
1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 13, No. 2, 2025, 145-157.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

 Research paper

Employing Chaos Theory for Exploration-Exploitation Balance in

Reinforcement Learning

Habib Khodadadi 1 and Vali Derhami 2*

1. Department of Computer Engineering, Minab Branch, Islamic Azad University, Minab, Iran.

2. Computer Engineering Department, Yazd University, Yazd, Iran.

Article Info Abstract

Article History:
Received 21 December 2024
Revised 10 February 2025

Accepted 18 February 2025

DOI:10.22044/jadm.2025.15292.2633

 The exploration-exploitation trade-off poses a significant challenge in

reinforcement learning. For this reason, action selection methods such

as ε-greedy and Soft-Max approaches are used instead of the greedy

method. These methods use random numbers to select an action that

balances exploration and exploitation. Chaos is commonly utilized

across various scientific disciplines because of its features, including

non-periodicity, unpredictability, ergodicity and pseudorandom

behavior. In this paper, we employ numbers generated by different

chaotic systems to select action and identify better maps in diverse

states and quantities of actions. Based on our experiments on various

environments such as the Multi-Armed Bandit (MAB), taxi-domain,

and cliff-walking, we found that many of the chaotic methods increase

the speed of learning and achieve higher rewards.

Keywords:
Action Selection, Chaos Theory,

Exploration and Exploitation,

Reinforcement Learning.

*Corresponding author:

vderhami@yazd.ac.ir (V. Derhami)

1. Introduction

Reinforcement learning is the process of

determining the best action to take from a set of

permitted options in a specific scenario, guided by

the rewards and penalties received [1]. Unlike

supervised learning algorithms, this type of

learning only uses numerical evaluations and

requires a high degree of exploration [2]. To make

reinforcement learning effective, actions must be

selected in a way that thoroughly explores the

environment and properly exploits the knowledge

acquired during the learning process. When

estimating action-values in each state of a problem,

there are two solutions for action selection at each

time step: The initial approach is to choose the

action that has the highest estimated value (greedy

action), leveraging the current understanding and

action-value assessments. The second solution is to

select a non-greedy action, which focuses more on

exploration. Exploration allows the agent to

enhance its understanding of non-greedy actions,

while exploitation focuses on maximizing expected

rewards at each time step, ultimately resulting in a

more advantageous solution over the long term [1].

A balance between exploration and exploitation is

essential to achieve optimal results in

reinforcement learning; however, a balance

between exploration and exploitation is a

challenge. This balance allows the agent to gain

new information about the environment while

simultaneously exploiting the current knowledge to

achieve high rewards. An appropriate balance will

reduce learning time, help the agent evade local

optima, and lead to better solutions.

In general, the strategies for selecting action are

classified into two categories: direct and indirect

exploration methods. In direct exploration

methods, it is assumed that some environmental

information such as transition probability function

and reward function is available, while undirected

methods are completely dependent on the Q-

values. Since the state transition probability

function is usually not available in reinforcement

learning problems, indirect exploration methods

are often used. The implementation of indirect

exploration methods (such as ε-greedy and Soft-

Max [3]) is easier, and the two characteristics of

"randomness of exploration" and "production of

action based on random distributions" distinguish

these methods from direct methods [1, 4]. Section

3 provides the different methods of selecting the

Derhami & Khodadadi/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

146

action and creating a balance between exploration

and exploitation.

Chaos has also been used to establish a balance

between exploration and exploitation, and chaotic

numbers have been used in the ε-greedy method for

exploration. Chaotic systems are considered

efficient due to their unique characteristics,

including sensitivity to initial values, pseudo-

randomness, unpredictability, non-periodicity, and

ability to inspect different segments in the state

space. In most cases [5, 6], the logistic map is

utilized to generate random numbers used in the ɛ-

greedy action selection method. Experiments were

conducted on the target capturing task to compare

the chaotic state with the normal state. According

to the results, the chaotic state yielded better results

to find the target. These papers also concluded that

the use of random ordinary numbers would be

sensitive to ɛ. Previous studies have explored the

use of the chaos theory in the shortcut maze

problem. These studies compared the performance

of logistic, tent, and chaotic neuron maps in ɛ-

greedy action selection [7- 9]. The results of these

studies indicated that the chaos theory was

effective in improving performance. In another

study, the tent map was compared to the logistic

map and found to be less efficient [8]. Additionally,

the logistic map was applied to the Licensed

Assisted Access (LAA) problem and implemented

in the ε-greedy action selection method [10].

Research on the application of chaos theory in

action selection is sparse, primarily focusing on

just one or two chaotic maps. Moreover, this

exploration has largely been restricted to the ε-

greedy action selection method and a handful of

specific environments. Furthermore, no studies

have analyzed the effects of different chaotic

relationships on the action selection problem.

However, several chaotic systems have been

proposed in recent years, which are more efficient

than previous ones. In this paper, we use different

types of chaotic maps for action selection methods

(ε-greedy and Soft-Max) in diverse environments

to compare the resultant speed and efficiency with

those of conventional methods.

The rest of this paper is organized as follows:

Section 2 briefly introduces chaotic systems, and

Section 3 presents methods of action selection and

exploration-exploitation balance. The proposed

method is described in Section 4, results and

discussion are reported in Section 5 and 6, and

finally, the conclusion is presented in Section 7.

2. Chaotic Systems

Chaotic systems are nonlinear dynamic systems

that exhibit pseudorandom behavior and are very

sensitive to initial conditions. Minor alterations in

the primary conditions of these systems can result

in significant transformations over time, a concept

referred to as the butterfly effect in chaos theory.

For a system to be classified as chaotic, it must

display the following characteristics [11]:

 Sensitivity to initial conditions: This trait of

chaotic systems demonstrates that minor

changes to the initial conditions can result in

significantly different outcomes as time

progresses.

 Topological mixing or topological

transitivity (ergodicity): is a characteristic

that states chaotic variables will move through

all states within a set range without repeating.

This property can serve as an optimization

tool to guarantee that solutions are not

revisited in the search space, thereby helping

algorithms avoid getting trapped in a local

optimum. This feature leads to the generation

of diverse and non-repeating numbers.

 Topological density: This refers to the

characteristic that every point in a specified

space can be approached by periodic orbits in

an arbitrary manner.

