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 The exploration-exploitation trade-off poses a significant challenge in 

reinforcement learning. For this reason, action selection methods such 

as ε-greedy and Soft-Max approaches are used instead of the greedy 

method. These methods use random numbers to select an action that 

balances exploration and exploitation. Chaos is commonly utilized 

across various scientific disciplines because of its features, including 

non-periodicity, unpredictability, ergodicity and pseudorandom 

behavior. In this paper, we employ numbers generated by different 

chaotic systems to select action and identify better maps in diverse 

states and quantities of actions. Based on our experiments on various 

environments such as the Multi-Armed Bandit (MAB), taxi-domain, 

and cliff-walking, we found that many of the chaotic methods increase 

the speed of learning and achieve higher rewards. 
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1. Introduction 

Reinforcement learning is the process of 

determining the best action to take from a set of 

permitted options in a specific scenario, guided by 

the rewards and penalties received [1]. Unlike 

supervised learning algorithms, this type of 

learning only uses numerical evaluations and 

requires a high degree of exploration [2]. To make 

reinforcement learning effective, actions must be 

selected in a way that thoroughly explores the 

environment and properly exploits the knowledge 

acquired during the learning process. When 

estimating action-values in each state of a problem, 

there are two solutions for action selection at each 

time step: The initial approach is to choose the 

action that has the highest estimated value (greedy 

action), leveraging the current understanding and 

action-value assessments. The second solution is to 

select a non-greedy action, which focuses more on 

exploration. Exploration allows the agent to 

enhance its understanding of non-greedy actions, 

while exploitation focuses on maximizing expected 

rewards at each time step, ultimately resulting in a 

more advantageous solution over the long term [1]. 

A balance between exploration and exploitation is 

essential to achieve optimal results in 

reinforcement learning; however, a balance 

between exploration and exploitation is a 

challenge. This balance allows the agent to gain 

new information about the environment while 

simultaneously exploiting the current knowledge to 

achieve high rewards. An appropriate balance will 

reduce learning time, help the agent evade local 

optima, and lead to better solutions. 

In general, the strategies for selecting action are 

classified into two categories: direct and indirect 

exploration methods. In direct exploration 

methods, it is assumed that some environmental 

information such as transition probability function 

and reward function is available, while undirected 

methods are completely dependent on the Q-

values. Since the state transition probability 

function is usually not available in reinforcement 

learning problems, indirect exploration methods 

are often used. The implementation of indirect 

exploration methods (such as ε-greedy and Soft-

Max [3]) is easier, and the two characteristics of 

"randomness of exploration" and "production of 

action based on random distributions" distinguish 

these methods from direct methods [1, 4]. Section 

3 provides the different methods of selecting the 
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action and creating a balance between exploration 

and exploitation.  

Chaos has also been used to establish a balance 

between exploration and exploitation, and chaotic 

numbers have been used in the ε-greedy method for 

exploration. Chaotic systems are considered 

efficient due to their unique characteristics, 

including sensitivity to initial values, pseudo-

randomness, unpredictability, non-periodicity, and 

ability to inspect different segments in the state 

space. In most cases [5, 6], the logistic map is 

utilized to generate random numbers used in the ɛ-

greedy action selection method. Experiments were 

conducted on the target capturing task to compare 

the chaotic state with the normal state. According 

to the results, the chaotic state yielded better results 

to find the target. These papers also concluded that 

the use of random ordinary numbers would be 

sensitive to ɛ. Previous studies have explored the 

use of the chaos theory in the shortcut maze 

problem. These studies compared the performance 

of logistic, tent, and chaotic neuron maps in ɛ-

greedy action selection [7- 9]. The results of these 

studies indicated that the chaos theory was 

effective in improving performance. In another 

study, the tent map was compared to the logistic 

map and found to be less efficient [8]. Additionally, 

the logistic map was applied to the Licensed 

Assisted Access (LAA) problem and implemented 

in the ε-greedy action selection method [10].  

Research on the application of chaos theory in 

action selection is sparse, primarily focusing on 

just one or two chaotic maps. Moreover, this 

exploration has largely been restricted to the ε-

greedy action selection method and a handful of 

specific environments. Furthermore, no studies 

have analyzed the effects of different chaotic 

relationships on the action selection problem. 

However, several chaotic systems have been 

proposed in recent years, which are more efficient 

than previous ones. In this paper, we use different 

types of chaotic maps for action selection methods 

(ε-greedy and Soft-Max) in diverse environments 

to compare the resultant speed and efficiency with 

those of conventional methods.  

The rest of this paper is organized as follows: 

Section 2 briefly introduces chaotic systems, and 

Section 3 presents methods of action selection and 

exploration-exploitation balance. The proposed 

method is described in Section 4, results and 

discussion are reported in Section 5 and 6, and 

finally, the conclusion is presented in Section 7. 

 

2. Chaotic Systems  

Chaotic systems are nonlinear dynamic systems 

that exhibit pseudorandom behavior and are very 

sensitive to initial conditions. Minor alterations in 

the primary conditions of these systems can result 

in significant transformations over time, a concept 

referred to as the butterfly effect in chaos theory.  

For a system to be classified as chaotic, it must 

display the following characteristics [11]: 

 Sensitivity to initial conditions: This trait of 

chaotic systems demonstrates that minor 

changes to the initial conditions can result in 

significantly different outcomes as time 

progresses. 

