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 Shear Wave Slowness Log (DTSM) is one of the most important petrophysical logs 
applicable for studying reservoirs, especially geomechanical studying of the oil and 
gas fields. However, lack of this parameter in wellbore logging can import great 
sources of uncertainty into geomechanical studies. This study aims to provide 
solutions for decreasing the uncertainty of geomechanical models with estimation of 
the DTSM log using the high accurate deep machine learning models. The main idea 
is using data from offset fields for extending the range of training data and improving 
the estimation ability and generalizability of machine learning models. For this 
purpose, petrophysical data from 8 wells of 4 Iranian oil fields were collected. In the 
first stage, data preprocessing was performed for reducing the effects of wrong data, 
missing value, noises, and outliers. Then, machine learning (regression learning-
based and deep neural network-based) and analytical models implemented for 
estimating DTSM. The results indicated that the Gated Recurrent Unit (GRU) model 
with the values of 1.9 and 2.14 for RMSE and 0.99 for R-square had the most exact 
answers, for training and test data, respectively. Meanwhile, evaluation of the 
accuracy of the models on the validation well data indicated that GRU model with the 
values of 2.43 and 0.93 had been the most accurate model for RMSE and R-square, 
respectively. Accordingly, using a multi-field comprehensive data bank and applying 
machine learning methods are strongly recommended to estimate the DTSM, for the 
cases where limited offset data is available. 
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1. Introduction 

Shear Wave Slowness Log (DTSM) is one of 
the key elements, which is specifically important in 
geo-mechanical studies of hydrocarbon reservoirs. 
In addition to its high importance, this log is 
collected in a limited number of hydrocarbon well 
fields, especially in reservoirs section, due to the 
exorbitant expenses of this measurement [1, 2, 3]. 
Shear wear slowness log (or in the form of shear 
wave velocity) is used to calculate rock strength 
and further for other geo-mechanical parameters. 
Accordingly, in a field where only a few numbers 
of wells and in a limited part of the reservoirs, this 

log exists, geo-mechanical estimations and 
calculations at other wells lacking this log and 
therefore developing three-dimensional models of 
the reservoirs are faced with high uncertainty. To 
face this challenge, several analytical equations 
have been developed during the last decades due to 
the high correlation between the shear wave 
slowness log and compression wave slowness log, 
and some analytical correlations have been 
developed between these two logs. Models 
developed by Pickett (1963), Castagna et al. 
(1993), and Brocher (2005) can be pointed out as 
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the commonly applied models in previous 
literature. On the other hand, given the importance 
of this parameter, extensive studies have been 
conducted during the last decades to study and 
investigate the relation between shear wave 
velocity and other petro-physical logs such as shear 
wave ( ܸ ), Gamma Ray (GR), neutron porosity 
(NPHI), and bulk density (RHOB) using machine 
learning methods [2,3,7]. 

One of the commonly applied and simplest 
methods which has attracted much attention is to 
use single and multivariate regressions [1,7-12]. 
Meanwhile, the support vector regression method 
is also applied in different studies, and it has 
acceptable results compared to other intelligent 
methods [13,14,15]. However, a support vector 
machine algorithm with least squares regular and 
hybrid regression has been introduced as a 
powerful algorithm in this regard [2,3,7,9]. One of 
the most applied machine learning methods is the 
artificial neural network which has various 
applications in developing drilling penetration rate 
and torque [16,17,18]. One of the applications of 
this algorithm, which has been used both in the 
regular and hybrid forms, has been shear wave 
slowness (velocity) estimation 
[2,7,9,13,14,15,19,20]. Using compatible regular 
and hybrid fuzzy inference systems [18], and 
adaptive neuro-fuzzy inference system (ANFIS) 
with optimization algorithms have attracted the 
attention of the researchers for the estimation of the 
shear wave slowness from other petro-physical 
logs [14,15].  

Meanwhile, the Multi-layer Extreme Learning 
Method (MELM) was compared for the first time 
as a simple form or in combination with other 
optimization algorithms with the performance of 
LSSVM and CNN models in a study by Mehrad et 
al. (2022) and Rajabi et al. (2022), which indicated 
that this model has good potential to be applied in 
this issue. In recent years, using deep learning 
networks has a special position in data-based 
studies due to its high strength in extracting 
complex relations dominated among the 
parameters. The application of LSTM and CNN 
deep learning networks has been assessed to 
estimate the shear wave slowness, which has more 
successful performance in these studies compared 
to other machine learning models [3,23-26]. 
However, as the application of these models is 
novel, more assessment in different studies and 
based on different data banks is needed.  

In the most conducted studies, the dominant 
strategy has been the assessment of machine 
learning algorithms in the estimation capability of 
the shear wave slowness or velocity from other 
petrophysical logs, which has been with data banks 
including single field or, ultimately, double field 
data. In the real situation, when a limited number 
of the well have a shear wave slowness log, 
considering the heterogeneity of the carbonate 
formations at the parts of a field, the challenge of 
not covering the range of training algorithms to 
estimate shear wave slowness at other wells is 
created. Therefore, the basic question can be 
proposed in this way; how to overcome the 
limitation of training machine learning algorithms 
with limited data from each field? In this study, as 
an innovative approach, a multi-field data bank has 
been used to develop a high accurate model with a 
wide range of petrophysical parameters to estimate 
shear wave slowness. Also, in machine learning 
models, for the firs time in literature of DTSM 
estimation, the capability of gated recurrent unit 
(GRU) model as a deep learning model has been 
evaluated and compared with wide range of most 
used regression learning-based (SVR, GPR, BGT), 
deep neural network-based (ANN, RNN, CNN, 
and LSTM), and analytical models. 

2. Methodology 

This study aims to provide an innovative 
solution to estimate the DTSM log using a data 
bank made up of petro-physical data of carbonate 
formations of several oil fields. For this purpose, as 
shown in Figure 1, below steps are conducted for 
doing this study: 

 Step 1: data collecting including 23069 data 
points from 8 drilled well in 4 Iran’s southwest 
oil fields including South Azadegan (2 wells), 
Ahvaz (3 wells), Marun (2 wells), and Abteimour 
(1 well) oil fields. 

 Step 2: Performing data preprocessing including 
data cleaning (rang check, missing value 
detection, noise reduction, and outlier 
elimination) and data preparation (normalization, 
partitioning, and feature selection). 

 Step 3: Developing DTSM estimator models 
using machine learning algorithms based on the 
modeling data (training and testing). 

 Step 4: Validation of analytical and developed 
machine learning models of DTSM estimation at 
the unseen data (validation data). 
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Figure 1. The workflow followed in this research work. 

