Al-Salti et al. [10] introduced a mathematical 

model for positioning multiple sinks in underwater 

wireless sensor networks, considering a three-

dimensional mesh topology. The objective of this 

model was to reduce the total number of hops for 

each source-sink cell pair. Chen et al. [11] 

addressed the multi-sink placement problem with 

guaranteed delay and reliability in a wireless sensor 

network with data loss. 

Tuba et al. [12] focused on determining the 

locations of multiple sinks with the aim of reducing 

energy consumption and increasing network 

lifetime. In their proposed method, they utilized 

brain storm optimization algorithms for sink 

placement. Sarwar and Chatterjee [13] investigated 

the optimal placement of multiple sinks in wireless 

sensor networks. The use of multiple sinks was 

validated as an efficient technique for extending 

network lifetime. They proposed distributed 

algorithms to determine the minimum number of 

required sinks and their optimal positions within 

the installation area while ensuring a specified 

delay and fault tolerance level. Furthermore, both 

random and deterministic sensor node installation 

strategies were explored in this research. Bose and 

Gurusamy [14] concentrated on solving the optimal 

multi-sink placement problem. They employed a 

Bacteria Foraging algorithm to determine the 

optimal positions of sinks. Their experimental 

results indicated that end-to-end delay was 

minimized and the average energy consumption of 

sensor nodes was reduced. 

As shown in Table 1, the symbols ‘*’ and ‘-’ 

indicate whether a metric was considered or not in 

the research, respectively. Specifically, a metric 

marked with ‘*’ in each row of Table 1 signifies 

that the research focuses on that particular metric, 

while ‘-’ indicates the opposite. 

 

3. Mathematical Model of the Problem 

This section presents the mathematical framework 

for the sink placement problem, providing a precise 

characterization of the problem. The model 

encompasses a collection of sensors, a set of sinks, 

and various potential locations for sink 

deployment, denoted by the symbols N, S, and L, 

respectively. 
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The network is conceptualized as a graph, where 

each node represents either a sensor or a sink 

location. Specifically, a sensor node and a sink can 

be located next to each other at a single node. Each 

sensor is connected to only one of the sinks. By 

setting a connection capacity limit to the sink, 

multiple sensors can send data to a single sink. 

Additionally, due to the possibility of failures, each 

sink must maintain direct communication with 

other sinks. Consequently, the communication 

topology among the sinks is structured as a full 

mesh. 

 
Table 1. Comparison of past research and our approach 
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[4] 
Using MPAR and 

EMPAR algorithms 
* * - - - 

[5] 
Using the clustering 

technique 
* * - * - 

[6] 
Using three different 

algorithms 
* * - - - 

[7] 
Harris’ Hawk 

Optimization algorithm 
* * - - - 

[8] 

dual-population 

constrained multi-
objective optimization 

algorithm 

* * - - - 

[9] 
Using heuristic 

algorithms 
* * - - - 

[10] 

Mathematical model and 
Partitioning Around 

Medoid approximation 

algorithm 

* * - - - 

[11] 

Sink placement with 

guaranteed delay and 

reliability 

* * * - - 

[12] 
Brain storm optimization 

algorithm 
* * - - - 

[13] 
Distributed algorithms 

for multi-sink placement 
* * * - - 

[14] 
Bacteria Foraging 

Algorithm 
* * - - - 

- 

Use mathematical 

modeling and DSA 

algorithm 

* * - * - 

 

 For each sensor n ϵ N, the number of packets 

transmitted to the sink is represented by a specific 

parameter σn. Each sink s ϵ S has parameters αs, μs, 

es and φs, which represent, respectively, the number 

of sensors that can connect to the sink, the number 

of packets that can be processed by the sink, the 

energy consumed by the sink, and the number of 

sinks of type s. 

Each sensor node n ϵ N consumes an amount of 

energy En(s) to send t bits of data over a distance d, 

which is derived from Equation (1). 

 

(1) 
2

elect fs co

n( s ) 4
elect mp co

tE t d , d d
E

tE t d , d d





 


 





 

 

The energy Eelect is required to activate the 

electronic circuits, while εfs and εmp represent the 

energy required to activate the power amplifier. 