 Topological mixing or topological 

transitivity (ergodicity): is a characteristic 

that states chaotic variables will move through 

all states within a set range without repeating. 

This property can serve as an optimization 

tool to guarantee that solutions are not 

revisited in the search space, thereby helping 

algorithms avoid getting trapped in a local 

optimum. This feature leads to the generation 

of diverse and non-repeating numbers. 

 Topological density: This refers to the 

characteristic that every point in a specified 

space can be approached by periodic orbits in 

an arbitrary manner. 

Substituting chaos for random numbers has been 

shown to increase learning speed due to leveraging 

the special properties of chaos, especially its 

ergodicity property [11]. 

Many chaotic systems have been introduced to date 

and can be divided into two main categories. The 

first category includes chaotic systems that have 

specific physical interpretations, such as the 

Lorenz system [12]. The second category includes 

chaotic systems that have no specific physical 

interpretations and are merely mathematical 

models, such as the Chen chaotic system [13]. 

The governing equations of the Lorenz system can 

be seen in (1). 

( )x a y x

y bx y xz

z xy cz

  


  

 

 

(1) 

 

The system is in a chaotic mode when 𝑎 =  10, 𝑏 =
 28, and 𝑐 =  8/3. 

The logistic system [14] is another example of a 

chaotic system, characterized by the following 

governing equation:  

)1 (1n n nX X X    
(2) 

 

Where the system behaves chaotically for the 

values of λ within [3.56, 4]. 

Figure 1 demonstrates the behavior of logistic 

system with
0 0.18X  and 3.9999  . The figure 
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illustrates that the generated numbers are uniformly 

distributed across the range of 0 to 1. Over multiple 

iterations, various regions within this space are 

consistently explored; Therefore, using these 

chaotic numbers instead of random numbers can be 

justified, and in addition, it allows us to take 

advantage of the properties of chaos. 
 

Figure 1. The chaotic behavior of a logistic system during 

the initial 200 iterations with
0 0.18X  and 3.9999  . 

 

Despite their pseudorandom behavior, chaotic 

systems are useful for many applications. Chaos 

theory has demonstrated significant effectiveness 

compared to random data across numerous 

scientific disciplines and various areas of machine 

learning. For instance, it has enhanced and 

accelerated the process of identifying global 

optima in many evolutionary algorithms, and 

numerous encryption methods are grounded in 

chaotic principles. This superior performance 

stems from the distinctive characteristics of chaotic 

systems, such as their sensitivity to initial 

conditions and ergodicity. Ongoing research aims 

to develop more robust chaotic systems, with new 

models continually being proposed. 

Chaotic systems exhibit different levels of 

sensitivity to initial conditions and control 

parameters, and not all systems possess the same 

attributes or chaotic rates. The sensitivity of a 

chaotic system can be measured using the 

Lyapunov exponent, with higher values indicating 

stronger chaotic attributes. For example, the 

logistic map has a maximum Lyapunov exponent 

of approximately 0.68, while the SPL map has a 

value of 1.52 [15]. The Appendix presents the 

chaotic maps employed in this paper, which vary in 

their degrees of sensitivity and chaotic rates. 

To obtain a chaotic number in this paper, each time 

a random number is given as an initial value to the 

system, and the resultant number is then used. 

Moreover, in most of the chaotic systems of 

Appendix, the generated numbers are in the range 

of 0 to 1, and in cases where the number generation 

range is different from the foregoing interval, it 

will be mapped onto the 0–1 interval. Furthermore, 

in the cases where a chaotic system generates more 

than one number in each iteration, the mean of 

resultant numbers will be used in the ɛ-greedy 

method. In the systems with derivatives, the 

Runge–Kutta methods are adopted. 

 

3. Action Selection Methods and Exploration–

Exploitation Balance   

In this section, after a short introduction about 

reinforcement learning, there will be some content 

about traditional and new algorithms that are about 

the balance between exploration and exploitation.  

The central concept of reinforcement learning 

involves leveraging value functions to identify 

suitable policies. Dynamic programming is one 

approach within reinforcement learning that 

employs the Bellman equation to determine the 

value of each state in the environment, as well as 

the value of state-action pairs (see equations 3 and 

4) [1].  

( ) ( , ) ( )a a

ss ssa s
SV s a P R V s   

      (3) 

 

To calculate the value of each state, the values of 

other states are used. 

( , ) ( )a a

ss sss
Q s a P R V s  

     (4) 

 

In these equations, action a is chosen from the 

available set of actions in state s, and the next states 

s' are members of the set of states. ( )SV  represents 

the value of state s according to policy π, while

( , )Q s a
 indicates the value of taking action a in 

state s under the policy π, a
Pss

 and  a
Rss

are the 

transition probability and the expected reward 

value to the next state, respectively. Also, ( , )s a

is the probability of selecting action a in state s and 

finally, γ is the discount factor [1]. 

There are multiple algorithms in reinforcement 

learning, one of the most frequently utilized 

algorithms is Q-learning. In the Q-learning 

algorithm, the Q-table is used to store values for all 

state-action pairs. The rows of the table correspond 

to different states, while the columns correspond to 

various actions. Each entry in the table represents 

an estimate of the optimal value for its associated 

state-action pair. At every stage of the agent's 

movement within the environment, this table needs 

to be updated, and new estimated values should 

replace the previous values using the received 

rewards. The update rule of this algorithm is given 

by equation (5) [4]. 
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(5) 

 

In this algorithm, 𝛼 and 𝑟 denote the learning rate 

and the instant reward, respectively. Here, the 

learned state-action value function Q serves as a 

direct approximation of the optimal state-action 

value function, regardless of the policy that 

governs behavior. 