2.1. Data description 

In this study, petro-physical information from 8 
drilled well in 4 old fields southwest of Iran was 
collected to cover a broad range of data to train 
machine learning models in DTSM estimation. 
Wells were named respectively as AZNa, and 
AZNb at Azadegan oil field, AHZa, AHZb, and 
AHZc at Ahvaz oil field, MRNa and MRNb at 
Marun oil field, ABTa at Abteimur oil field. Data 
collected includes full set petro-physical logs, 
including Gamma ray (CGR), Resistivity (RT), 
Photo electric (PEF), Neutron porosity (NPHI), 
Density (RHOB), Compressive wave slowness 
(DTCO), and Shear wave slowness (DTSM). In 
Figure 2, the profile of petro-physical logs changes 
is indicated in terms of depth at Well AZNb studied 
zone. The profile of petro-physical logs, as well as 
statistical indicators extracted from total 
information of all studied wells, are provided in 
Appendix A . 

2.2. Data pre-processing 

The pre-processing operation, including data 
clearance and preparation, is one of the main stages 
in the studies and modeling based on machine 
learning. In this study, the pre-processing data 
stage has been conducted to decrease the effect of 

adverse factors on the final results of estimator 
models, as well as prepare a data bank with the 
required features to develop intelligent models. 
This process is further explained. 

2.2.1. Data cleaning 

In this work, we used petro-physical logs. The 
main problems of these data include wrong data, 
missing values, and noise and outlier existence. 
Meanwhile, the existence of at least 5% noise in 
real data is an inevitable problem [27,28]. Data 
having noise leads to inappropriate function of the 
machine learning due to extraction of wrong rules 
from the data, and therefore it causes problems in 
the generalizability of these models to predict new 
data [29,30]. In addition to noise, outlier data often 
generates a certain situation in the data that can 
considerably affect the results of intelligent 
models. Outliers are data whose amounts are not 
justifiable compared to other data. An appropriate 
strategy for these kinds of data can be their removal 
or replacement, depending on the level of 
sensitivity and complexity of the problem. 
However, generally, the management of these data 
after their detection has a high priority [31]. 
Accordingly, despite mentioned influential factors 
on the quality of the applied data, clearance is 
necessary at the first stage. 
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Figure 2. Profile of petrophysical logs in studied interval Well AZN-b. 

2.2.2. Data preparation 

One of the basic requirements for modeling 
stages with machine learning algorithms after data 
clearance is to create an appropriate database. For 
this purpose, normalization, partitioning, and 
superior feature selection operations were 
conducted in this stage on petro-physical data 
cleaned during the data preparation process. 
Further, each stage is explained in detail. 

2.2.2.1. Data normalization 

Data normalization is one of the actions to 
prepare data, which is very important for the 
machine learning step. In this process, all 
parameters are mapped using Equation 1 at the 
range of [-1, 1] to eliminate the data scaling effect. 
In this way, the manner of changes and binary and 
multilateral associations of the parameters 
becomes possible. 

ܺ
 =  2 ൬

ܺ − ܺ

ܺ௫ − ܺ
൰ − 1 (1) 

In this equation, ܺ
  is the normalized amount 

of ith, ܺ is the amount of ith parameter, ܺ and 
ܺ௫ are maximum and minimum amounts of 
parameter X at the whole data, respectively. 

2.2.2.2. Data partitioning  

The main scenario of this study is to estimate 
the DTSM log in a target field using measured 

information at the same field in addition to 
information obtained from a given log at the 
surrounding fields with identical formations. 
Therefore, as is indicated in the flowchart of Figure 
1, the data partitioning strategy after normalization 
of the whole data is data partitioning in two 
modeling sections (for training and testing the 
models) and verification. Meanwhile, to avoid the 
effect of random data selection on the results of the 
training and testing of intelligent models, the k-fold 
cross-validation method was used in all models. 

2.2.2.3. Feature selection 

Feature selection or decreasing problem 
dimensions is one of the stages that usually is 
applied in developing intelligent models based on 
machine learning. Although there is not any 
restriction for the number of inputs in machine 
learning methods, it is always specified in several 
studies that the accuracy of the model is not a 
function of the number of the inputs, and the errors 
of estimator models do not decrease necessarily 
with an increase in the number of inputs. Rather for 
an arrangement of parameters with the most 
influence, the lowest model error is obtained, and 
with the addition of other parameters, no 
significant change has occurred in the accuracy of 
the model. Generally, two groups of methods, 
including Wrapper and Filter, are used to select and 
identify these parameters [3,18,32-36]. In most of 
these studies, it is proposed that the group of 
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Wrapper methods is used for the recognition of the 
superior features. Moreover, we should keep in 
mind that the role of co-linearity in selecting 
influential factors is very strong. Therefore, 
investigating the co-linearity of data using cross-
plot graphs and the amount of correlation 
coefficient through the NSGA-II method, which is 
the Wrapper method, has been used to select 
superior features in developing DTSM estimator 
models. 

2.3. Estimating DTSM using machine learning 
models  

In order to development of high accurate DTSM 
model, different machine learning models have 
been used including regression learning-based 
models (Bootstrap aggregating (BGT), Support 
Vector Regression (SVR), and Gaussian 
Processing Regression (GPR)) and deep neural 
network-based models (Artificial neural network 
(ANN), Convolutional Neural Network (CNN), 
Recurrent Neural Network (RNN), Long Short 
Term Memory (LSTM), and Gradient Recurrent 
Unit (GRU). 

 
 

2.3.1. Regression learning-based models 
2.3.1.1. Bootstrap aggregating  

Bootstrap aggregating or bagging tree (BGT) is 
one of machine learning model based on 
aggregating learning ensemble models in which 
aggregative intelligence is used, and its results are 
better than the best results of a given model 
because it works based on the aggregation of the 
comments and results of the models. In these 
algorithms, there are two strategies to use 
aggregated intelligence. In the first strategy, some 
models are trained for a data set, and results 
obtained from different predictors will be voted on. 
In the second strategy, some identical predictors 
with different data sets are trained with sampling 
using bootstrap, and its results are usually 
aggregated [36]. In Figure 3, modeling with 
bagging is provided. As it can be observed, in this 
method, unlike boosting, the accuracy of the 
second predictor is not dependent at all on the 
accuracy of the first predictor; likewise, up to the 
end and they are completely independent of each 
other. An important point, in this case, is the 
selection of the number of decision trees in each 
predictor and leaf, which needs optimization. In 
this study, this kind of bagging is used . 

 
Figure 3. The structure of bootstrap aggregating (Bagging tree) model. 

2.3.1.2. Support vector regression  

Support Vector Regression (SVR) is one of the 
supervised methods of machine learning which is 
used to solve regression problems [37]. This 
method has good performance for the management 
of high-dimensional data to decrease the model 
complexity and the prediction error. Then this 
algorithm has been applied broadly as a tool to 
understand the effects of various influential 
parameters on the target parameter. This method 

solves the problem using different Kernel 
functions, which include the linear, RBF, 
Gaussian, and Polynomial models. The theory of 
this method is explained in detail by Awad and 
Kanna (2015) and Zhang and O’Donnell (2020). 