Substituting chaos for random numbers has been

shown to increase learning speed due to leveraging

the special properties of chaos, especially its

ergodicity property [11].

Many chaotic systems have been introduced to date

and can be divided into two main categories. The

first category includes chaotic systems that have

specific physical interpretations, such as the

Lorenz system [12]. The second category includes

chaotic systems that have no specific physical

interpretations and are merely mathematical

models, such as the Chen chaotic system [13].

The governing equations of the Lorenz system can

be seen in (1).

()x a y x

y bx y xz

z xy cz

  


  

 

(1)

The system is in a chaotic mode when 𝑎 = 10, 𝑏 =
 28, and 𝑐 = 8/3.

The logistic system [14] is another example of a

chaotic system, characterized by the following

governing equation:

)1 (1n n nX X X  
(2)

Where the system behaves chaotically for the

values of λ within [3.56, 4].

Figure 1 demonstrates the behavior of logistic

system with
0 0.18X  and 3.9999  . The figure

Employing Chaos Theory for Exploration-Exploitation Balance in Reinforcement Learning

147

illustrates that the generated numbers are uniformly

distributed across the range of 0 to 1. Over multiple

iterations, various regions within this space are

consistently explored; Therefore, using these

chaotic numbers instead of random numbers can be

justified, and in addition, it allows us to take

advantage of the properties of chaos.

Figure 1. The chaotic behavior of a logistic system during

the initial 200 iterations with
0 0.18X  and 3.9999  .

Despite their pseudorandom behavior, chaotic

systems are useful for many applications. Chaos

theory has demonstrated significant effectiveness

compared to random data across numerous

scientific disciplines and various areas of machine

learning. For instance, it has enhanced and

accelerated the process of identifying global

optima in many evolutionary algorithms, and

numerous encryption methods are grounded in

chaotic principles. This superior performance

stems from the distinctive characteristics of chaotic

systems, such as their sensitivity to initial

conditions and ergodicity. Ongoing research aims

to develop more robust chaotic systems, with new

models continually being proposed.

Chaotic systems exhibit different levels of

sensitivity to initial conditions and control

parameters, and not all systems possess the same

attributes or chaotic rates. The sensitivity of a

chaotic system can be measured using the

Lyapunov exponent, with higher values indicating

stronger chaotic attributes. For example, the

logistic map has a maximum Lyapunov exponent

of approximately 0.68, while the SPL map has a

value of 1.52 [15]. The Appendix presents the

chaotic maps employed in this paper, which vary in

their degrees of sensitivity and chaotic rates.

To obtain a chaotic number in this paper, each time

a random number is given as an initial value to the

system, and the resultant number is then used.

Moreover, in most of the chaotic systems of

Appendix, the generated numbers are in the range

of 0 to 1, and in cases where the number generation

range is different from the foregoing interval, it

will be mapped onto the 0–1 interval. Furthermore,

in the cases where a chaotic system generates more

than one number in each iteration, the mean of

resultant numbers will be used in the ɛ-greedy

method. In the systems with derivatives, the

Runge–Kutta methods are adopted.

3. Action Selection Methods and Exploration–

Exploitation Balance

In this section, after a short introduction about

reinforcement learning, there will be some content

about traditional and new algorithms that are about

the balance between exploration and exploitation.

The central concept of reinforcement learning

involves leveraging value functions to identify

suitable policies. Dynamic programming is one

approach within reinforcement learning that

employs the Bellman equation to determine the

value of each state in the environment, as well as

the value of state-action pairs (see equations 3 and

4) [1].

() (,) ()a a

ss ssa s
SV s a P R V s   

     (3)

To calculate the value of each state, the values of

other states are used.

(,) ()a a

ss sss
Q s a P R V s  

    (4)

In these equations, action a is chosen from the

available set of actions in state s, and the next states

s' are members of the set of states. ()SV represents

the value of state s according to policy π, while

(,)Q s a
 indicates the value of taking action a in

state s under the policy π, a
Pss

 and a
Rss

are the

transition probability and the expected reward

value to the next state, respectively. Also, (,)s a

is the probability of selecting action a in state s and

finally, γ is the discount factor [1].

There are multiple algorithms in reinforcement

learning, one of the most frequently utilized

algorithms is Q-learning. In the Q-learning

algorithm, the Q-table is used to store values for all

state-action pairs. The rows of the table correspond

to different states, while the columns correspond to

various actions. Each entry in the table represents

an estimate of the optimal value for its associated

state-action pair. At every stage of the agent's

movement within the environment, this table needs

to be updated, and new estimated values should

replace the previous values using the received

rewards. The update rule of this algorithm is given

by equation (5) [4].

Derhami & Khodadadi/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

148

, ,
1

max , ,
1 1

() () (

() ())

a a
t t t t t

a a
t t t t

a

Q s Q s r

Q s Q s

 


 

 



(5)

In this algorithm, 𝛼 and 𝑟 denote the learning rate

and the instant reward, respectively. Here, the

learned state-action value function Q serves as a

direct approximation of the optimal state-action

value function, regardless of the policy that

governs behavior.

For effective learning, actions should be selected in

such a way that the environment is properly

explored and penalties are avoided. It is not

possible to complete these two tasks at the same

time and a balance must be established between

exploration and exploitation. One of the simplest

methods of action selection is the greedy policy, in

which the action with the highest value is chosen in

each state. Adopting a greedy policy for action

selection can limit the agent to a small segment of

the environment space and prevent exploration of

other segments to find better solutions. Therefore,

other action selection methods are used in practice.

The Greedy with Optimistic Initialization: This

method, like the greedy method, selects larger

action-values in each state, but the initial value of

all action-values is determined optimistically.

Initial action values used as a way to increase

exploration and all actions are tried several times.

This method is suitable for stationary problems, but

not effective for nonstationary problems [3].

The ɛ-Greedy Method: This policy determines

whether to explore or exploit based on a specified

threshold value ε. In the ɛ-greedy method, with a

probability of 1-ɛ (where ɛ is a positive real number

between 0 and 1), the action with the highest value

is selected (Exploitation phase), and with a

probability of ɛ, all actions can be chosen

(Eexploration phase). The results indicate that this

method outperforms the greedy algorithm in terms

of efficiency [1].

The Upper Confidence Bound (UCB): In this

method, unlike ɛ-greedy, non-greedy actions are

selected based on their potential for being optimal.