For effective learning, actions should be selected in 

such a way that the environment is properly 

explored and penalties are avoided. It is not 

possible to complete these two tasks at the same 

time and a balance must be established between 

exploration and exploitation. One of the simplest 

methods of action selection is the greedy policy, in 

which the action with the highest value is chosen in 

each state. Adopting a greedy policy for action 

selection can limit the agent to a small segment of 

the environment space and prevent exploration of 

other segments to find better solutions. Therefore, 

other action selection methods are used in practice. 

The Greedy with Optimistic Initialization: This 

method, like the greedy method, selects larger 

action-values in each state, but the initial value of 

all action-values is determined optimistically. 

Initial action values used as a way to increase 

exploration and all actions are tried several times. 

This method is suitable for stationary problems, but 

not effective for nonstationary problems [3]. 

The ɛ-Greedy Method: This policy determines 

whether to explore or exploit based on a specified 

threshold value ε. In the ɛ-greedy method, with a 

probability of 1-ɛ (where ɛ is a positive real number 

between 0 and 1), the action with the highest value 

is selected (Exploitation phase), and with a 

probability of ɛ, all actions can be chosen 

(Eexploration phase). The results indicate that this 

method outperforms the greedy algorithm in terms 

of efficiency [1]. 

The Upper Confidence Bound (UCB): In this 

method, unlike ɛ-greedy, non-greedy actions are 

selected based on their potential for being optimal. 

One of the ways to select the action is in the form 

of Equation (6) [3]. 

ln
[ ( )

( )
arg max ]t

t
Q a c

a t N at
A   

(6) 

 

Where ln t denotes the natural logarithm of t, ( )aNt

represents the count of how many times action a 

has been chosen before time t, and the positive 

constant (c > 0) regulates the level of exploration. 

The second term represents the degree of 

uncertainty associated with the estimated value of 

a [3]. The UCB algorithms keep an upper 

confidence bound for each action, ensuring that the 

expected reward for each action is, with high 

probability, lower than this bound. At every time 

step, the agent optimistically chooses the action 

with the highest 

UCB [16].  

The Soft-Max Method: In this method, Equation 

(7) is used for action selection. 
( , )

exp( )

( , )
exp( )

( , )

Q s a

T
Q s b

b A
T

P s a
 

  

(7) 

 

In Equation (7), the temperature coefficient (T) is 

considered large at the beginning of learning to 

strike a balance between exploration and 

exploitation. However, this coefficient decreases as 

the learning process progresses in order to use the 

previous experience. In the implementation of this 

method, the mechanism of the roulette wheel can 

be used and by creating a random number in the 

range of 0 to 1 and checking its position in the 

roulette wheel, the selected action can be 

determined [1]. 

The authors of [17] made conventional ɛ-greedy 

method adaptive by using the temporal difference 

error obtained from the value function of states. 

The main idea is that when the changes in the value 

function are high, more exploration should be 

done, and on the contrary, when the changes in the 

value function are small or unchanged, less 

exploration is needed. In each state, there is a 

separate ɛ that is updated after each action.  At the 

beginning of the learning process, ɛ is initialized by 

1 for all states. The idea of using differences of 

values was then integrated with the soft-max 

method, something which yielded favorable results 

[18]. 

Fuzzy logic has been used to create a balance 

between exploration and exploitation. An adaptive 

learning rate was introduced to strike a balance 

between exploration and exploitation in the fuzzy 

reinforcement learning [19]. This learning rate is 

set by considering the “fuzzy visit” of the current 

status. 

The cuckoo search algorithm was adopted for 

action selection [4]. In this algorithm, the action 

selection problem is framed as an optimization 

challenge, where the candidate solutions are 

represented by Q values. The objective function is 

also the Q function. During each iteration of the Q-

learning algorithm, the cuckoo search algorithm 

refines the combinations of Q values and actions, 

enabling the selection of the action that 

corresponds to the highest optimized Q value. This 

algorithm was implemented and tested on different 



Employing Chaos Theory for Exploration-Exploitation Balance in Reinforcement Learning 

149 

 

problems such as the MAB and cliff-walking to 

determine its efficiency. 

Analyzing the MAB problem, another study [20] 

aimed to find the optimal temperature in the soft-

max method. A high temperature parameter will 

promote exploration, whereas a low temperature 

parameter will focus solely on exploitation. The 

temperature was considered constant in the soft-

max equation. An evaluation function was first 

proposed to measure temperature, and the optimal 

temperature was then determined in an iterative 

process. The results of this method indicated 

improvements in the entire set of receivable 

rewards. 

The process of identifying the optimal policy in Q-

learning is reconfigured into a search for the best 

solution within an optimization problem [21]. In 

this method, the value of ɛ is generated randomly 

in each state and Simulated Annealing (SA) was 

used in ɛ-greedy. The probability of choosing each 

action in the current state is determined based on 

the SA algorithm, and the balance between 

exploration and exploitation can be controlled with 

the help of the temperature parameter. The 

efficiency of this idea was tested on a maze 

problem. It proved to be superior to ε-greedy and 

Boltzmann exploration. 