2.3.1.3. Gaussian processing regression  

Gaussian Processing Regression (GPR) is one 
of the most powerful machine learning algorithms, 
which, unlike many common machine learning 
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models, rely on a few parameters for prediction. As 
GPR is non-parametric, it can be efficiently applied 
to solve a broad range of supervised learning 
problems even when little data is available. 
Gaussian processing regression can be considered 
as kernelized Bayesian linear regression, in which, 
kernel parameterization is determined by selecting 
kernel function as well as data used for the 
prediction. Different kernel parameters are used in 
this model, which includes Squared Exponential, 
Radial Basis Function, Rational Quadratic, and 
Matern kernel function. Kuss (2006) provided an 
exact description of these algorithms. 

2.3.2. Deep neural network-based models 
2.3.2.1. Artificial Neural Network  

Artificial neural network is another widely used 
supervised machine learning method that has been 
significantly used in fields related to the oil, gas 
and geothermal wells drilling, especially in the 
estimating the rate of penetration (ROP) [18,36]. In 
general, the types of artificial neural networks can 
be divided in Radial Basis Function (RBF), and 
Multi-Layer Perceptron (MLP). The structure of a 
MLP neural network includes an input layer, a 
number of hidden layers, and an output layer 
[41,42]. The objective function in this model is the 
model error, which is minimized using a learning 
algorithm during the feed forward back 
propagation (FFBP) process. According to the 
complexity of the problem, the number of hidden 
layers and the number of neurons in each layer 
increases. Accordingly, the MLP networks with 
more than one hidden layer can be called a deep 
MLP network. However, achieving the optimal 
number of layers and the number of neurons in 
each layer requires testing different models by trial 
and error on the problem dataset [42]. 

2.3.2.2. Convolutional neural network  

The Convolutional Neural Network (CNN) 
model is one of the developed structures of the 
deep learning network [43]. Recently, this model 
has been used successfully in different studies on 
the topic of estimating shear wave velocity and 
estimation of drilling rate of penetration [3,22,33]. 
CNN model is considered as a deep feed-forward 
network structure, which has strong ability 
compared to the interconnected layer networks. 
Due to the good performance of CNN, it is used 
broadly in the issues such as image classification, 
object detection, velocity detection, sonic 
detection, vehicle detection, facial expressions 
detection, and other issues [44]. The general 

structure of a CNN is made up of an input layer, 
several parallel filters, a pooling layer, and a dense 
layer. Indolia et al. (2018) provided a complete 
explanation of how this model works. In a CNN, in 
addition to the adjustment of the weights and biases 
that are performed automatically and during the 
feed-forward back propagation process, parameters 
related to the network should be adjusted too. 
Therefore, one of the disadvantages of this method 
is the existence of a large number of adjustable 
parameters.  

2.3.2.3. Recurrent Neural Network model  

The Recurrent Neural Network (RNN) is a 
special type of artificial neural network that allows 
the continuation of information related to past 
knowledge using a special type of loop 
architecture. These types of networks are used in 
many fields for data with sequences, such as 
predicting the next word of a sentence [45]. In a 
RNN, unlike the traditional feed forward neural 
network, there are feedback connections that allow 
the RNN to model the effects of previous parts of 
the sequence on the next part of the sequence, 
which is a very important feature in modeling 
sequences [46]. 

2.3.2.4 Long Short Term Memory Model 

The concept of Long short-Term Memory 
(LSTM) was introduced in 1997 [47]. LSTM is 
basically a type of RNN architecture that is 
commonly used in various applications and 
products such as speech recognition systems. A 
typical LSTM network has something called a 
memory cell. The memory cell can retain some 
information about the sequence, which allows it to 
detect important features at the beginning of the 
sequence that may affect later parts of the 
sequence, rather than calculating the output based 
only on the previous time step. The main 
components of LSTM are its gates. There are three 
gates in LSTM including the input gate, forgetting 
gate and output gate. The input gate controls the 
entry of new information into the cell. The 
forgetting gate controls the content of the memory, 
that is, the forgetting gate decides whether we want 
to forget some information in order to store new 
information. The output gate controls the time of 
using the information in the output of the cell [45]. 

2.3.2.5. Gated recurrent unit model 

Gated recurrent Units (GRUs) are a gating 
mechanism in recurrent neural networks, 
introduced in 2014 [48]. GRU model is a simplified 
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and newer version of RNN and LSTM, which 
offers an improvement over the other two. Just like 
LSTM, GRU uses gates to control the flow of 
information. A GRU model composed of two gates 
and one candidate-state network, namely: reset 
gate, update gate, and candidate-state [49].These 
gates relatively new, as compared to LSTM. This 
is the reason they offer some improvement over 
LSTM and have simpler architecture. The update 
gate used by the GRU is equivalent to the forget 
and input gates in the LSTM model combined as a 
single network. It is used to determine what 
information to remove or add. The reset gate is 
used to determine how much information from the 
previous state to forget. In contrast to the LSTM, 
there is no cell state in the GRU network. In other 
words, the cell state can be seen as the previous 
hidden state. The network parameters of the GRU 
are less than those in LSTM and hence the network 
requires less training time to learn about 
dependencies among the time-step observations or 
sequence data [49].  

2.4. Verification of the developed models 

At the final stage, the DTSM is estimated in the 
validation well to assess the generalizability of the 
developed intelligent models based on a multi-field 
data bank. The accuracy of the trained model based 
on the extensive range of the data in DTSM log 
estimation in an unobserved well is an indication of 
the high generalizability of this model. Meanwhile, 
in this stage, the results of applying several 
empirical models of DTSM estimation have been 
also compared with the results of the machine 
learning models. 

3. Results and Discussion 
3.1. Data preprocessing analysis 
3.1.1. Data cleaning 

Due to the clearance of the petro-physical data, 
firstly, depth ranges having wrong amounts and 
missing values (in every parameter) are detected 

and deleted from the data. Then the operation of 
removing noise from the data using a one-
dimensional median filtering smoothing algorithm 
was conducted. The one-dimensional median 
filtering method is a well-known method in 
processing the image against “Random,” 
“Gaussian,” and “Salt and Pepper” noises. This 
method is provided by Gonzalez and Wood (2008) 
in detail. Recently this method has been applied 
successfully in studies about artificial intelligence 
and using petro-physical and drilling logs 
[18,32,33]. The comparison of row and noise 
removed petro-physical logs at the studied zone of 
Well AZN-b has been provided in Figure 4 (the 
plot of other wells has been provided in Appendix 
B). As can be seen in this figure, using a one-
dimensional median filter well preserved the 
general pattern and trend of information. 
Accordingly, the PEF log has been most influenced 
by noise. It is while RHOB log has not been much 
affected by the noise. It is worth mentioning that 
DTSM, DTCO, and NPHI logs have sudden picks, 
which are resulted from the outlier. Detecting and 
management of the outliers after applying a 
smoothing filter is very important. Different 
methods have been provided by researchers for this 
purpose. Tukey’s method is one of the commonly 
applied methods for detecting outliers from petro-
physical logs [18,36]. Therefore, at the last stage of 
this phase, outlier data were detected and removed 
using Turkey’s method, and gap filling with 
nearest value method were used. The DTSM log 
range as a sample log after applying one-
dimensional filtering for the different studied well 
zones has been provided in Figure 5. As it can be 
seen in Figure 5a, the DTSM log at well AZN-a, 
well MRN-b, and AZN-b have outliers in some 
zones. Sudden picks in Figure 4 indicated this fact 
too. Therefore, at this stage, detected outliers were 
removed, and its results can be observed in Figure 
5b. Final range of cleaned logs is provided 
separately for each studied well in Appendix B. 
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Figure 4. The comparison of row and de-noised petrophysical logs in studied interval of well AZN-b. 