The variable d calculates the Euclidean distance 

between each node, and dco is a threshold limit that 

is approximately equal to 87 meters. Furthermore, 

the energy expended by the receiver to process t 

bits is derived from Equation (2). Finally, the total 

energy consumed by a node is calculated using 

Equation (3). 

 
(2) 

n( r ) electE tE  

(3) 
n n( s ) n( r )E E E   

Based on the definitions of sets and parameters, the 

decision variables for this problem are established: 

 

   If sink s is located at location l,                                          

   Otherwise,                                                                           

If the connection between the sensor n    

and the sink at location l is established, 

 

         Otherwise,  

                                                                       

If there is a connection between place l 

and place k,  

   

         Otherwise,                                                                     

The primary objective is to minimize energy 

consumption to extend the operational lifetime of 

the wireless sensor network. This energy 

encompasses that consumed by sinks, the energy 

used in communication between sensors and sinks, 

as well as the energy spent in interactions among 

sinks, denoted by symbols Es(X), En(V), and Eq(Z), 

respectively. The amount of energy consumed is 

for processing and transmitting information. 

Energy consumption is required for processing 

operations such as data extraction and processing, 

executing various algorithms, and performing 

calculations. Energy consumption is also needed 

for communication activities such as sending data, 

receiving data, managing data transmission media, 

and maintaining network connectivity. Equations 

(4), (5), and (6) describe how to calculate each of 

these energy consumptions. 
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(4) s
s sl

s S l L
E ( X ) e X 

 
  

(5) 
n n nl

n N l L
E (V ) E V 

 
  

(6) 
q k lk

k L l L
k l

E ( Z ) E Z 
 


  

The following section presents the objective 

function of the problem along with its associated 

constraints. 
 

(7) 
s n qMinimize( E ( X ) E (V ) E ( Z ))   

(8) 
sl

s S
X 1, l L


    

(9) s

lk kl nl sl
k L n N s S

( Z Z ) V X , l L  

  

      

(10) 
nl

l L
V 1, n N


    

(11) n s
nl sl

n N s S
V X , l L  

 
    

(12) s
sl

l L
X , s S


    

(13) 
sk sl lk

s S s S

X X Z 1, 

 

    

( k l , k L, l L )      

 
slX { 0 ,1}, s S , l L      

 
nlV { 0 ,1}, n N , l L      

 
lkZ { 0 ,1}, l L , k L      

Constraints (8) and (9) outline the restrictions on 

the number of sinks that can be deployed at each 

location, as well as the capacity limitations for 

sensors to connect to those sinks. Constraint (8) in 

the presented mathematical model states that only 

one sink can be deployed at each location. 

Constraint (10) indicates the connection limitation 

of sensors to sinks. This constraint specifies that 

each sensor must be connected to only one sink. 

Constraints (11) and (12) represent the limitation 

on the number of packets that can be processed by 

the sink and the limit on the number of available 

sinks for deployment, respectively. Constraint (13) 

shows the topology limitation of the sinks' 

connections, meaning that the topology among the 

sinks must be a complete mesh. Any binary 

assignment to the problem's variables that satisfies 

constraints (8) through (13) is termed a feasible 

solution to the problem, or simply a solution. 

 
4. Proposed Algorithm: Dynamic Sensor 

Assignment 

In this section, the Dynamic Sensor Assignment 

algorithm is used to solve the sink placement 

problem. This algorithm can select the best active 

sinks and assign sensors to them while turning off 

other sinks. The goal of this algorithm is to 

optimally allocate sensors to sinks in a way that 

reduces network energy consumption and increases 

network lifetime. The proposed algorithm can find 

an appropriate solution by searching through all 2|S| 

subsets composed of sinks. 

The steps of the DSA algorithm are as follows: 

 Initialization of Active Sinks: The algorithm 

begins by selecting a subset of active sinks 

from the total available sinks. This is done by 

generating a random number (denoted as r) for 

each sink, and sinks with a random value r >0.8 

are marked as active. The threshold (θ) for this 

process is set at 0.8. 