One of the ways to select the action is in the form

of Equation (6) [3].

ln
[()

()
arg max]t

t
Q a c

a t N at
A 

(6)

Where ln t denotes the natural logarithm of t, ()aNt

represents the count of how many times action a

has been chosen before time t, and the positive

constant (c > 0) regulates the level of exploration.

The second term represents the degree of

uncertainty associated with the estimated value of

a [3]. The UCB algorithms keep an upper

confidence bound for each action, ensuring that the

expected reward for each action is, with high

probability, lower than this bound. At every time

step, the agent optimistically chooses the action

with the highest

UCB [16].

The Soft-Max Method: In this method, Equation

(7) is used for action selection.
(,)

exp()

(,)
exp()

(,)

Q s a

T
Q s b

b A
T

P s a
 



(7)

In Equation (7), the temperature coefficient (T) is

considered large at the beginning of learning to

strike a balance between exploration and

exploitation. However, this coefficient decreases as

the learning process progresses in order to use the

previous experience. In the implementation of this

method, the mechanism of the roulette wheel can

be used and by creating a random number in the

range of 0 to 1 and checking its position in the

roulette wheel, the selected action can be

determined [1].

The authors of [17] made conventional ɛ-greedy

method adaptive by using the temporal difference

error obtained from the value function of states.

The main idea is that when the changes in the value

function are high, more exploration should be

done, and on the contrary, when the changes in the

value function are small or unchanged, less

exploration is needed. In each state, there is a

separate ɛ that is updated after each action. At the

beginning of the learning process, ɛ is initialized by

1 for all states. The idea of using differences of

values was then integrated with the soft-max

method, something which yielded favorable results

[18].

Fuzzy logic has been used to create a balance

between exploration and exploitation. An adaptive

learning rate was introduced to strike a balance

between exploration and exploitation in the fuzzy

reinforcement learning [19]. This learning rate is

set by considering the “fuzzy visit” of the current

status.

The cuckoo search algorithm was adopted for

action selection [4]. In this algorithm, the action

selection problem is framed as an optimization

challenge, where the candidate solutions are

represented by Q values. The objective function is

also the Q function. During each iteration of the Q-

learning algorithm, the cuckoo search algorithm

refines the combinations of Q values and actions,

enabling the selection of the action that

corresponds to the highest optimized Q value. This

algorithm was implemented and tested on different

Employing Chaos Theory for Exploration-Exploitation Balance in Reinforcement Learning

149

problems such as the MAB and cliff-walking to

determine its efficiency.

Analyzing the MAB problem, another study [20]

aimed to find the optimal temperature in the soft-

max method. A high temperature parameter will

promote exploration, whereas a low temperature

parameter will focus solely on exploitation. The

temperature was considered constant in the soft-

max equation. An evaluation function was first

proposed to measure temperature, and the optimal

temperature was then determined in an iterative

process. The results of this method indicated

improvements in the entire set of receivable

rewards.

The process of identifying the optimal policy in Q-

learning is reconfigured into a search for the best

solution within an optimization problem [21]. In

this method, the value of ɛ is generated randomly

in each state and Simulated Annealing (SA) was

used in ɛ-greedy. The probability of choosing each

action in the current state is determined based on

the SA algorithm, and the balance between

exploration and exploitation can be controlled with

the help of the temperature parameter. The

efficiency of this idea was tested on a maze

problem. It proved to be superior to ε-greedy and

Boltzmann exploration.

The probabilistic action selection method is also

provided [22]. The Probabilistic Q-Learning (PQL)

enhances the exploration strategy by employing a

probabilistic action selection method. This method

produces a probability distribution for the action

set corresponding to each state, guiding the

exploration policy. Here, action ai in state s is

selected with probability (,)ip s a , which

probability is updated along with the value function

updating and actions will be selected based on a

variable probability distribution. In addition, in this

paper fidelity-based PQL is introduced which

extracts more information from the structure and

behavior of the system for a better balance between

exploration and exploitation.

Moreover, heuristic functions were employed in

the action selection process [23]. In this study and

other similar cases, instead of selecting an action

only based on values or action-values, this work is

done with the help of a combination of heuristic

functions and action-values.

The paper [24] presents an innovative

reinforcement learning algorithm known as "Go-

Explore." This approach tackles the issue of

exploration in environments with sparse rewards

by initially returning to states that have already

been discovered before venturing out from those

points. This strategy effectively addresses the

shortcomings of conventional exploration

methods, which frequently encounter difficulties in

complex or misleading environments. The authors

illustrate that Go-Explore delivers state-of-the-art

results across a range of challenging tasks, such as

Atari games and robotic control, underscoring its

potential to propel advancements in artificial

intelligence and machine learning.

The paper [25] introduces an innovative approach

to reinforcement learning that utilizes intrinsic

rewards based on masked input modeling. The

authors present the MIMEx framework, which

boosts an agent's learning capabilities by enabling

it to predict masked segments of its input data. This

strategy fosters enhanced exploration and

comprehension of the environment. The findings of

the research indicate that this method significantly

improves performance across a range of tasks,

underscoring the value of intrinsic rewards in

facilitating effective learning processes.

The authors of [14] explored the application of the

chaos theory in dynamic programming, specifically

using the logistic chaos system to overcome global

updates of all states. This method involves

executing policy evaluation once in each stage of

policy iteration and updating only a few states

proposed by the chaotic system. The policy

improvement stage then follows, using similar

procedures in the value iteration method, which

resulted in better outputs than the conventional

method.

4. Proposed Method

As mentioned in the introduction, by using

numbers generated by chaotic systems instead of

random numbers, the exploration process can be

improved while maintaining exploitation

efficiency. The ε-greedy method is a popular action

selection approach that can benefit from the chaotic

characteristic of generated numbers to strike a

more appropriate balance between exploration and

exploitation. Previous studies have shown that

using chaotic maps can result in better exploration-

exploitation balances in maze environments,

although they only analyzed two or three chaotic

maps. This study aims to use several chaotic maps

in different environments, such as the Multi-Armed

Bandit (MAB) and OpenAI Gym environments

[26], and compare their efficiencies in action

selection. After preprocessing and initialization,

the numbers generated by different chaotic maps

replace random numbers in the ε-greedy action

selection process. The chaotic ε-greedy method can

be expressed as Equation (8). Instead of choosing

the desired action based on uniform random

numbers, this is done using chaos. Here, (,)Q S b

refers to the value of the action-value in state S, and

Derhami & Khodadadi/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

150

(,)P S a refers to the probability of selecting action

a in state S.