  
(b) (a) 

Figure 5. DTSM log quality in studied wells; a) after denoising; b) after outlier elimination and gap 
filling. 

3.1.2. Data preparation 
3.1.2.1. Data normalization 

All information after clearance has been 
normalized using Eq. 1. At this stage, as can be 
seen in Figure 6, the range of each log based on its 
maximum and minimum value at [-1,1] is mapped. 
For example, the real range for the NPHI log after 
clearance shown at different wells has been shown 

in Figure 6a. The range of this log with 
normalization mapping between -1 and 1 has been 
indicated in Figure 6b. Accordingly, the highest 
amount of NPHI log is at the range of [0.2118, 
0.3583] (see Figure 6a), which has been mapped at 
the range of [0.186, 1] after normalization (see 
Figure 6b) as the maximum data value in this log is 
at this range. 
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(b) (a) 

Figure 6. The box plots of DTSM in the studied wells; a) true scale, b) normalized scale. 

3.1.2.2. Data partitioning 
The main idea of this study for estimating shear 

wave slowness log is formed at the wells of 
Azadegan field. It was while at the given wells 
DTSM log data were mapped only in two wells of 
AZN-a and AZN-b. Given to broad range of 
amount changes of petro-physical parameters at 
different sites of the field and the limited range of 
petro-physical logs data of the wells in which 
DTSM log has been collected, the great challenge 
is generated to use machine learning models from 
the data training viewpoint. As a solution for 
increasing the training range for machine learning 
models, a databank composed of information 
related to several wells having DTSM logs from 

the fields surrounding the Azadegan field has been 
created. The considered strategy for partitioning 
data to modeling and validation data is in such a 
way that the information of the wells of the 
surrounding fields, along with the information of 
the AZN-a well, was considered as modeling data 
(see Figure 1). The range of petrophysical logs in 
Azadegan field and Modelling dataset is presented 
in Table 1. Accordingly, the data range of AZN-a 
and AZN-b wells in all logs is more restricted than 
modeling wells. Therefore, if the accuracy of the 
model is high on the total data of training, testing 
and validation, this model can be used to estimate 
the DTSM log in other wells of the Azadegan field 
within the trained range. 

Table 1. The range of petrophysical logs in Azadegan field and modelling dataset. 
Dataset  Depth CGR RT PEF NPHI RHOB DTCO DTSM 

Azadegan field Min 2350 4.86 0.069 3.64 0.001 2.22 50.72 92.96 
Max 3545 34.21 5.86 5.74 0.27 2.76 86.63 161.92 

Modelling data Min 2350 1.93 0.069 1.81 0.001 2.14 46.56 81.18 
Max 4046 94.73 157.63 5.74 0.36 2.88 99.99 191.81 

 
On the other hand, in modeling data partitioning 

to training and testing for the development of each 
model, it should be noted that the effect of random 
selection and partitioning of data should be 
removed. For this purpose, the accuracy of each 
model should be assessed with different training 
and test dataset. For this purpose k-fold, cross-
validation method with k=5 has been used in this 
study at the stage of intelligent model 

development. With this method, a dataset is 
divided into five partitions, and in 5 iterations, one 
partition (20%) is introduced as test data and four 
other partitions (80%) as training data. Therefore, 
each intelligent model based on Figure 7 is 
developed with five different distributions of the 
training and test data, and the accuracy of each 
model has been stated based on five steps average. 
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Figure 7. k-fold (k = 5) cross-validation approach implemented in this research work. 

3.1.2.3. Feature selection 

In the stage of feature selection, at first, co-
linearity of data is assessed. The existence of co-
linearity among data causes using data that actually 
do not have any significant role in increasing 
model accuracy, and their association with the 
target parameter is equivalent to the association of 
one or two other parameters with the target. In 
Figure 8, cross-charts of different petro-physical 
logs of the modeling dataset have been provided. 
Accordingly, there is no strong linear association 
between petro-physical logs in which way that one 
can be calculated based on the others with a linear 
relationship. Therefore, all petro-physical 
parameters to select superior features are entered as 
the input of the NSGA-II algorithm. Multi-purpose 
optimization algorithm Non-dominated Sorting 
Genetic Algorithm II (NSGA-II) integrated with a 
multi-layer perceptron neural network has been 
used as a wrapper feature selection method [13]. A 
complete explanation of the performance of this 
method has been provided in several studies 
[3,13,36,52,53]. For this purpose, the amount of 
100, 0.74, 0.05, and 50 have been used respectively 
for population, cross-over, number of iterations, 

and mutation in this study. Meanwhile, given the 
high volume of computations and the necessity to 
study the decreasing trend of the model’s error, a 
three-layered neural network with neuronal 
arrangement [5, 3, 3] has been used respectively in 
the first, second, and third layers . 

The results of RMSE error decrease and R 
square increase with different parameter selection 
in Figure 9, and its numerical values, as well as 
applied parameters in combination, have been 
provided in Table 2. Accordingly, with an increase 
in the number of the input parameters to 5, RMSE 
decreasing trend and R square increase is notable. 
Nevertheless, with an increase in parameters to 
more than 5, the accuracy of the model does not 
increase significantly. Therefore, PEF, RT, Depth, 
DTCO, and NPHI parameters were applied to 
develop intelligent models of DTSM estimation. In 
Figure 10, the correlation coefficient (R) between 
selected parameters and DTSM parameters has 
been indicated. Accordingly, among selected 
parameters, the highest correlation coefficient is 
between DTCO-DTSM with the amount of 0.93, 
and the lowest correlation coefficient is between 
PEF-DTSM with the amount of 0.33. 

Table 2. RMSE and R square values for identifying the optimal combination of features to include in modeling 
the DTSM (the best finding is in bold). 

Number of Selected Parameters Selected parameters RMSE ࡾ 
1 Depth 3.89 0.28 
2 Depth – DTCO 3.45 0.45 
3 Depth – NPHI - DTCO 3.1 0.58 
4 Depth – PEF – NPHI – DTCO 2.73 0.67 
5 Depth – RT-PEF – NPHI – DTCO 2.51 0.73 
6 Depth – CGR – RT –PEF- NPHI - DTCO 2.41 0.75 
7 Depth – CGR – RT –PEF- NPHI –RHOB- DTCO 2.39 0.77 
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Figure 8. The cross plots of petrophysical logs data from all modelling wells for co-linearity analysis (data are in 

normalized form between [-1,1]). 