 Sensor Assignment to Active Sinks: Once the 

active sinks are determined, each sensor is 

assigned to its nearest active sink based on the 

Euclidean distance and the energy 

consumption required for communication. 

This ensures that the sensor assignment is both 

energy-efficient and minimizes 

communication delays. 

 Evaluation of Active Sinks: The next step 

involves evaluating whether any of the active 

sinks should be deactivated to reduce overall 

energy consumption. For each active sink, the 

algorithm checks if the sensors connected to it 

can be reassigned to other active sinks. 

A sink will be turned off if the following conditions 

are met: 

1. Reassignment Feasibility: The sensors 

connected to the sink can be reassigned to other 

active sinks without disrupting network 

performance. 

2. Energy Optimization: Turning off the sink and 

reallocating its sensors leads to a decrease in 

total network energy consumption. 

 Reallocation of Sensors: If a sink is to be 

turned off, the sensors assigned to that sink are 

reallocated to the other active sinks based on 

the same criteria—proximity to the sink and 

energy efficiency. After reassignment, the total 

energy consumption of the network is re-

evaluated to ensure that the solution is still 

optimal or near-optimal. 

 Iteration and Convergence: The process is 

repeated for a fixed number of iterations 

(denoted as k). During each iteration, the active 
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sinks are assessed, and sensors are reassigned 

as needed. The algorithm continues to adjust 

the active sinks dynamically until it converges 

to an optimal configuration. 

 

4.1. Criteria for Decision Making: 

 Active Sink Selection: The decision to activate 

or deactivate a sink is based on a random 

selection process (threshold r >0.8) and the 

energy consumption of sensors connected to 

the sink. 

 Sensor Reallocation: Sensors are reassigned to 

active sinks that are closer or require less 

energy for communication. This is based on the 

Euclidean distance between the sensor and the 

sink, as well as the energy required to transmit 

data. 

 Sink Deactivation: A sink is deactivated if its 

associated sensors can be reassigned to other 

sinks without increasing total energy 

consumption or network latency. 

 

4.2. Assumptions: 

 Energy Consumption: The energy 

consumption is primarily based on the distance 

between a sensor and the sink, as well as the 

energy required for transmission and reception 

of data. The assumption is that communication 

over shorter distances consumes less energy. 

 Fixed Number of Sinks: The number of sinks is 

fixed at the start of the process, and the 

algorithm works with this predefined number 

of sinks to optimize their locations and energy 

usage. 

 Sensor Reallocation: It is assumed that sensors 

can be easily reallocated to other active sinks 

without significantly impacting network 

performance. The algorithm ensures that each 

sensor is only connected to one sink at a time. 

 

By dynamically assigning sensors to sinks and 

optimizing sink activation, the algorithm 

significantly improves the energy efficiency and 

operational lifetime of wireless sensor networks. 

Finally, the details of the Dynamic Sensor 

Assignment algorithm are illustrated in Algorithm 

1. 

In each iteration from lines 1 to 19, active sinks are 

initially selected randomly from the set of sinks S, 

according to a designated r value. Sinks with an r 

value exceeding the threshold θ are designated as 

active sinks. Then, in each loop from lines 4 to 18, 

sensors are allocated to the active sinks based on 

the nearest distance and energy consumption. The 

active sink with the fewest connected sensors is 

selected. For all sensors served by this sink, it is 

checked whether they can be reallocated to other 

active sinks. If there are no sensors that can be 

transferred to other active sinks, this active sink 

will remain. Otherwise, it will be evaluated 

whether it can be turned off or not. 