1 (,)argmax

(,)

a Q S bb A

otherwise
N

P S a





   





(8)

In this relation, 𝑁 represents the total number of

actions, and 𝐴 is the set of actions in state 𝑆. By

generating a chaotic number, if this number is less

than the value 𝜀, one of the actions with a lower

value is selected. If the generated chaotic number

is greater than the value 𝜀, the action with the

highest value is selected. The parameter 𝜀
theoretically ranges between 0 and 1. In this paper,

various values of 𝜀 are tested, and the results will

be discussed in the following section.

In the soft-Max method, it is also possible to get

help from the benefits of chaos by generating a

chaotic number and choosing the action in the

roulette wheel based on it; in the traditional Soft-

Max method, this is done with the help of random

number generation.

For instance, Table 1 illustrates the probabilistic

scenario of selecting five candidate actions in a

given problem.

Table 1. An example of the roulette wheel mechanism and

its application in action selection. (n=1 to 5) [1].

Q(s,an) P(s,an)
Action selection

interval

-0.0446 0.2542 [0,0.2542]
-1.1493 0.0842 [0.2543,0.3384]

0.1709 0.3154 [0.3385,0.6538]
-0.3211 0.1928 [0.6539,0.8466]

-0.5498 0.1534 [0.8467,1]

The probability values in the second column of the

table are computed based on action-value

parameters using Equation 7 (T=1) and the third

column is the cumulative sum of the second

column. The first candidate action is selected if a

chaotic number lies within the interval [0, 0.2542],

while the second action is chosen if the chaotic

number falls within the interval [0.2543, 0.3384].

This paper demonstrates that employing chaotic

numbers, as opposed to random numbers, enhances

the efficiency of the Softmax algorithm. In this

paper, Q-learning, which is one of the famous

reinforcement learning algorithms, is used.

5. Computational Results

The proposed method was implemented in Python

on a Windows 8 computer with an Intel Core i5

processor and 4 GB of RAM. To evaluate its

performance, we tested the method on three

environments widely used in previous studies on

the exploration-exploitation balance: the Multi-

Armed Bandit (MAB) [3], the cliff-walking

environment [26], and the taxi-domain

environment [26].

The MAB is a simple yet important problem for

analyzing the exploration-exploitation challenge. It

involves N reward machines, each of which gives

a random reward from a constant distribution when

its lever is pushed. The objective is to estimate

which machine gives more rewards and the specific

number of iterations that result in the greatest

reward possible. In this study, we considered 10

machines with 10 random means defined using a

normal distribution with a mean of 0 and a variance

of 1. Each lever was then selected to give a random

reward to the mean of a designated machine, and a

variance of 1 was given to the agent. We ran 2000

iterations and averaged the results from multiple

executions.

The taxi-domain problem consists of several

accessible OpenAI Gym environments [26]. The

objective is for a taxi to pick up a passenger and

drop them off at their destination via the shortest

path possible. The environment is a 5x5 grid with

500 states and six actions: move up, move down,

turn left, turn right, pick up the passenger, and drop

off the passenger. The passenger gets in or out of

the taxi in one of the four designated cells. Each

move has a score of -1, dropping off the passenger

at the destination has a score of +20, and picking

up or dropping off the passenger at the wrong

location has a score of -10. In the cliff-walking

environment, the objective is for the agent to reach

the target cell from the start cell. Each move has a

score of -1, and hitting a cliff incurs a heavy penalty

of -100, after which the agent returns to the start

cell.

Table 2 presents the results of using different

chaotic maps in the ε-greedy and Soft-Max

methods for the MAB problem. In ε-greedy

section, rewards were averaged from 2000

executions of 2000 steps for all values of ε between

0 and 1 with a step of 0.01. The table reports the

highest reward value and its corresponding ε, as

well as the highest mean of rewards received from

the last 100 steps and the corresponding ε. For

example, the entry for LEL [27] shows that the

highest reward of 1.3846 was obtained at an ε value

of 0.21, and the highest mean of rewards from the

last 100 steps was obtained at an ε value of 0.21.

Also, in the last two columns of Table 2, the results

of using different chaotic systems in the Soft-Max

method are also shown. The results are averaged

over 2000 runs of 2000 steps. The initial

temperature is equal to 1 and decreases at a rate of

0.9975.

In the first row of the table, the values of the

traditional ε-greedy and Soft-Max methods are

Employing Chaos Theory for Exploration-Exploitation Balance in Reinforcement Learning

151

mentioned, which were obtained using random

numbers.

The results show that most of the chaotic maps

outperformed the conventional random method in

terms of acquiring rewards, but the optimal ε values

varied across different maps. Interestingly, in most

cases, the optimal ε value for the chaotic maps was

higher than that of the random method. This

suggests that chaos performs better with a higher

rate of exploration, which enhances the chances of

discovering optimal solutions. Figure 2 illustrates

the rewards acquired for all values of ε in four

chaotic maps compared to the random method. The

figure shows that chaotic methods consistently

outperformed the conventional method at most

values of ε. For example, the SINGER map [28]

achieved significantly higher rewards in most

values of ε compared to the conventional method.

As expected, the results for Soft-Max are better

than those for ε-greedy; and the highest rewards are

related to the use of chaos in the Soft-Max method.

Also, the ε-greedy method has improved more than

the Soft-Max method under the influence of chaos.

Tables 3 and 4 report the results of implementing

the ε-greedy action selection method in the taxi-

domain and cliff-walking problems.

The Q-learning method was used in these

problems, where the learning rate and γ were both

set to 0.9. The value of ε was first set to 1, which

gradually decreased. The results of the taxi-domain

problem included 500 episodes, in each of which

the maximum number of steps was 99. To obtain

more realistic results, 100 different runs were

tested, and their means were then reported on

tables. The cliff-walking problem had 400

episodes, in each of which the maximum number

of steps was 99. There were also 500 different runs.

In addition to the mean of the total reward and the

mean of rewards from the last 100 steps, Table 4

indicates the number of failures (encounters with

cliffs) in the cliff-walking problem. According to

tables 3 and 4, this idea has managed to outperform

the random state on many chaotic maps. In the taxi-

domain problem, the mean of rewards from the last

100 episodes was nearly -5.5 in the conventional

method. However, it was nearly +4 in the best

chaos, i.e., LEL (in this problem).