  
Figure 9. The RMSE and R square of DTSM estimation 
model during feature selection using NSGA-II coupled 

with ANN-MLP. 

Figure 10. The correlation coefficient between 
selected features and DTSM. 

3.2. DTSM estimation results 
3.2.1. Regression learning-based models 
3.2.1.1. Performance of BGT model   

In order to develop the Bagging tree model, 
accessing optimized amounts of hyper parameters 
of this model, including the number of sampling 
sets (Bootstrap), which is known as “leaf size,” as 
well as the number of the trees in each predictor, 
needs to solve an optimization problem. For this 
purpose, during a sensitivity analysis process and 
studying different leaf sizes and trees, it was 
specified that using five training datasets and five 
predictors with 20 trees have been taken the best 
conclusion. Figure 11 indicates the results of this 
comparison. Accordingly, with an increase in the 

number of leaf sizes, the accuracy of the model did 
not always increase the least error belonged to leaf 
size of five. It is while increasing decision trees up 
to 20 at each predictor always leads to a decrease 
in model error, and whatever the number of trees 
passes from 20, the decreasing trend of the errors 
remains constant. Then according to the studied 
dataset in this study, the best model structure for 
the Bagging tree is to have a leaf size of five and 
20 decision trees in each predictor. Meanwhile, the 
results of the Bagging tree estimation model with 
the optimized structure on training and test data are 
provided in Figure 12. Accordingly, the 
performance of the BGT model on the test data has 
been close to training data, which is demonstrated 
the relatively good generalizability. 
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Figure 11. Mean square error with different leaf size (5, 10, 20, 50 and 100) and number of tree (1 to 50) during 

optimization of bagging tree structure. 

 
(b) (a) 

Figure 12. The cross-plots of bagging tree model results; a) training data, b) testing data. 

3.2.1.2. Performance of the SVR model 

In this study, different kernel functions 
including Gaussian, polynomial, RBF, and linear 
have been used for DTSM estimation with Support 
Vector Regression (SVR). The results of the 
model's accuracy on the training and test data and 
by considering 5-fold cross-validation for different 

kernel functions have been provided in Table 3. 
Accordingly, the best result has been obtained 
among the models with different kernel functions 
for the model with Gaussian kernel functions. The 
results of the DTSM estimation using the SVR 
model with Gaussian kernel functions on training 
and test data have been provided in Figure 13. 

Table 3. The error evaluation indices of SVR model in estimating DTSM with different kernel functions using 
modelling dataset (the model with the best result is bolded). 

Kernel function RMSE R-square AAPD 
Train Test Train Test Train Test 

Linear 4.95 5.23 0.93 0.92 3.5 3.25 
RBF 4.68 5.02 0.95 0.91 3.2 3.43 
Gaussian 4.32 4.87 0.96 0.94 2.74 2.95 
Polynomial 4.54 4.98 0.95 0.92 2.95 3.23 
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(a) (b) 

Figure 13. The cross plots of SVR model results; a) training data, b) testing data. 
 
3.2.1.3. Performance of GPR model 

In this study, different kernel functions 
including rational quadratic, squared exponential, 
RBF, and Matern have been used for DTSM 
estimation with using Gaussian Processing 
Regression (GPR) model. The results of the 
model's accuracy on the training and test data and 

by considering 5-fold cross-validation for different 
kernel functions have been provided in Table 4. 
Accordingly, the best result has been obtained 
among the models with different kernel functions 
for the model with Matern kernel functions. The 
results of the DTSM estimation using the GPR 
model with Matern kernel functions on training and 
test data have been provided in Figure 14.  

Table 4. The error evaluation indices of GPR model in estimating DTSM with different kernel functions using 
modelling dataset (the model with the best result is bolded). 

 

 
(a) (b) 

Figure 14. The cross plots of GPR model results; a) training data, b) testing data. 

Kernel function RMSE R-square AAPD 

Train Test Train Test Train Test 
Squared exponential 5.21s 5.13 0.95 0.93 2.86 3.21 
RBF 4.89 5.02 0.96 0.93 2.72 3.02 
Matern 4.1 4.62 0.96 0.95 2.6 2.8 
Rational Quadratic 4.52 4.89 0.95 0.94 2.7 2.95 
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3.2.2. Deep neural network-based models 
3.2.2.1. Performance of the ANN model 

For developing the ANN model, accessing its 
optimized structure of multi-layer perceptron 
network including the number of hidden layer and 
the number of neurons in each layers is very 
important. For this purpose, an optimized structure 
including the three hidden layer network with 14, 
12, and 9 neurons in first, second and third layer 
respectively, obtained during an error and trial 
process. The results of ANN model estimation with 
the optimized structure on the training and test data 

are provided in Figure 15. Accordingly, the ANN-
MLP model is well fitted on the training data with 
values of 2.99 and 0.98 for RMSE and R-square, 
respectively. Checking the accuracy of the model 
on the testing data showed that this model 
performed relatively well on the test data with 3.37 
and 0.97 for RMSE and R-square, respectively. In 
addition, AAPD errors are 1.9 and 2.04 percent for 
training and test data, respectively. Generally, the 
performance of the model on the test data has been 
close to training data, which is indicative of 
relatively good generalizability.   

 

 
(a) (b) 

Figure 15. The cross plots of ANN model results; a) training data, b) testing data. 
 
3.2.2.2. Performance of CNN model  

For developing the CNN model, accessing its 
optimized structure is very important. For this 
purpose, an optimized structure fits the data 
structure of this study according to the features 
provided in Table 5 obtained during an error and 
trial process. The results of CNN model estimation 
with the optimized structure on the training and test 
data are provided in Figure 16. Accordingly, the 

CNN model is well fitted on the training data with 
values of 2.72 and 0.98 for RMSE and R-square, 
respectively. Checking the accuracy of the model 
on the testing data showed that this model 
performed relatively well on the test data with 3.06 
and 0.98 for RMSE and R-square. In addition, 
AAPD errors are 1.72 and 1.85 percent for training 
and test data, respectively. Therefore, the 
performance of the model on the testing and 
training data indicate the good generalizability. 

Table 5. The structure of CNN employed for DTSM estimation. 
Value/type Properties Type/id Number Main layer 

- - Sequential 1 Input layer 
3 Kernel size 

Conv1D 4 Filter layer 200 Filter number 
same Padding 
relu Activation 
0.5 - Drop1 1 Dropout layer 
- - Maxpooling1D 1 Pooling layer 
- - Flatten 1 1 Flatten layer 

100 - Dense 1 1 Fully connected layer 
1 - Dense 2 1 Fully connected layer 

 



Bajolvand et al. Journal of Mining & Environment, Vol. 16, No. 3, 2025 
  

977 

 
(a) (b) 

Figure 16. The cross plots of CNN model results; a) training data, b) testing data. 
 