 
Algorithm 1 Dynamic Sensor Assignment (DSA) 

Algorithm 

Input:
s s s s

sl nl lk
S , N , X ,V , Z ,e , , ,    

s S , n N , l L                 

fs mp co, ,d ;               

Output: 
* * *

sl nl lk
X ,V , Z s S , n N , l L , k L ;         

1: For k = 1 … 1000 do 

2:     Compute S'; // Select active sinks between set of 

sinks based on r > 0.8 

3:    Best_Lifetime* = ∞, S'' = S'; 

4:    While S'' ≠ 0 do 

5:    
''

sl nl lk
Compute X ,V , Z s S ,   

l L , k L , n N ;              

       //allocation sensors with sinks 

6:    
* ''

sl nl
n N

Select S arg min X V , s S , l L ;



      

7:    
'' '' *S S { S };   

8:      If sensors connected to S* can be moved to other 

sinks then 

9:             
' ' *S S { S };   

10:          sl nl lk
Compute X ,V , Z ,    

                  
''

s s l L , k L , n N ;           

11:           Compute Best_Lifetime; 

12:  If Best_Lifetime < Best_Lifetime* then 

13:   Best_Lifetime* = Best_Lifetime,      

* * *
sl sl nl nl lk lkX X ,V V ,Z Z ;    

14:          else 

15:                 
' ' *S S { S };   

16:          end if 

17:        end if 

18:    end while 

19: end for 
 

To assess each sink (lines 9 to 16), it is assumed 

that this sink is removed from the set of active 

sinks, and its sensors are reallocated to other active 

sinks based on the nearest distance and energy 

consumption. If the total energy consumption of 

the network decreases, then this active sink is 

turned off. Otherwise, it will remain active. This 

procedure continues until all active sinks have been 

evaluated for whether they can be turned off to 

reduce the overall energy consumption of the 

network. All steps for selecting active sinks and 

checking whether to turn them off or keep them 
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active are executed in a loop for a total of k 

iterations. Thus, the DSA algorithm can quickly 

converge to the final optimal solution. 

 

5. Simulation Results  

This section compiles the experiments and 

calculations performed to assess the effectiveness 

of various methods for solving the placement 

problem. The experiments are conducted in two 

stages. In the first stage, based on random instances 

and compared with the exact computational 

method using CPLEX solver, and in the second 

stage, based on real-world instances compared with 

MC-JMSP method [5]. 

 

5.1. The First Stage Experiment: 

In this regard, the execution time and solution 

quality metrics for each of the problem-solving 

methods using CPLEX [15] [16] [17] and the DSA 

algorithm are computed and reported in 

comparison with each other on a set of standard 

problem instances. The method for constructing the 

experimented instances is described as follows: 

For each scenario, the network topology is 

randomly generated from a 20×20 grid network. 

This implies that each node within the specified 

grid has a probability pr of being included as a node 

in the network graph, with pr set to 0.25 for these 

instances. This means that each node from the 

specified grid will be a node in the network graph 

with probability pr. The value of pr is set to 0.25 for 

the instances. After selecting the designated nodes, 

the corresponding complete graph for the given 

network topology will be generated from the 

instance. The weight of each edge in the graph is 

determined by the Euclidean distance between its 

endpoints. The next step involves identifying nodes 

equipped with sensors on this graph. Specifically, 

for an instance with i sensors, i nodes are randomly 

chosen from the graph, and a sensor is installed at 

each selected node. 

The parameter i, denoting the number of sensors 

installed in the network for constructing these 

instances, is selected from the set {5k | k=0, 1, 2, 

…, 20}. 

The computations in this section were executed on 

a single-processor Intel Core i5 system running a 

Windows operating system with 8 GB of RAM. 

The dynamic sensor assignment algorithm was 

implemented using the C programming language. 

For CPLEX, a time limit of 3600 seconds was set. 

Additionally, due to the random selection of active 

sinks in the DSA algorithm, to achieve an optimal 

solution, this algorithm is executed 10 times, and 

the average of these runs is considered as the final 

optimal solution. The parameters used for solving 

the problem in CPLEX, as well as those for the 

proposed DSA algorithm, are detailed in Table 2.  