Table 2. The results of using the chaotic action selection method in the MAB problem:
...1 2000

2000

r rt t
Ravg

  
 and

...1901 2000
100

100

r rt t
R

  
 .

Chaotic map
Maximum Ravg

in ε-greedy

Maximum 100R

in ε-greedy
Ravg in Soft-Max 100R in Soft-Max

conventional random method 1.3607 (ε=0.06) 1.4315 (ε=0.04) 1.4469 1.5172
Logistic [14] 1.3739 (ε=0.12) 1.4516 (ε=0.06) 1.3857 1.5458

Sine [26] 1.3738 (ε=0.06) 1.4600 (ε=0.06) 1.3864 1.5388

Tinkerbell [27] 1.3915 (ε=0.17) 1.4628 (ε=0.1) 1.4376 1.5203
Zaslavskii [28] 1.3866 (ε=0.17) 1.4579 (ε=0.13) 1.4555 1.5385

Zhang [29] 1.3679 (ε=0.17) 1.4498 (ε=0.08) 1.3054 1.4475

HyperChaos [30] 1.3605 (ε=0.27) 1.4525 (ε=0.23) 1.3762 1.4347
SPL [15] 1.3638 (ε=0.16) 1.4706 (ε=0.16) 1.3495 1.4733

Chen [13] 1.3684 (ε=0.18) 1.4557 (ε=0.16) 1.4220 1.4904

Cubic [28] 1.3735 (ε=0.06) 1.4669 (ε=0.06) 1.3944 1.5400
ICMIC [31] 1.3620 (ε=0.01) 1.4298 (ε=0.01) 1.3599 1.5353

Lorenz [12] 1.3692 (ε=0.21) 1.4552 (ε=0.21) 1.4102 1.4798

Piecewise [11] 1.3599 (ε=0.05) 1.4413 (ε=0.03) 1.4284 1.5402
Kent [27] 1.3721 (ε=0.04) 1.4533 (ε=0.04) 1.4271 1.5387

Singer [26] 1.3845 (ε=0.12) 1.4753 (ε=0.08) 1.4093 1.5395
Singh [32] 1.3654 (ε=0.23) 1.4508 (ε=0.19) 1.4179 1.4867

Nguyen [33] 1.3749 (ε=0.19) 1.4635 (ε=0.19) 1.4180 1.4855

Circle [34] 1.3693 (ε=0.04) 1.4553 (ε=0.04) 1.4255 1.5403
Modified Logistic [35] 1.3911 (ε=0.08) 1.4689 (ε=0.08) 1.3784 1.5353

Bernoulli Shift [11] 1.3653 (ε=0.04) 1.4475 (ε=0.04) 1.4155 1.5263

LEL [25] 1.3846 (ε=0.21) 1.4660 (ε=0.15) 1.3893 1.5482

Tent [26] 1.3737 (ε=0.03) 1.4700 (ε=0.03) 1.4165 1.5312

Iterative [26] 1.3718 (ε=0.04) 1.4458 (ε=0.01) 0.9551 1.1226

Leibovitch [11] 1.3688 (ε=0.06) 1.4398 (ε=0.02) 1.4072 1.5286
Arnold Cat [36] 1.3668 (ε=0.17) 1.4624 (ε=0.11) 1.4441 1.5254

SEL [25] 1.3673 (ε=0.14) 1.4514 (ε=0.12) 1.3812 1.5262

In the cliff-walking problem, the mean of rewards

from the last 100 episodes was nearly -62.3 in the

random state. However, it was nearly -16.9 in the

best chaos, i.e., HyperChaos. Evidently, the

difference was 45 between the received rewards.

For instance, Figures 3 and 4 demonstrate the

comparative charts of some chaotic maps in these

two problems. In these figures, the average award

obtained in consecutive episodes is shown.

Derhami & Khodadadi/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

152

Figure 2. The results of using the ε-greedy method in four chaotic maps: Left and Right respectively: R100 and Ravg for

different values of ε.

According to the results and tests, the recently

proposed chaotic maps such as LEL, modified

logistic, and Zhang yielded much higher

efficiencies; hence, they are recommended for

similar problems. These maps are usually the

integrated or developed versions of previous maps.

Employing Chaos Theory for Exploration-Exploitation Balance in Reinforcement Learning

153

In addition, the chaotic systems that generate more

than one number in each iteration can also yield

better outputs (e.g., Nguyen, Tinkerbell, and

Singh), something which can be due to averaging

and using their generated numbers.

Table 3. Comparative results of chaotic and random

methods in the taxi-domain environment:

...1 500

500

r re e
Ravg

  
 and

...401 500
100

100

r re e
R

  
 .

Chaotic map Ravg 100R

conventional random method -153.4948 -5.5191
Logistic -103.8618 1.4886

Sine -112.1734 0.2252

Tinkerbell -147.9634 1.8507
Zaslavskii -138.6673 2.0033

Zhang -85.0984 3.7985

HyperChaos -150.1541 2.8764
SPL -131.0355 3.8396

Chen -156.9166 2.1884

Cubic -109.3988 0.6909
ICMIC -135.9574 -11.6701

Lorenz -150.2218 2.6355

Piecewise -152.6548 -4.9568
Kent -152.8995 -5.4057

Singer -89.4994 3.3733

Singh -150.4401 2.8554
Nguyen -150.4119 2.8875

Circle -166.8422 -5.4243

Modified Logistic -103.8775 1.3778
Bernoulli Shift -152.578 -5.0860

LEL -99.0054 3.9206

Tent -152.2878 -4.9191
Iterative -134.0724 -28.1704

Leibovitch -169.2107 -8.4864

Arnold Cat -150.7027 1.5231

SEL -107.0654 3.52

6. Discussion

The results of this research show that replacing

random numbers with chaotic numbers

significantly improves the performance of the

learning algorithm in many chaotic systems; This

is due to the special characteristics of chaos,

especially its ergodicity.

According to the successful experience of chaos in

many applications, in general, replacing random

numbers with chaotic numbers is desirable in most

cases, but one of the major weaknesses of chaos is

the diversity and extent of these systems, as well as

the somewhat different behavior of chaotic systems

in Different environments [11]. For example, in the

paper on the use of chaos in cellular automata [11],

Tent's chaotic system has a good performance, but

this is not the case in the tests of this research.