The probabilistic action selection method is also 

provided [22]. The Probabilistic Q-Learning (PQL) 

enhances the exploration strategy by employing a 

probabilistic action selection method. This method 

produces a probability distribution for the action 

set corresponding to each state, guiding the 

exploration policy. Here, action ai in state s is 

selected with probability ( , )ip s a , which 

probability is updated along with the value function 

updating and actions will be selected based on a 

variable probability distribution. In addition, in this 

paper fidelity-based PQL is introduced which 

extracts more information from the structure and 

behavior of the system for a better balance between 

exploration and exploitation. 

Moreover, heuristic functions were employed in 

the action selection process [23]. In this study and 

other similar cases, instead of selecting an action 

only based on values or action-values, this work is 

done with the help of a combination of heuristic 

functions and action-values. 

The paper [24] presents an innovative 

reinforcement learning algorithm known as "Go-

Explore." This approach tackles the issue of 

exploration in environments with sparse rewards 

by initially returning to states that have already 

been discovered before venturing out from those 

points. This strategy effectively addresses the 

shortcomings of conventional exploration 

methods, which frequently encounter difficulties in 

complex or misleading environments. The authors 

illustrate that Go-Explore delivers state-of-the-art 

results across a range of challenging tasks, such as 

Atari games and robotic control, underscoring its 

potential to propel advancements in artificial 

intelligence and machine learning. 

The paper [25] introduces an innovative approach 

to reinforcement learning that utilizes intrinsic 

rewards based on masked input modeling. The 

authors present the MIMEx framework, which 

boosts an agent's learning capabilities by enabling 

it to predict masked segments of its input data. This 

strategy fosters enhanced exploration and 

comprehension of the environment. The findings of 

the research indicate that this method significantly 

improves performance across a range of tasks, 

underscoring the value of intrinsic rewards in 

facilitating effective learning processes. 

The authors of [14] explored the application of the 

chaos theory in dynamic programming, specifically 

using the logistic chaos system to overcome global 

updates of all states. This method involves 

executing policy evaluation once in each stage of 

policy iteration and updating only a few states 

proposed by the chaotic system. The policy 

improvement stage then follows, using similar 

procedures in the value iteration method, which 

resulted in better outputs than the conventional 

method. 

 

4. Proposed Method  

As mentioned in the introduction, by using 

numbers generated by chaotic systems instead of 

random numbers, the exploration process can be 

improved while maintaining exploitation 

efficiency. The ε-greedy method is a popular action 

selection approach that can benefit from the chaotic 

characteristic of generated numbers to strike a 

more appropriate balance between exploration and 

exploitation. Previous studies have shown that 

using chaotic maps can result in better exploration-

exploitation balances in maze environments, 

although they only analyzed two or three chaotic 

maps. This study aims to use several chaotic maps 

in different environments, such as the Multi-Armed 

Bandit (MAB) and OpenAI Gym environments 

[26], and compare their efficiencies in action 

selection. After preprocessing and initialization, 

the numbers generated by different chaotic maps 

replace random numbers in the ε-greedy action 

selection process. The chaotic ε-greedy method can 

be expressed as Equation (8). Instead of choosing 

the desired action based on uniform random 

numbers, this is done using chaos. Here, ( , )Q S b

refers to the value of the action-value in state S, and 



Derhami & Khodadadi/ Journal of AI and Data Mining, Vol. 13, No. 2, 2025 
 

150 
 

( , )P S a refers to the probability of selecting action 

a in state S. 

1 ( , )argmax

( , )

a Q S bb A

otherwise
N

P S a





   




  
(8) 

 

In this relation, 𝑁 represents the total number of 

actions, and 𝐴 is the set of actions in state 𝑆. By 

generating a chaotic number, if this number is less 

than the value 𝜀, one of the actions with a lower 

value is selected. If the generated chaotic number 

is greater than the value 𝜀, the action with the 

highest value is selected. The parameter 𝜀 
theoretically ranges between 0 and 1. In this paper, 

various values of 𝜀 are tested, and the results will 

be discussed in the following section. 

In the soft-Max method, it is also possible to get 

help from the benefits of chaos by generating a 

chaotic number and choosing the action in the 

roulette wheel based on it; in the traditional Soft-

Max method, this is done with the help of random 

number generation. 

For instance, Table 1 illustrates the probabilistic 

scenario of selecting five candidate actions in a 

given problem.  
 

Table 1. An example of the roulette wheel mechanism and 

its application in action selection. (n=1 to 5) [1]. 

Q(s,an) P(s,an) 
Action selection 

interval 

-0.0446 0.2542 [0,0.2542] 
-1.1493 0.0842 [0.2543,0.3384] 

0.1709 0.3154 [0.3385,0.6538] 
-0.3211 0.1928 [0.6539,0.8466] 

-0.5498 0.1534 [0.8467,1] 
 

The probability values in the second column of the 

table are computed based on action-value 

parameters using Equation 7 (T=1) and the third 

column is the cumulative sum of the second 

column. The first candidate action is selected if a 

chaotic number lies within the interval [0, 0.2542], 

while the second action is chosen if the chaotic 

number falls within the interval [0.2543, 0.3384]. 

This paper demonstrates that employing chaotic 

numbers, as opposed to random numbers, enhances 

the efficiency of the Softmax algorithm. In this 

paper, Q-learning, which is one of the famous 

reinforcement learning algorithms, is used. 