 
Table 2. Problem parameters 

The name of the parameter Value 
Electrical processing energy (𝐸𝑒𝑙𝑒𝑐𝑡) 50 nj/bit 

Energy of near-distance communication 
(𝜀𝑓𝑠) 

10 pj/bit/m2 

Energy of long-distance communication 

(𝜀𝑚𝑝) 
0.001 pj/bit/m4 

Energy consumed by the sink (𝑒𝑠) 0.1 j 

Number of sinks Single & Multiple 

Battery model Constant 
Simulation time <3600 s 

The number of sensors that can be 

connected to the sink (𝛼𝑠) 
20 

The number of packets that can be 

processed by the sink (𝜇𝑠) 
50000 bits 

The number of sinks (𝜑𝑠) 10 
Threshold (𝑑𝑐𝑜) 87 m 
Amount of data sent (t) 2000 bits 

Transmission type Constant bit rate 
Transmission range 5 m 

Number of nodes (N) 100 

Node distribution method in the area Random 
Simulation area 20 m × 20 m 

 

The results obtained from these experiments are 

compiled in Table 3 based on the instances. In this 

table, for each problem instance, the following 

metrics are reported: 

 
power: The optimal amount of energy consumed 

for these instances. 
time: The duration taken for these instances. 
% Err: The error percentage of the proposed DSA 

algorithm, in comparison to CPLEX regarding the 

optimal energy consumption for these instances, is 

calculated as follows. 

 
(14) 

DSA CPLEX

CPLEX

power ( ) power ( )
* 100

power ( )

 




 

 

In the calculation of this quantity, each of the 

functions powerDSA (.) and powerCPLEX (.) 

respectively represent the optimal energy 

consumption obtained from the execution of the 

proposed DSA algorithm and the CPLEX solver. 

 

In Table 3, the first column lists the names of the 

experimented instances. The second column shows 

the execution time of CPLEX on the instances. The 

third column presents the best energy consumption 

value achieved for each instance by CPLEX, under 

a maximum execution time of 3600 seconds. The 

fourth and fifth columns show the execution time 

and the optimal energy consumption value attained 

by the proposed DSA algorithm, respectively. 

Lastly, the sixth column indicates the error 

percentage of the proposed DSA algorithm relative 
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to CPLEX in terms of identifying the best energy 

consumption value for each instance. 

 
Table 3. The results of running the DSA and CPLEX 

algorithms on the instances. 
DSA vs 

CPLEX 
DSA CPLEX 

 

Err Power Time Power Time Instance 

% Joule (sec.) Joule (sec.) Sensors 

0.03 5.15 0.53 5.15 0.31 5 
0.14 10.24 0.53 10.22 0.30 10 

0.00 15.25 0.53 15.25 3.33 15 

0.00 20.40 0.56 20.40 0.39 20 
0.03 26.45 0.54 26.44 41.78 25 

0.07 31.42 0.67 31.40 20.05 30 

0.04 36.53 0.60 36.52 365.42 35 
0.01 43.56 0.62 43.56 3600 40 
0.01 48.56 0.60 48.55 3600 45 

0.06 53.65 0.68 53.62 3600 50 

0.07 61.73 0.71 61.68 3600 55 

0.02 66.72 0.80 66.71 3600 60 

0.05 71.76 0.76 71.73 3600 65 
0.08 80.93 0.76 80.87 3600 70 

0.10 85.98 0.81 85.89 3600 75 

0.10 91.02 0.89 90.93 3600 80 
0.00 101.12 0.84 101.16 3600 85 

0.11 106.25 0.87 106.13 3600 90 

0.12 117.47 0.90 117.32 3600 95 
0.08 129.66 0.90 129.55 3600 100 

 

The results obtained from Table 3 demonstrate the 

superiority of the DSA algorithm in execution time 

for all instances. Additionally, the solution 

obtained by the DSA algorithm is very close to the 

solution derived from the exact computational 

method using the CPLEX solver. Notably, the error 

percentage of the solution derived from the 

proposed method remains below 0.15% for all 

instances experimented, indicating the optimal 

performance of the proposed method in finding a 

suitable solution for the problem of allocating 

sensors to sinks. 

Figure 3 depicts the error percentage of the 

proposed DSA algorithm compared to CPLEX 

across various instances, with the horizontal axis 

representing instance sizes based on the number of 

sensors within the network, while the vertical axis 

shows the error percentage for each instance. 