3.2.2.3. Performance of the RNN model 

In this research work, a recurrent neural 
network with the architecture according to Table 6 
has been used. The results of DTSM estimation on 
training and testing data with RNN network are 
shown in Figure 17. Accordingly, the RNN model 
is well fitted on the training data with values of 
2.96 and 0.98 for RMSE and R-square. Also, the 

AAPD value for training data was 1.88 %. 
Checking the accuracy of the model on the test data 
showed that this model performed relatively well 
on the testing data with 3.34 and 0.97 for RMSE 
and R-square and 2.02 % for AAPD. However, the 
difference between the error values for the testing 
and training data has shown the relatively high 
generalizability of this model. 

Table 6. The structure of RNN employed for DTSM estimation. 
Value/type Properties Type/id Number Main layer 

- - Sequential 1 Input layer 
200 Hidden units number 

LSTM 1 Lstm layer adam Optimizer 
last Output mode 
0.25 - Drop 1 1 Dropout layer 

- - - 1 Fully connected layer 
1 - - 1 Regression layer 

 

 
(a) (b) 

Figure 17. The cross-plots of  RNN model results; a) training data, b) testing data. 
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3.2.2.4. Performance of the LSTM model 

In this research work, in addition to simple 
RNN, an LSTM network with the architecture 
according to Table 7 has been used. The results of 
DTSM estimation on training and testing data with 
LSTM network are shown in Figure 18. Based on 
this, the LSTM model with values of 2.31 and 0.99 
for RMSE and R-square, respectively. Also, the 

AAPD value for the training data in this model was 
1.46 %. This is while checking the accuracy of the 
model on the testing data showed that this model 
with 2.6 and 0.98 for RMSE and R-square and 
1.58% for AAPD has a good performance 
compared to RNN, ANN, CNN and other 
regression learning-based models on the testing 
data. 

Table 7. The structure of LSTM employed for DTSM estimation. 
Value/type Properties Type/id Number Main layer 

- - Sequential 1 Input layer 
200 Hidden units number LSTM 1 Lstm layer adam Optimizer 
0.5 - Drop1 1 Dropout layer 
- - Relu 1 1 Relu layer 

100 - Dense1 1 Fully connected layer 
1 - - 1 Regression layer 

 

 
(a) (b) 

Figure 18. The cross-plots of LSTM model results; a) training data, b) testing data. 
 
3.2.2.5. Performance of the GRU model 

In this research work, for the first time in the 
literature of DTSM or shear wave velocity 
estimation, a gated recurrent unit with the 
architecture according to Table 8 has been used. 
The results of DTSM estimation on training and 
testing data with GRU network are shown in Figure 
19. Accordingly, the GRU model with values of 

1.9, 0.99 and 1.21 for RMSE, R-square, and 
AAPD, respectively. It is indicated good fitting on 
the training data. However, evaluating the accuracy 
of the model on the testing data showed that this 
model with 2.14, 0.99 and 1.3 for RMSE, R-square, 
and AAPD, respectively has a good performance 
compared to other machine learning models on the 
testing data. 

Table 8. The structure of GRU employed for DTSM estimation. 
Value/type Properties Type/id Number Main layer 

- - Sequential 1 Input layer 
200 Hidden units number 

GRU 1 gru layer After multiplication Reset Gate Mode 
tanh State Activation Function 
100 - Dense1 1 Fully connected layer 
1 - - 1 Regression layer 
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(a) (b) 

Figure 19. The cross plots of GRU model results; a) training data, b) testing data. 

3.3. Validation 
3.3.1. Analysis of machine learning models  

At the last stage of workflow, data of Well 
AZN-b has been used for verification of the 
machine learning models in DTSM estimation. 
Cross plots and profile comparing the measured 
and predicted DTSM with different regression 
learning-based models are provided in Figure 20 
and Figure 21, respectively. As can be seen, BGT 
model has the best performance among regression 
learning-based models in validation data. Also, the 
cross plots and profile comparing the measured and 

predicted DTSM with different deep neural 
network-based models are provided in Figure 22 
and Figure 23, respectively. As can be seen, GRU 
model has the best performance among all machine 
learning models in validation data. 

The values of RMSE, R-square, and AAPD for 
all models on modeling (training and testing) and 
validation dataset are provided in Table 9. 
Accordingly, CNN, LSTM, and GRU models had 
results close to DTSM estimation at Well AZN-b. 
Nevertheless, the GRU model obtained the best 
answers with the amounts of 2.43, 0.93, and 1.30 
for RMSE, R-square, and AAPD, respectively. 

Table 9. The performance of machine learning models in DTSM estimation on training, testing, and validation 
dataset. 

 Dataset SVR GPR BGT ANN CNN RNN LSTM GRU 

RMSE 
Training 4.32 4.10 3.29 2.99 2.72 2.96 2.31 1.90 
Testing 4.87 4.62 3.70 3.37 3.06 3.34 2.60 2.14 

Validation 4.55 4.24 4.08 3.65 2.81 3.46 2.82 2.43 

R-square 
Training 0.96 0.96 0.98 0.98 0.98 0.98 0.99 0.99 
Testing 0.94 0.95 0.97 0.97 0.98 0.97 0.98 0.99 

Validation 0.78 0.81 0.83 0.85 0.92 0.87 0.91 0.93 

AAPD 
Training 2.74 2.60 2.09 1.90 1.72 1.88 1.46 1.21 
Testing 2.95 2.80 2.24 2.04 1.85 2.02 1.58 1.30 

Validation 2.44 2.25 2.21 1.95 1.75 1.91 1.54 1.30 
 
3.3.2. Analysis of analytical models 

Meanwhile, four models provided by Pickett 
(1963), Castagna et al. (1993), Brocher (2005), and 
Anemangely et al. (2019) were applied to compare 
machine learning models with the results of 
commonly applied analytical equations of the shear 
wave (velocity) slowness estimation. 
Considering Equation 2 and Equation 3, DTSM 

values can be obtained using equations provided in 
Table 10. 

௦ܸ(݇݉/ݏ) =
1

ܯܵܶܦ
× 304.8 (2) 

(ݐ݂/ݏߤ)ܯܵܶܦ =
1
௦ܸ

× 304.8 (3) 
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Table 10. Analytical relations between ࢙ࢂ and ࢂ. 
Model Equations Model name Equation number 

௦ܸ = ܸ

1.9 Pickett (5) 

௦ܸ =  −0.05509 ܸ
ଶ + 1.0168 ܸ − 2.3057 Castagna (6) 

௦ܸ = 0.7858 − 1.2344 ܸ + 0.7949 ܸ
ଶ − 0.1238 ܸ

ଷ + 0.0064 ܸ
ସ Brocher (7) 

௦ܸ = 0.6079 + 0.4207 ܸ Anemangely (8) 
 

  
b) SVR model a) BGT model 

 
c) GPR model 

Figure 20. The cross plots of regression learning-based models in DTSM estimation for validation data 
(well AZN-b). 