 

5. Computational Results   

The proposed method was implemented in Python 

on a Windows 8 computer with an Intel Core i5 

processor and 4 GB of RAM. To evaluate its 

performance, we tested the method on three 

environments widely used in previous studies on 

the exploration-exploitation balance: the Multi-

Armed Bandit (MAB) [3], the cliff-walking 

environment [26], and the taxi-domain 

environment [26]. 

The MAB is a simple yet important problem for 

analyzing the exploration-exploitation challenge. It 

involves N reward machines, each of which gives 

a random reward from a constant distribution when 

its lever is pushed. The objective is to estimate 

which machine gives more rewards and the specific 

number of iterations that result in the greatest 

reward possible. In this study, we considered 10 

machines with 10 random means defined using a 

normal distribution with a mean of 0 and a variance 

of 1. Each lever was then selected to give a random 

reward to the mean of a designated machine, and a 

variance of 1 was given to the agent. We ran 2000 

iterations and averaged the results from multiple 

executions. 

The taxi-domain problem consists of several 

accessible OpenAI Gym environments [26]. The 

objective is for a taxi to pick up a passenger and 

drop them off at their destination via the shortest 

path possible. The environment is a 5x5 grid with 

500 states and six actions: move up, move down, 

turn left, turn right, pick up the passenger, and drop 

off the passenger. The passenger gets in or out of 

the taxi in one of the four designated cells. Each 

move has a score of -1, dropping off the passenger 

at the destination has a score of +20, and picking 

up or dropping off the passenger at the wrong 

location has a score of -10. In the cliff-walking 

environment, the objective is for the agent to reach 

the target cell from the start cell. Each move has a 

score of -1, and hitting a cliff incurs a heavy penalty 

of -100, after which the agent returns to the start 

cell. 

Table 2 presents the results of using different 

chaotic maps in the ε-greedy and Soft-Max 

methods for the MAB problem. In ε-greedy 

section, rewards were averaged from 2000 

executions of 2000 steps for all values of ε between 

0 and 1 with a step of 0.01. The table reports the 

highest reward value and its corresponding ε, as 

well as the highest mean of rewards received from 

the last 100 steps and the corresponding ε. For 

example, the entry for LEL [27] shows that the 

highest reward of 1.3846 was obtained at an ε value 

of 0.21, and the highest mean of rewards from the 

last 100 steps was obtained at an ε value of 0.21. 

Also, in the last two columns of Table 2, the results 

of using different chaotic systems in the Soft-Max 

method are also shown. The results are averaged 

over 2000 runs of 2000 steps. The initial 

temperature is equal to 1 and decreases at a rate of 

0.9975. 

In the first row of the table, the values of the 

traditional ε-greedy and Soft-Max methods are 
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mentioned, which were obtained using random 

numbers. 

The results show that most of the chaotic maps 

outperformed the conventional random method in 

terms of acquiring rewards, but the optimal ε values 

varied across different maps. Interestingly, in most 

cases, the optimal ε value for the chaotic maps was 

higher than that of the random method. This 

suggests that chaos performs better with a higher 

rate of exploration, which enhances the chances of 

discovering optimal solutions. Figure 2 illustrates 

the rewards acquired for all values of ε in four 

chaotic maps compared to the random method. The 

figure shows that chaotic methods consistently 

outperformed the conventional method at most 

values of ε. For example, the SINGER map [28] 

achieved significantly higher rewards in most 

values of ε compared to the conventional method.  

As expected, the results for Soft-Max are better 

than those for ε-greedy; and the highest rewards are 

related to the use of chaos in the Soft-Max method. 

Also, the ε-greedy method has improved more than 

the Soft-Max method under the influence of chaos.  

Tables 3 and 4 report the results of implementing 

the ε-greedy action selection method in the taxi-

domain and cliff-walking problems.  

The Q-learning method was used in these 

problems, where the learning rate and γ were both 

set to 0.9. The value of ε was first set to 1, which 

gradually decreased. The results of the taxi-domain 

problem included 500 episodes, in each of which 

the maximum number of steps was 99. To obtain 

more realistic results, 100 different runs were 

tested, and their means were then reported on 

tables. The cliff-walking problem had 400 

episodes, in each of which the maximum number 

of steps was 99. There were also 500 different runs. 

In addition to the mean of the total reward and the 

mean of rewards from the last 100 steps, Table 4 

indicates the number of failures (encounters with 

cliffs) in the cliff-walking problem. According to 

tables 3 and 4, this idea has managed to outperform 

the random state on many chaotic maps. In the taxi-

domain problem, the mean of rewards from the last 

100 episodes was nearly -5.5 in the conventional 

method. However, it was nearly +4 in the best 

chaos, i.e., LEL (in this problem). 

Table 2. The results of using the chaotic action selection method in the MAB problem: 
...1 2000

2000

r rt t
Ravg

  
    and  

...1901 2000
100

100

r rt t
R

  
 . 