According to this chart, the DSA algorithm 

performs well in finding solutions close to the exact 

answer, such that, based on the maximum value 

shown in the graph, the error percentage does not 

exceed 0.15. However, in most instances, this error 

percentage drops below 0.1%, and in some cases, it 

even reaches zero. 

Figure 4 shows the execution time of the DSA 

algorithm compared to CPLEX. The horizontal 

axis in this figure represents the instance size based 

on the number of sensors, while the vertical axis 

indicates the execution time in seconds for the 

instances. The results presented in this figure 

underscore the time efficiency of the proposed 

method. In other words, the proposed algorithm 

can identify solutions with a minimal error 

percentage relative to the exact computational 

approach, all while optimizing the use of time 

resources. This notable benefit establishes the 

proposed method as an effective solution for 

addressing the sink location problem. 

 

 
Figure 3. Error percentage of results obtained by DSA 

algorithm in comparison with CPLEX 

 

 
 

Figure 4. Execution time of the DSA algorithm on 

instances compared to CPLEX. 
 

5.2. The Second Stage Experiment: 

In this step, we use topology models obtained from 

Topology Zoo [18] to investigate the proposed 

solution in a real-world. Details of the topologies 

used in these experiments are given in Table 4. 
 

Table 4. Topology information 
Topology |N| |F| |S| 

iSTAR-A 18 3 15 

iSTAR-B 18 4 14 
iSTAR-C 18 5 13 

NTELOS-A 48 5 43 

NTELOS-B 48 10 38 
NTELOS-C 48 15 33 

 

The values of the problem-solving parameters and 

hardware equipment for performing the 

experiments are the same as in the first stage. 

The results obtained from these experiments are 

compiled in Table 5.  
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% imp: The percentage improvement of the 

proposed formulation over the Joint Multiple Sink 

method is calculated as: 

 
(15) 

*100
Power Powermc jmsp pro

Powerpro

  

 

In calculating this quantity, Powermc-jmsp and 

Powerpro functions, give the optimal energy 

consumption found by the MC-JMSP method and 

the proposed method, respectively. 

Table 5. Experimental results comparing the proposed, 

MC-JMSP method. 
DSA vs 

MC-

JMSP 

MC-JMSP DSA 

 

Imp Power Time Power Time Topology 

% Joule (sec.) Joule (sec.)  

0.00 17.65 0.92 17.65 0.50 iSTAR-A 
0.00 16.56 2.96 16.56 0.49 iSTAR-B 

1.76 15.61 4.13 15.34 0.53 iSTAR-C 

0.02 49.02 53.23 49.01 0.80 NTELOS-A 
0.02 41.02 103.50 41.01 0.77 NTELOS-B 

0.03 36.02 102.57 36.01 0.73 NTELOS-C 
 

In Table 5, the first column presents the names of 

the topologies. The second and third columns show 

the execution time and the best solution obtained 

by the proposed method for the tested examples, 

respectively. Similarly, the fourth and fifth 

columns display the corresponding values for the 

compared method. 

As shown in Table 5, the proposed method 

generally performs better than MC-JMSP method, 

especially in topologies with more nodes. This is 

because the proposed method consumes less 

energy for connections compared to MC-JMSP 

method due to the proper assignment of sensors to 

sinks and the elimination of active sinks with too 

few sensors. 

Figure 5 shows the average percentage 

improvement of the proposed method compared to 

MC-JMSP method for different topologies. 

In Figure 5, the horizontal axis represents the 

names of the topologies and the vertical axis 

represents the percentage improvement. As shown 

in figure 5, from topology iSTAR-C onwards, the 

proposed method shows better performance. The 

fluctuation observed in the graph in Figure 5 can be 

attributed to the random placement of sinks and 

sensors in the experimented topologies. As a result, 

some sensors may be positioned closer to potential 

sink deployment locations, while others may be 

farther away. This variability directly impacts the 

overall energy consumption of the network. 