 
Figure 21. The comparisson between measured and predicted DTSM using regression learning-based models 

along the Welll AZN-b. 
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b) CNN a) ANN 

  
d) LSTM c) RNN 

 
e) GRU 

Figure 22. The cross plots of deep neural network-based models in DTSM estimation for validation data 
(Welll AZN-b). 
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Figure 23. The comparisson between measured and predicted DTSM using Deep neural network-based 

models along the Welll AZN-b. 

The cross-plot graphs comparing predicted 
values using analytical models and measured 
DTSM of well AZN-b are provided in Figure 24. 
As can be seen in this figure, among different 
models, only the Pickett model could provide 
relatively good performance. Predicted and 
measured DTSM of Well AZN-b for different 
analytical models are provided in Figure 25. 
Accordingly, it should be pointed out that predicted 
amounts through all analytical models had weaker 
performance than machine learning models. It is 
while that in the Brocher model, significant 
differences can be seen between the measured and 
predicted values. The values of RMSE, R square, 
and AAPD for all models in validation data are 
provided in Table 11. Accordingly, Pickett and 
Castagna's models had results close to DTSM 
estimation at Well AZN-b. Nevertheless, the 
Pickett model provided the best answer with the 

values of 5.5, 0.55, and 2.87 for RMSE, R square, 
and AAPD, respectively. These results indicate 
clearly to how using these models can increases 
error and uncertainty in geomechanical models and 
other applications of shear wave slowness. 
However, due to the low range of training data, 
these equations are used in some fields, and the 
results of this section provide a good idea and view 
of the possible amount of error in the DTSM 
estimation with these methods. However, results 
obtained from machine learning models, which are 
developed based on a multi-filed data bank, 
indicated that we could assure in the studies that 
the DTSM can be estimated in the broader range of 
the collected data and this estimation is acceptably 
exact. Therefore, a decrease in uncertainty of 
models such as geomechanical models would be 
imaginable using this method . 

Table 11. The error evaluation indices of analytical models in estimating DTSM using validation dataset. 
AAPD R square RMSE Model 

2.87 0.55 5.50 Pickett 
4.40 0.56 7.37 Castagna 
13.08 0.57 17.72 Brocher 
6.90 0.55 10.33 Anemangely 

 
 

D
ep

th
 (m

)



Bajolvand et al. Journal of Mining & Environment, Vol. 16, No. 3, 2025 
  

983 

  
b) Castagna model a) Pickett model 

  
d) Anemangely model c) Brocher model 

Figure 24. The cross-plots of analytical models in DTSM estimation for validation data (Welll AZN-b). 

 
Figure 25. The comparisson between measured and predicted DTSM using analytical models along the Welll 

AZN-b. 

4. Conclusions 

In this study, in order to provide a practical 
solution for mitigating the uncertainties in 

geomechanical models, a multi-field data bank is 
used to increase the range of training data for the 
data-driven method in the shear wave slowness 
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(DTSM) estimation. For this purpose, the data of 8 
drilled wells from 4 oil fields located southwest of 
Iran was collected. After preprocessing operation, 
including data clearance and data preparation, the 
dataset was divided into two sets of modeling and 
verification data at this stage. After conducting a 
superior feature selection stage and developing the 
different machine learning models including 
regression learning-based (BGT, GPR, SVR), and 
deep neural network-based (ANN, CNN, RNN, 
LSTM, and GRU) were developed and the 
accuracy of each model on the training, testing, and 
validation data was assessed. Generally, we can 
conclude the following results from this study : 

 Depth, Resistivity (RT), Photoelectric (PEF), 
Neutron porosity (NPHI), and Compressive 
wave slowness (DTCO) parameters were 
identified as the most effective ones in shear 
wave slowness (DTSM) estimation of the feature 
selection stage.   

 The results of assessing the accuracy of machine 
learning models on the modeling and verification 
data indicated that generally, using a multi-field 
data bank can be an effective idea to develop 
comprehensive models (with a broad range of 
training data) for the DTSM log estimation in the 
wells of the fields of where limited information 
has collected.  

 Studying the accuracy of the machine learning 
models on the modelling dataset indicated that 
the GRU model had the most exact answers with 
the values of 1.9 and 2.14 for RMSE and 0.99 
and 0.99 for R-square, for training and testing 
data, respectively. 

 Studying the accuracy of the machine learning 
and analytical models on the validation dataset 
indicated that GRU had been the most accurate 
model with the values of 2.43 and 0.93 for RMSE 
and R-square, respectively. It is while the best 
results of commonly applied analytical models 
have very lower accuracy compared to machine 
learning models on the validation data with the 
values of 5.5 and 0.55 for RMSE and R-square, 
respectively. 

 The comparison of the results obtained from the 
DTSM estimation on validation data using the 
analytical models and machine learning models 
indicated that the accuracy and generalizability 
of the machine learning models are significantly 
different from other commonly used analytical 
models. Accordingly, using this method can lead 
to a decrease in uncertainty of the geo-
mechanical models and general models that use 
shear wave slowness log. 
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Nomenclature 
ANN: Artificial Neural Network  
BGT: Bagging tree  
CNN: Convolutional Neural Network   
DTCO: Compressional wave slowness (μs/ft)  
DTSM: Shear wave slowness (μs/ft)   
GR: Gamma ray log (GAPI)  
GPR: Gaussian Processing Regression  
GRU: Gradient Recurrent Unit  
LSTM: Long Short-Term Memory  
NSGA-II: Non Dominated Sorting Genetic Algorithm  

NPHI: Neutron Porosity log (v/v)  
PEF: Photoelectric (B/e)  
RHOB: Density (gr/cc)  
RNN: Recurrent Neural Network  
RMSE: Root Means of Square Error  
RT: Resistivity (Ohmm)  
SD: Standard Deviation  
SVR: Support Vector Machine  
V୮: Compressional Wave velocity (km/sec)  
Vୱ: Shear wave velocity (km/sec)  

Appendices 
Appendix A: Dataset Descriptions and Analysis 
 Data visualization  
 

 
Figure A1. Profile of petrophysical logs in studied interval of Well ABT-a. 

 
Figure A2. Profile of petrophysical logs in studied interval of Well AHZ-a. 
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Figure A3. Profile of petrophysical logs in studied interval of Well AHZ-b. 

 
Figure A4. Profile of petrophysical logs in studied interval of Well AHZ-c. 

 
Figure A5. Profile of petrophysical logs in studied interval of Well MRN-a. 



Bajolvand et al. Journal of Mining & Environment, Vol. 16, No. 3, 2025 
  

989 

 
Figure A6. Profile of petrophysical logs in studied interval of well MRN-b. 

 
Figure A7. Profile of petrophysical logs in studied interval of Well AZN-a. 
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 Statistical indices  
Table A1. Statistical indices of petrophysical logs collected from studied wells. 