Chaotic map 
Maximum Ravg  

in ε-greedy 

Maximum 100R  

in ε-greedy 
Ravg in Soft-Max 100R  in Soft-Max 

conventional random method 1.3607 (ε=0.06) 1.4315 (ε=0.04) 1.4469 1.5172 
Logistic [14] 1.3739 (ε=0.12) 1.4516 (ε=0.06) 1.3857 1.5458 

Sine [26] 1.3738 (ε=0.06) 1.4600 (ε=0.06) 1.3864 1.5388 

Tinkerbell [27] 1.3915 (ε=0.17) 1.4628 (ε=0.1) 1.4376 1.5203 
Zaslavskii [28] 1.3866 (ε=0.17) 1.4579 (ε=0.13) 1.4555 1.5385 

Zhang [29] 1.3679 (ε=0.17) 1.4498 (ε=0.08) 1.3054 1.4475 

HyperChaos [30] 1.3605 (ε=0.27) 1.4525 (ε=0.23) 1.3762 1.4347 
SPL [15] 1.3638 (ε=0.16) 1.4706 (ε=0.16) 1.3495 1.4733 

Chen [13] 1.3684 (ε=0.18) 1.4557 (ε=0.16) 1.4220 1.4904 

Cubic [28] 1.3735 (ε=0.06) 1.4669 (ε=0.06) 1.3944 1.5400 
ICMIC [31] 1.3620 (ε=0.01) 1.4298 (ε=0.01) 1.3599 1.5353 

Lorenz [12] 1.3692 (ε=0.21) 1.4552 (ε=0.21) 1.4102 1.4798 

Piecewise [11] 1.3599 (ε=0.05) 1.4413 (ε=0.03) 1.4284 1.5402 
Kent [27] 1.3721 (ε=0.04) 1.4533 (ε=0.04) 1.4271 1.5387 

Singer [26] 1.3845 (ε=0.12) 1.4753 (ε=0.08) 1.4093 1.5395 
Singh [32] 1.3654 (ε=0.23) 1.4508 (ε=0.19) 1.4179 1.4867 

Nguyen [33] 1.3749 (ε=0.19) 1.4635 (ε=0.19) 1.4180 1.4855 

Circle [34] 1.3693 (ε=0.04) 1.4553 (ε=0.04) 1.4255 1.5403 
Modified Logistic [35] 1.3911 (ε=0.08) 1.4689 (ε=0.08) 1.3784 1.5353 

Bernoulli Shift [11] 1.3653 (ε=0.04) 1.4475 (ε=0.04) 1.4155 1.5263 

LEL [25] 1.3846 (ε=0.21) 1.4660 (ε=0.15) 1.3893 1.5482 

Tent [26] 1.3737 (ε=0.03) 1.4700 (ε=0.03) 1.4165 1.5312 

Iterative [26] 1.3718 (ε=0.04) 1.4458 (ε=0.01) 0.9551 1.1226 

Leibovitch [11] 1.3688 (ε=0.06) 1.4398 (ε=0.02) 1.4072 1.5286 
Arnold Cat [36] 1.3668 (ε=0.17) 1.4624 (ε=0.11) 1.4441 1.5254 

SEL [25] 1.3673 (ε=0.14) 1.4514 (ε=0.12) 1.3812 1.5262 

 

In the cliff-walking problem, the mean of rewards 

from the last 100 episodes was nearly -62.3 in the 

random state. However, it was nearly -16.9 in the 

best chaos, i.e., HyperChaos. Evidently, the 

difference was 45 between the received rewards.  

For instance, Figures 3 and 4 demonstrate the 

comparative charts of some chaotic maps in these 

two problems. In these figures, the average award 

obtained in consecutive episodes is shown. 
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Figure 2. The results of using the ε-greedy method in four chaotic maps: Left and Right respectively: R100 and Ravg for 

different values of ε. 

According to the results and tests, the recently 

proposed chaotic maps such as LEL, modified 

logistic, and Zhang yielded much higher 

efficiencies; hence, they are recommended for 

similar problems. These maps are usually the 

integrated or developed versions of previous maps. 
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In addition, the chaotic systems that generate more 

than one number in each iteration can also yield 

better outputs (e.g., Nguyen, Tinkerbell, and 

Singh), something which can be due to averaging 

and using their generated numbers. 
 
Table 3. Comparative results of chaotic and random 

methods in the taxi-domain environment:    

...1 500

500

r re e
Ravg

  
 and 

...401 500
100

100

r re e
R

  
 . 

Chaotic map Ravg  100R  

conventional random method -153.4948 -5.5191 
Logistic -103.8618 1.4886 

Sine -112.1734 0.2252 

Tinkerbell -147.9634 1.8507 
Zaslavskii -138.6673 2.0033 

Zhang -85.0984 3.7985 

HyperChaos -150.1541 2.8764 
SPL -131.0355 3.8396 

Chen -156.9166 2.1884 

Cubic -109.3988 0.6909 
ICMIC -135.9574 -11.6701 

Lorenz -150.2218 2.6355 

Piecewise -152.6548 -4.9568 
Kent -152.8995 -5.4057 

Singer -89.4994 3.3733 

Singh -150.4401 2.8554 
Nguyen -150.4119 2.8875 

Circle -166.8422 -5.4243 

Modified Logistic -103.8775 1.3778 
Bernoulli Shift -152.578 -5.0860 

LEL -99.0054 3.9206 

Tent -152.2878 -4.9191 
Iterative -134.0724 -28.1704 

Leibovitch -169.2107 -8.4864 

Arnold Cat -150.7027 1.5231 

SEL -107.0654 3.52 

 

6. Discussion  

The results of this research show that replacing 

random numbers with chaotic numbers 

significantly improves the performance of the 

learning algorithm in many chaotic systems; This 

is due to the special characteristics of chaos, 

especially its ergodicity.  