Figure 6 shows the average runtime of the DSA 

algorithm compared to the MC-JMSP method. The 

horizontal axis represents the names of the 

topologies, and the vertical axis represents the 

average runtime. The results in Figure 6 show that 

the proposed method for larger topologies responds 

better than the compared method. As a result, it can 

be said that the proposed method is suitable for 

solving the problem of locating sinks in large-scale 

wireless sensor networks. 
 

 
 

Figure 5. Average percentage improvement of the 

proposed method compared to MC-JMSP 
 

Figure 6 shows the average runtime of the DSA 

algorithm compared to the MC-JMSP method. The 

horizontal axis represents the names of the 

topologies, and the vertical axis represents the 

average runtime. The results in Figure 6 show that 

the proposed method for larger topologies responds 

better than the compared method. As a result, it can 

be said that the proposed method is suitable for 

solving the problem of locating sinks in large-scale 

wireless sensor networks. 
 

 
Figure 6. Average runtime of the proposed method 

compared to MC-JMSP 
 

6. Conclusion 

This paper examines the sink placement challenge 

in wireless sensor networks and introduces a 

dynamic sensor assignment-based algorithm to 

tackle it. The proposed algorithm utilizes the 

method of deactivating active sinks to achieve an 
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efficient network topology within an acceptable 

timeframe. To evaluate the performance of the 

proposed algorithm, the experiments were 

conducted in two stages. In the first stage, various 

network instances were randomly generated. In the 

second stage, the topologies designed in Internet 

Topology Zoo were utilized. The experimental 

results of the proposed algorithm were then 

compared with those obtained from CPLEX and 

MC-JMSP method. The findings from the first 

stage revealed that the proposed method achieves 

optimal solutions in less time and with a lower error 

percentage compared to CPLEX. Additionally, the 

results from the second stage demonstrated the 

superiority of the proposed method over MC-JMSP 

method in terms of both execution time and 

minimizing energy consumption. 
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 چکیده:

 نیچند یریکارگاست. به میسیحسگر ب یهابهبود طول عمر و دوام شبکه یممکن برا یهاحلاز راه یکی، چاهک کی یبه جا چاهک نیاستفاده از چند

 یدر شبکه برا هاچاهکو تعداد  نهیبه یهامکان نییهدف تع نه،یزم نی. در اشودیم چاهک یابیمکانبه نام مسئله  یامسئله فیمنجر به تعر چاهک

و عملکرد  میکنیم شنهادیپ چاهک یابیمکانحل مسئله  یحسگر را برا یایپو صیتخص تمیالگور کیمقاله،  نیحداکثر کردن طول عمر شبکه است. در ا

: در مرحله اول، بر شودمیدر دو مرحله انجام  هاشیآزما. میینمایم یابیها ارزمتنوع از نمونه یامجموعه یحل موجود بر رو یهابا روش سهیآن را در مقا

 سهیو در مقا یواقع یها، و در مرحله دوم، بر اساس نمونهCPLEXکننده با استفاده از حل قیدق یبا روش محاسبات سهیو در مقا یتصادف یهااساس نمونه

ها نمونه یتمام یحسگر از نظر زمان اجرا برا یایپو صیتخص تمیلگورا یدهنده برترنشان هاشیآمده در مرحله اول آزمادستبه جی. نتاMC-JMSPبا روش 

توسط  شدهافتیجواب  یدرصد خطا ژه،یواست. به CPLEXکننده به جواب حل کینزد اریبس تمیالگور نیآمده توسط ادستجواب به ن،یاست. علاوه بر ا

 افتنیدر  یشنهادیروش پ اثربخشی دهندهنشان که است درصد 15/0 کمتر از شدهشیآزما یهانمونه یدر تمام CPLEXبا  سهیدر مقا یشنهادیپ شرو

را هم از نظر زمان اجرا و هم از  یشنهادیروش پ یبرتر هاشیمرحله دوم آزما جینتا ن،یاست. همچن هاچاهکحسگرها به  صیتخص یجواب مناسب برا

 .دهدینشان م MC-JMSPبا روش  سهیدر مقا یانرژ ییارانظر ک

 یابی چاهک، تخصیص پویا.سیم، مکانشبکه حسگر بی :کلیدی کلمات

 