This work does not propose a new method nor

claims superiority over existing well-established

approaches. In reinforcement learning, common

action selection techniques such as ε-greedy and

Softmax rely on random numbers for decision-

making. To improve their efficiency, chaos-based

mechanisms were introduced, which demonstrated

promising results. Extensive comparisons were

carried out across multiple environments to

evaluate their performance. Beyond ε-greedy and

Softmax, which are the focus of this study, random

and greedy action selection methods were also

examined. However, under the specified conditions

in this paper, these methods failed to achieve

convergence, leaving the problem unresolved.

Table 4. Comparative results of chaotic and random

methods in the cliff-walking environment:

...1 400

400

r re e
Ravg

  
 and

...301 400
100

100

r re e
R

  
 .

Chaotic map
Average number

of failures
Ravg 100R

conventional
random method

309.316 -89.7255 -62.3534

Logistic 239.064 -73.4141 -42.7098

Sine 258.076 -77.9455 -48.1701
Tinkerbell 254.162 -75.7387 -32.5329

Zaslavskii 247.93 -74.4726 -33.6996

Zhang 182.522 -59.7008 -29.7584
HyperChaos 215.1 -65.7251 -16.9275

SPL 273.214 -81.4399 -33.3061

Chen 242.728 -72.5083 -24.2114
Cubic 250.414 -76.1308 -46.0402

ICMIC 316.036 -92.1133 -73.6471

Lorenz 231.458 -69.8922 -22.3126
Piecewise 309.734 -89.8002 -62.7174

Kent 309.824 -89.8037 -62.6652

Singer 190.892 -61.6546 -31.6921
Singh 231.806 -69.9747 -22.4358

Nguyen 232.06 -70.0131 -22.3273

Circle 325.596 -93.5226 -65.0926
Modified Logistic 238.512 -73.2755 -42.4887

Bernoulli Shift 309.204 -89.7047 -62.2438

LEL 210.214 -66.3543 -30.0920
Tent 309.158 -89.7160 -62.2757

Iterative 323.816 -94.4511 -83.7766

Leibovitch 331.028 -94.8541 -69.9228
Arnold Cat 257.56 -76.5054 -34.1446

SEL 230.328 -71.1815 -34.4375

7. Conclusion
In this paper, the method of using chaos in

choosing random actions in reinforcement learning

is presented, and a comprehensive review on the

effectiveness of different types of chaos functions

(maps) in action selection has been done. The paper

replaces the random numbers with numbers

generated by different chaotic systems in the ε-

greedy and Soft-Max action selection methods.

The study compares the results of different chaotic

methods with the conventional method in the

MAB, taxi-domain, and cliff-walking

environments. The results show that using many

chaotic methods leads to greater rewards and fewer

steps towards a target. The study also finds that

chaotic methods with greater rewards have larger

values of ε than the conventional method.

Additionally, chaotic methods obtain greater

rewards even at large values of ε compared to the

conventional method. Chaotic methods

outperformed the conventional method in terms of

receivable rewards in the taxi-domain and cliff-

Derhami & Khodadadi/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

154

walking environments. The study indicates the

superiority of more recent chaotic systems (e.g.,

LEL and modified logistic) and multidimensional

systems (e.g., HyperChaos and Singh) than other

systems.As the next step, the use of chaotic systems

in the action selection part of deep reinforcement

learning algorithms is considered.

Figure 3. Comparing the rewards received from some chaotic maps with those of the random method in the taxi-domain

environment.

Figure 4. Comparing the rewards received from some chaotic maps with those of the random method in the cliff-walking

environment.

References
[1] V. Derhami, F. Alamian Harandi and M. B.

Dowlatshahi, Reinforcement Learning. Yazd, Iran, Yazd

University Press, 2017.

[2] F. Alamiyan-Harandi, V. Derhami and F. Jamshidi,

“A new framework for mobile robot trajectory tracking

using depth data and learning algorithms”, Journal of

Intelligent & Fuzzy Systems, vol. 34, no. 6, pp. 3969-

3982, 2018.

[3] RS. Sutton and AG. Barto, Reinforcement learning:

An introduction. 2nd Ed, London, The MIT Press, 2018.

[4] BH. Abed-alguni, “Action-selection method for

reinforcement learning based on cuckoo search

algorithm”, Arabian Journal for Science and

Engineering, vol. 43, no. 12, pp. 6771-6785, 2018.

[5] K. Morihiro, T. Isokawa, N. Matsui and H.

Nishimura, “Effects of chaotic exploration on

reinforcement learning in target capturing task”,

Employing Chaos Theory for Exploration-Exploitation Balance in Reinforcement Learning

155

International Journal of Knowledge-based and

Intelligent Engineering Systems, vol. 12, no. 5-6, pp.

369-377, 2008.

[6] K. Morihiro, T. Isokawa, N. Matsui and H.

Nishimura, “Reinforcement learning by chaotic

exploration generator in target capturing task”, proc.

International Conference on Knowledge-Based and

Intelligent Information and Engineering Systems,

Springer Berlin Heidelberg, 2005, pp. 1248-1254.

[7] K. Morihiro, N. Matsui and H. Nishimura, “Effects

of chaotic exploration on reinforcement maze learning”,

Proc. International Conference on Knowledge-Based

and Intelligent Information and Engineering Systems,

Springer Berlin Heidelberg, 2004, pp. 833-839.

[8] K. Morihiro, N. Matsui and H. Nishimura, “Chaotic

exploration effects on reinforcement learning in shortcut

maze task”, International Journal of Bifurcation and

Chaos, vol. 16, no. 10, pp. 3015-3022, 2006.

[9] AB. Potapov and MK. Ali, “Learning, exploration

and chaotic policies”, International Journal of Modern

Physics C, vol. 11, no.07, pp. 1455-1464, 2000.

[10] E. Pei, J. Jiang, L. Liu, Y. Li and Z. Zhang, “A

chaotic Q-learning-based licensed assisted access

scheme over the unlicensed spectrum”, IEEE

Transactions on Vehicular Technology, vol. 68, no. 10,

pp. 9951-9962, 2019.

[11] B. Zarei and MR. Meybodi, “Improving learning

ability of learning automata using chaos theory”, The

Journal of Supercomputing, vol. 77, no. 1, pp. 652-678,

2021.