According to the successful experience of chaos in 

many applications, in general, replacing random 

numbers with chaotic numbers is desirable in most 

cases, but one of the major weaknesses of chaos is 

the diversity and extent of these systems, as well as 

the somewhat different behavior of chaotic systems 

in Different environments [11]. For example, in the 

paper on the use of chaos in cellular automata [11], 

Tent's chaotic system has a good performance, but 

this is not the case in the tests of this research. 

This work does not propose a new method nor 

claims superiority over existing well-established 

approaches. In reinforcement learning, common 

action selection techniques such as ε-greedy and 

Softmax rely on random numbers for decision-

making. To improve their efficiency, chaos-based 

mechanisms were introduced, which demonstrated 

promising results. Extensive comparisons were 

carried out across multiple environments to 

evaluate their performance. Beyond ε-greedy and 

Softmax, which are the focus of this study, random 

and greedy action selection methods were also 

examined. However, under the specified conditions 

in this paper, these methods failed to achieve 

convergence, leaving the problem unresolved. 

 
Table 4. Comparative results of chaotic and random 

methods in the cliff-walking environment:    

...1 400

400

r re e
Ravg

  
  and 

...301 400
100

100

r re e
R

  
 . 

Chaotic map 
Average number 

of failures 
Ravg  100R  

conventional 
random method 

309.316 -89.7255 -62.3534 

Logistic 239.064 -73.4141 -42.7098 

Sine 258.076 -77.9455 -48.1701 
Tinkerbell 254.162 -75.7387 -32.5329 

Zaslavskii 247.93 -74.4726 -33.6996 

Zhang 182.522 -59.7008 -29.7584 
HyperChaos 215.1 -65.7251 -16.9275 

SPL 273.214 -81.4399 -33.3061 

Chen 242.728 -72.5083 -24.2114 
Cubic 250.414 -76.1308 -46.0402 

ICMIC 316.036 -92.1133 -73.6471 

Lorenz 231.458 -69.8922 -22.3126 
Piecewise 309.734 -89.8002 -62.7174 

Kent 309.824 -89.8037 -62.6652 

Singer 190.892 -61.6546 -31.6921 
Singh 231.806 -69.9747 -22.4358 

Nguyen 232.06 -70.0131 -22.3273 

Circle 325.596 -93.5226 -65.0926 
Modified Logistic 238.512 -73.2755 -42.4887 

Bernoulli Shift 309.204 -89.7047 -62.2438 

LEL 210.214 -66.3543 -30.0920 
Tent 309.158 -89.7160 -62.2757 

Iterative 323.816 -94.4511 -83.7766 

Leibovitch 331.028 -94.8541 -69.9228 
Arnold Cat 257.56 -76.5054 -34.1446 

SEL 230.328 -71.1815 -34.4375 

 

7. Conclusion  
In this paper, the method of using chaos in 

choosing random actions in reinforcement learning 

is presented, and a comprehensive review on the 

effectiveness of different types of chaos functions 

(maps) in action selection has been done. The paper 

replaces the random numbers with numbers 

generated by different chaotic systems in the ε-

greedy and Soft-Max action selection methods. 

The study compares the results of different chaotic 

methods with the conventional method in the 

MAB, taxi-domain, and cliff-walking 

environments. The results show that using many 

chaotic methods leads to greater rewards and fewer 

steps towards a target. The study also finds that 

chaotic methods with greater rewards have larger 

values of ε than the conventional method. 

Additionally, chaotic methods obtain greater 

rewards even at large values of ε compared to the 

conventional method. Chaotic methods 

outperformed the conventional method in terms of 

receivable rewards in the taxi-domain and cliff-
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walking environments. The study indicates the 

superiority of more recent chaotic systems (e.g., 

LEL and modified logistic) and multidimensional 

systems (e.g., HyperChaos and Singh) than other 

systems.As the next step, the use of chaotic systems 

in the action selection part of deep reinforcement 

learning algorithms is considered. 

 

  

  

Figure 3. Comparing the rewards received from some chaotic maps with those of the random method in the taxi-domain 

environment. 

 
 

  
Figure 4. Comparing the rewards received from some chaotic maps with those of the random method in the cliff-walking 

environment. 
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8. Appendix  
Here the chaos maps worked in this paper are listed along with the desired parameters. 

 
Chaotic System Equation Designated Parameters 

Logistic[14] xn+1 = λxn(1 − xn) λ = 4.0 

Sine[28] xn+1 =
a

4
sin(πxn) a = 4.0 

Tinkerbell [29] {
xn+1 = xn

2yn
2 + axn + byn

yn+1 = 2xnyn + cxn + dyn
 a = 0.9 , b = 0.6013, c = 2.0 and d = 0.5 

Zaslavskii [30] {
xn+1 = (xn + v + ayn+1)mod 1
yn+1 = cos (2πxn) + e

−ryn
 v = 400 , r = 3 and   a = 12.6695 

Zhang [31] xn+1 = 2μ|xn|(1 − 2|xn|) μ = 2.4140 

HyperChaos [33] {

ẋ = a(y − x) + yz
ẏ = cx − y − xz + w 

ż = xy − bz
ẇ = dw − xz

 a = 35 , b = 3, c = 28.0 

SPL [15] xn+1 = sin(r × arcsin (√|xn|))
2 + (1 − r)2(|xn|)(1 − 2|xn|) r = 3.465 

Chen [13] { 

ẋ = a(y − x)                     

ẏ = (c − a)x + cy − xz               
ż = xy − bz                     

 a = 35 , b =
8

3
, c = 55 and d = 1.3 

Cubic [30] xn+1 = ρxn(1 − xn
2) ρ = 2.59 

ICMIC [33] xn+1 = sin(
a

xn
) a = 7.0 

Lorenz [12] { 
ẋ = a(y − x)                     
ẏ = bx − y − xz               
ż = xy − cz                     

 a = 10.0 , b =
8

3
, c = 28.0 

Piecewise [11] xn+1 =

{
 
 
 
 

 
 
 
 

xn
p
   0 ≤ xn < p

xn − p

0.5 − p
   p ≤ xn < 0.5

1 − p − xn
0.5 − p

   0.5 ≤ xn < 1− p

1 − xn
p

   1 − p < xn ≤ 1

 p = 0.4 

Kent [29] xn+1 = {

xn
m
                0 < xn ≤ m

1 − xn
1 −m

         m < xn ≤ 1
 m = 0.4 

Singer [28] xn+1 = μ(7.86xn − 23.31xn
2 + 28.75xn

3 − 13.3xn
4) μ = 1.05 

Singh [34] 

 
{ 

ẋ = ax − y2                     
ẏ = b(z − y)               

ż = cy + xy − z                     
 a = −2.667 , b = 10, c = 27.3 

Nguyen [35] { 

ẋ = −(y − z)                     
ẏ = −z               

ż = −a(x − y + z) + b × tanh (cx − d)                     
 a = 0.3 , b = 0.1, c = 80 and d = 0.7 

Circle [36] xn+1 = {xn + b − (a − 2π) sin(2πxn)}mod 1 b = 0.2 , a = 0.5 

Modified Logistic [37] xn+1 = r(xnmod 1)(1 − (xnmod 1))(2β −
xn
2

β
) β = 40 and r = 4 

Bernoulli Shift [11] xn+1 = {

xn
p
               0 ≤  xn ≤ p

xn − p

1 − p
        p <  xn ≤ 1

 p = 0.9 
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Iterative [28] xn+1 = sin(
aπ

xn
) a = 0.4 

Leibovitch [11] 

xn+1 = {

axn              0 <  xn ≤ p1
p2 − xn
p2 − p1

         p1 <  xn ≤ p2

1 − b(1 − xn)      p2 < xn ≤ 1

 

a =
p2
p1
(1 − (p2 − p1)) 

b =
1

p2 − 1
(p2 − 1− p1(p2 − p1)) 

p1 = 0.4  and p2 = 0.8 

LEL [27] xn+1 = (4axn(1 − xn))
ln(4bxn(1−xn)+c) a = 1 , b = 1 and c = 2.0 

SEL [27] xn+1 = (a sin(πxn))
ln(4bxn(1−xn)+c) a = 1 , b = 1 and c = 2.0 

Tent [28] xn+1 = {

xn
0.7

                xn < 0.7

10

3
(1 − xn)         xn ≥ 0.7

 - 

Arnold Cat [38] {
xn+1 = (xn + yn)mod 1

yn+1 = (xn + kyn)mod 1
 k = 2 
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  در یادگیری تقویتی گیریو بهره کاوشاستفاده از نظریه آشوب برای ایجاد تعادل بین 

 

  ،*2ولی درهمی و 1حبیب خدادادی

 ایران.، میناب دانشگاه آزاد اسلامی، ،واحد میناب، مهندسی کامپیوترگروه  1

 ایران. ، یزد، دانشگاه یزد، دانشکده مهندسی کامپیوتر 2

 18/02/2025 پذیرش؛ 10/02/2025 بازنگری؛ 21/12/2024 ارسال

 چکیده:

هاای انتخاا  و به این منظور به جای انتخاا  عمال یریصاانه از روش استترین مسائل در یادگیری تقویتی گیری یکی از مهمتعادل بین کاوش و بهره

شاود کاه بتواناد ایان ادفی، عملی انتخاا  مایها به کمک تولید اعداد تصاین روششود. در نرم استفاده می انه و بیشینیریصهمچون شبهعمل دیگری 

داشاتن آشاو  باا ی شاود و میایب بهتار شاناخته شاود. یشناسااارزش بیشتری  توان انتظار داشت که اعمال باتعادل را برقرار کند؛ به همین دلیل می

ادفی، دارای کاربردهاای فراوانای در و رفتاار شابه تصا ارگودیسایتهبینی، اسیت زیاد به شرایب اولیه، غیر تناوبی، غیر قابل پیشی همچون یسیهاویژگی

لیادی از اعاداد تو ،گیری، به جای تولید سانتی اعاداد تصاادفی یکنواخاتجهت ایجاد تعادل بهتر بین کاوش و بهره . در این مقاله،استبسیاری از علوم 

 هاای بهتار درشاود و نگاشاتگیاری مایبهره و بیشینه نرم یریصانهانتخا  عمل شبه هایک مختلف جهت استفاده در روشآشوبناهای متوسب سیست

-نشاان ، و صاخره تاکسی شامل راهزن چند دست، انجام شده در چند مییب مورد بررسیهای آزمایشد. نشومی یالات و تعداد اعمال مختلف شناسایی

  .های آشوبی استدهنده افزایش سرعت و کسب جایزه بیشتر در خیلی از نگاشت

 گیری، یادگیری تقویتی. انتخا  عمل، تئوری آشو ، کاوش و بهره :کلمات کلیدی

 