[12] EN. Lorenz, “Deterministic nonperiodic flow”,

Journal of atmospheric sciences, vol. 20, no. 2, pp. 130-

141, 1963.

[13] G. Chen and T. Ueta, “Yet another chaotic

attractor”, International Journal of Bifurcation and

chaos, vol. 9, no. 07, pp. 1465-1466, 1999.

[14] H. Khodadadi and V. Derhami, “Improving Speed

and Efficiency of Dynamic Programming Methods

through Chaos”, Journal of AI and Data Mining, vol. 9,

no. 4, pp. 487-496, 2021.

[15] M. Mollaeefar, A. Sharif and M. Nazari, “A novel

encryption scheme for colored image based on high

level chaotic maps”, Multimedia Tools and

Applications, vol. 76, pp. 607-629, 2017.

[16] RY. Chen, J. Schulman, P. Abbeel and S. Sidor,

“UCB and infogain exploration via q-ensembles”,

arXiv:1706.01502, 2017.

[17] M. Tokic, “Adaptive ε-greedy exploration in

reinforcement learning based on value differences”,

proc. Annual Conference on Artificial Intelligence,

Springer Berlin Heidelberg, 2010, pp. 203-210.

[18] M. Tokic and G. Palm, “Value-difference based

exploration: adaptive control between epsilon-greedy

and softmax”. proc. Annual conference on artificial

intelligence, Berlin, 2011, pp. 335-346.

[19] V. Derhami, V. Johari Majd, MN. Ahmadabadi,

“Exploration and exploitation balance management in

fuzzy reinforcement learning”, Fuzzy sets and systems,

vol. 161, no. 4, pp. 578-595, 2010.

[20] YL. He, XL. Zhang, W. Ao and JZ. Huang,

“Determining the optimal temperature parameter for

Softmax function in reinforcement learning”, Applied

Soft Computing, vol. 70, pp.80-85, 2018.

[21] M. Guo, Y. Liu and J. Malec, “A new Q-learning

algorithm based on the metropolis criterion”, IEEE

Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), vol. 34, no. 5, pp. 2140-2143, 2004.

[22] C. Chen, D. Dong, HX. Li, J. Chu and TJ. Tarn,

“Fidelity-based probabilistic Q-learning for control of

quantum systems”, IEEE transactions on neural

networks and learning systems, vol. 25, no. 5, pp. 920-

933, 2013.

[23] RA. Bianchi, CH. Ribeiro CH and AHR. Costa,

“Heuristically Accelerated Reinforcement Learning:

Theoretical and Experimental Results”, proc. 20th

European Conference on Artificial Intelligence (ECAI),
IOS Press, 2012, pp. 169-174.

[24] A. Ecoffet, J. Huizinga, J. Lehman, K.O. Stanley

and J. Clune, “First return, then explore”, Nature, vol.

590, no.7847, pp. 580-586, 2021.

[25] T. Lin and A. Jabri, “MIMEx: intrinsic rewards

from masked input modeling”, arXiv preprint

arXiv:2305.08932, 2023.

[26] G. Brockman, V. Cheung, L. Pettersson, J.

Schneider, J. Schulman, J. Tang and W. Zaremba,

“OpenAI Gym”, ArXiv:1606.01540, 2016.

[27] Z. Hua and Y. Zhou, “Exponential chaotic model

for generating robust chaos”, IEEE transactions on

systems, man, and cybernetics, vol. 51, no. 6, pp. 3713-

3724, 2019.

[28] AH. Gandomi and XS. Yang,” Chaotic bat

algorithm”, Journal of computational science, vol. 5, no.

2, pp. 224-232, 2014.

[29] Jr I. Fister, M. Perc, SM. Kamal and I. Fister, “A

review of chaos-based firefly algorithms: perspectives

and research challenges”, Applied Mathematics and

Computation, vol. 252, pp. 155-165, 2015.

[30] H. Lu, X. Wang, Z. Fei and M. Qiu, “The effects of

using chaotic map on improving the performance of

multi objective evolutionary algorithms”, Mathematical

Problems in Engineering, no. 1, Article ID 924652,

2014.

[31] X. Zhang and Y. Cao, “A novel chaotic map and an

improved chaos-based image encryption scheme”, The

Scientific World Journal, no. 1, Article ID 713541,

2014.

[32] C. Zhu, “A novel image encryption scheme based

on improved hyperchaotic sequences”, Optics

communications, vol. 285, no. 1, pp. 29-37, 2012.

Derhami & Khodadadi/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025

156

[33] A. Rezaee Jordehi, “A chaotic artificial immune

system optimization algorithm for solving global

continuous optimization problems”, Neural Computing

and Applications, vol. 26, pp. 827-833, 2015.

[34] PP. Singh, “A chaotic system with large Lyapunov

exponent: Nonlinear observer design and circuit

implementation”, In 2020 3rd international conference

on energy, power and environment: Towards clean

energy technologies, 2021, pp. 1-6.

[35] N. Nguyen, L. Pham-Nguyen, MB. Nguyen and G.

Kaddoum, “A low power circuit design for chaos-key

based data encryption”, IEEE Access, vol. 8, pp.

104432-104444, 2020.

[36] KZ. Zamli, F. Din, HS. Alhadawi, “Exploring a Q-

learning-based chaotic naked mole rat algorithm for S-

box construction and optimization”, Neural Computing

and Applications, vol. 35, no. 14, pp. 10449-10471,

2023.

[37] L. Moysis, A. Tutueva, C. Volos, D. Butusov, JM.

Munoz-Pacheco, H. Nistazakis, “A two-parameter

modified logistic map and its application to random bit

generation”, Symmetry, vol. 12, no. 5: 829, 2020.

[38] L. Skanderova, I. Zelinka, “Arnold cat map and

sinai as chaotic numbers generators in evolutionary

algorithms”, In AETA 2013: Recent Advances in

Electrical Engineering and Related Sciences, 2014, pp.

381-389.

8. Appendix
Here the chaos maps worked in this paper are listed along with the desired parameters.

Chaotic System Equation Designated Parameters

Logistic[14] xn+1 = λxn(1 − xn) λ = 4.0

Sine[28] xn+1 =
a

4
sin(πxn) a = 4.0

Tinkerbell [29] {
xn+1 = xn

2yn
2 + axn + byn

yn+1 = 2xnyn + cxn + dyn
 a = 0.9 , b = 0.6013, c = 2.0 and d = 0.5

Zaslavskii [30] {
xn+1 = (xn + v + ayn+1)mod 1
yn+1 = cos (2πxn) + e

−ryn
 v = 400 , r = 3 and a = 12.6695

Zhang [31] xn+1 = 2μ|xn|(1 − 2|xn|) μ = 2.4140

HyperChaos [33] {

ẋ = a(y − x) + yz
ẏ = cx − y − xz + w

ż = xy − bz
ẇ = dw − xz

 a = 35 , b = 3, c = 28.0

SPL [15] xn+1 = sin(r × arcsin (√|xn|))
2 + (1 − r)2(|xn|)(1 − 2|xn|) r = 3.465

Chen [13] {

ẋ = a(y − x)

ẏ = (c − a)x + cy − xz
ż = xy − bz

 a = 35 , b =
8

3
, c = 55 and d = 1.3

Cubic [30] xn+1 = ρxn(1 − xn
2) ρ = 2.59

ICMIC [33] xn+1 = sin(
a

xn
) a = 7.0

Lorenz [12] {
ẋ = a(y − x)
ẏ = bx − y − xz
ż = xy − cz

 a = 10.0 , b =
8

3
, c = 28.0

Piecewise [11] xn+1 =

{

xn
p
 0 ≤ xn < p

xn − p

0.5 − p
 p ≤ xn < 0.5

1 − p − xn
0.5 − p

 0.5 ≤ xn < 1− p

1 − xn
p

 1 − p < xn ≤ 1

 p = 0.4

Kent [29] xn+1 = {

xn
m
 0 < xn ≤ m

1 − xn
1 −m

 m < xn ≤ 1
 m = 0.4

Singer [28] xn+1 = μ(7.86xn − 23.31xn
2 + 28.75xn

3 − 13.3xn
4) μ = 1.05

Singh [34]

{

ẋ = ax − y2
ẏ = b(z − y)

ż = cy + xy − z
 a = −2.667 , b = 10, c = 27.3

Nguyen [35] {

ẋ = −(y − z)
ẏ = −z

ż = −a(x − y + z) + b × tanh (cx − d)
 a = 0.3 , b = 0.1, c = 80 and d = 0.7

Circle [36] xn+1 = {xn + b − (a − 2π) sin(2πxn)}mod 1 b = 0.2 , a = 0.5

Modified Logistic [37] xn+1 = r(xnmod 1)(1 − (xnmod 1))(2β −
xn
2

β
) β = 40 and r = 4

Bernoulli Shift [11] xn+1 = {

xn
p
 0 ≤ xn ≤ p

xn − p

1 − p
 p < xn ≤ 1

 p = 0.9

Employing Chaos Theory for Exploration-Exploitation Balance in Reinforcement Learning

157

Iterative [28] xn+1 = sin(
aπ

xn
) a = 0.4

Leibovitch [11]

xn+1 = {

axn 0 < xn ≤ p1
p2 − xn
p2 − p1

 p1 < xn ≤ p2

1 − b(1 − xn) p2 < xn ≤ 1

a =
p2
p1
(1 − (p2 − p1))

b =
1

p2 − 1
(p2 − 1− p1(p2 − p1))

p1 = 0.4 and p2 = 0.8

LEL [27] xn+1 = (4axn(1 − xn))
ln(4bxn(1−xn)+c) a = 1 , b = 1 and c = 2.0

SEL [27] xn+1 = (a sin(πxn))
ln(4bxn(1−xn)+c) a = 1 , b = 1 and c = 2.0

Tent [28] xn+1 = {

xn
0.7

 xn < 0.7

10

3
(1 − xn) xn ≥ 0.7

 -

Arnold Cat [38] {
xn+1 = (xn + yn)mod 1

yn+1 = (xn + kyn)mod 1
 k = 2

 .1404سال ،دوره سیزدهم، شماره دوم ،کاویمجله هوش مصنوعی و داده و خدادادی درهمی

 در یادگیری تقویتی گیریو بهره کاوشاستفاده از نظریه آشوب برای ایجاد تعادل بین

 ،*2ولی درهمی و 1حبیب خدادادی

 ایران.، میناب دانشگاه آزاد اسلامی، ،واحد میناب، مهندسی کامپیوترگروه 1

 ایران. ، یزد، دانشگاه یزد، دانشکده مهندسی کامپیوتر 2

 18/02/2025 پذیرش؛ 10/02/2025 بازنگری؛ 21/12/2024 ارسال

 چکیده:

هاای انتخاا و به این منظور به جای انتخاا عمال یریصاانه از روش استترین مسائل در یادگیری تقویتی گیری یکی از مهمتعادل بین کاوش و بهره

شاود کاه بتواناد ایان ادفی، عملی انتخاا مایها به کمک تولید اعداد تصاین روششود. در نرم استفاده می انه و بیشینیریصهمچون شبهعمل دیگری

داشاتن آشاو باا ی شاود و میایب بهتار شاناخته شاود. یشناسااارزش بیشتری توان انتظار داشت که اعمال باتعادل را برقرار کند؛ به همین دلیل می

ادفی، دارای کاربردهاای فراوانای در و رفتاار شابه تصا ارگودیسایتهبینی، اسیت زیاد به شرایب اولیه، غیر تناوبی، غیر قابل پیشی همچون یسیهاویژگی

لیادی از اعاداد تو ،گیری، به جای تولید سانتی اعاداد تصاادفی یکنواخاتجهت ایجاد تعادل بهتر بین کاوش و بهره . در این مقاله،استبسیاری از علوم

 هاای بهتار درشاود و نگاشاتگیاری مایبهره و بیشینه نرم یریصانهانتخا عمل شبه هایک مختلف جهت استفاده در روشآشوبناهای متوسب سیست

-نشاان ، و صاخره تاکسی شامل راهزن چند دست، انجام شده در چند مییب مورد بررسیهای آزمایشد. نشومی یالات و تعداد اعمال مختلف شناسایی

 .های آشوبی استدهنده افزایش سرعت و کسب جایزه بیشتر در خیلی از نگاشت

 گیری، یادگیری تقویتی. انتخا عمل، تئوری آشو ، کاوش و بهره :کلمات کلیدی