Well Name Statistical 
indices 

Depth GR RT PEF NPHI RHOB DTCO DTSM 
m gapi ohmm b/e v/v g/cc us/ft us/ft 

ABT-a 

Min 3315.16 5.38 1.21 4.38 0.21 2.25 49.26 92.58 
Mean 3397.94 22.57 59.46 5.03 0.28 2.53 62.03 115.23 
Median 3401.57 22.59 50.74 5.04 0.27 2.54 60.54 113.67 
Max 3473.65 55.47 163.47 5.70 0.36 2.78 74.77 136.53 
Mode - 18.44 93.74 5.13 0.28 2.45 68.53 106.54 
Std. dev. 45.53 10.54 33.43 0.22 0.03 0.09 5.71 8.78 
Kurtosis -1.25 -1.05 0.22 0.21 -0.44 -0.36 -1.01 -0.20 
Skewness -0.05 0.21 0.95 -0.5 0.43 -0.28 0.29 0.45 
Count 923 923 923 923 923 923 923 923 

AHZ-a 

Min 2422.69 16.07 5.25 2.73 0.01 2.36 48.83 83.19 
Mean 2575.85 32.34 39.82 3.90 0.12 2.65 57.33 102.50 
Median 2573.96 31.36 35.07 3.75 0.11 2.66 56.10 101.24 
Max 2728.91 60.96 108.65 5.50 0.26 2.88 71.95 122.84 
Mode - 30.15 34.88 4.02 0.12 2.62 57.83 95.98 
Std. dev. 87.57 8.96 22.74 0.60 0.06 0.10 5.49 7.72 
Kurtosis -1.17 0.23 0.27 -0.7 -0.59 -0.48 -0.53 -0.47 
Skewness 0.03 0.70 0.83 0.64 0.24 -0.29 0.64 0.28 
Count 1839 1839 1839 1839 1839 1839 1839 1839 

AHZ-b 

Min 3214.27 1.91 1.54 4.61 0.00 2.31 46.57 92.25 
Mean 3640.57 14.58 58.96 4.92 0.08 2.54 59.60 109.80 
Median 3666.67 13.38 49.42 4.92 0.08 2.54 59.74 109.92 
Max 4046.37 42.68 199.65 5.25 0.18 2.72 73.04 130.39 
Mode - 20.98 7.54 4.96 0.08 2.48 67.27 99.38 
Std. dev. 254.43 7.76 41.63 0.10 0.04 0.08 5.26 8.63 
Kurtosis -1.36 0.11 0.97 -0.1 -1.09 -0.78 -0.98 -0.95 
Skewness -0.09 0.75 1.14 0.21 0.17 0.04 0.05 0.19 
Count 4582 4582 4582 4582 4582 4582 4582 4582 

AHZ-c 

Min 2523.13 3.19 0.18 1.85 0.08 2.15 57.26 103.16 
Mean 2764.72 38.64 1.63 3.05 0.20 2.41 81.02 148.10 
Median 2776.96 34.16 1.43 3.01 0.21 2.43 83.32 150.00 
Max 2946.96 94.73 7.13 4.85 0.33 2.73 100.00 191.81 
Mode - 32.70 0.76 2.16 0.17 2.53 67.93 144.46 
Std. dev. 111.89 24.21 1.34 0.78 0.05 0.13 9.45 18.30 
Kurtosis -1.08 -1.02 2.13 -0.9 0.03 -1.15 -0.69 -0.63 
Skewness -0.19 0.43 1.43 0.25 -0.03 -0.19 -0.48 -0.32 
Count 2208 2208 2208 2208 2208 2208 2208 2208 

AZN-a 

Min 2350.01 4.87 0.07 4.17 0.00 2.22 50.72 92.96 
Mean 2949.26 17.13 1.23 4.83 0.10 2.54 64.85 121.98 
Median 2953.51 15.99 1.28 4.84 0.10 2.55 64.27 121.79 
Max 3545.43 32.35 2.43 5.44 0.28 2.77 89.65 168.59 
Mode - 19.90 1.37 4.84 0.08 2.55 66.43 115.83 
Std. dev. 317.88 5.29 0.41 0.21 0.06 0.11 7.71 13.21 
Kurtosis -1.10 0.43 -0.14 0.67 -0.62 -0.67 -0.65 -0.61 
Skewness -0.05 0.93 -0.01 -0.4 0.30 -0.24 0.34 0.27 
Count 6649 6649 6649 6649 6649 6649 6649 6649 

AZN-b 

Min 2354.22 5.21 0.91 3.60 0.05 2.39 55.14 108.34 
Mean 2584.81 20.45 3.05 4.70 0.14 2.54 67.01 129.97 
Median 2560.87 20.34 2.86 4.73 0.14 2.53 67.12 129.41 
Max 2869.64 35.32 6.35 5.90 0.24 2.66 78.10 153.97 
Mode - 21.72 3.15 4.93 0.14 2.52 75.30 125.15 
Std. dev. 144.67 5.25 1.07 0.39 0.03 0.04 3.25 7.10 
Kurtosis -1.15 0.00 1.00 -0.2 1.74 0.83 1.11 1.82 
Skewness 0.22 -0.41 1.16 -0.2 -0.07 0.37 -0.27 0.82 
Count 2643 2643 2643 2643 2643 2643 2643 2643 

MRN-a 

Min 3509.06 8.68 0.41 1.81 0.02 2.23 49.37 89.23 
Mean 3675.00 37.01 26.14 3.59 0.12 2.56 60.87 108.55 
Median 3671.82 34.57 18.32 3.54 0.12 2.59 59.13 106.35 
Max 3860.95 89.62 92.92 5.25 0.29 2.86 80.18 138.40 
Mode - 60.90 8.70 3.13 0.11 2.84 55.58 104.15 
Std. dev. 98.26 16.98 22.17 0.80 0.05 0.13 7.49 10.46 
Kurtosis -1.05 -0.03 0.42 -0.4 -0.50 -0.31 -0.38 -0.64 
Skewness 0.18 0.72 1.09 -0.2 0.08 -0.61 0.68 0.51 
Count 1859 1859 1859 1859 1859 1859 1859 1859 

MRN-b 

Min 2710.22 8.40 1.78 1.95 0.02 2.18 52.60 95.08 
Mean 2946.58 28.50 23.57 3.87 0.11 2.53 67.06 121.98 
Median 2926.55 26.57 16.73 3.81 0.12 2.54 66.26 120.47 
Max 3222.74 65.61 75.27 5.43 0.28 2.88 92.61 173.19 
Mode - 23.62 32.25 2.47 0.05 2.61 65.93 124.10 
Std. dev. 148.81 10.72 18.93 0.79 0.05 0.10 6.55 13.04 
Kurtosis -1.14 0.57 -0.27 -0.7 -0.08 0.26 0.53 0.19 
Skewness 0.21 0.82 0.89 -0.3 0.17 -0.40 0.54 0.53 
Count 2364 2364 2364 2364 2364 2364 2364 2364 
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Appendix B: Data Preparation 
 Data de-noising results (cleaned vs. measured logs). 

 

 
Figure B1. The comparison of row and de-noised petrophysical logs in studied interval of Well ABTa. 

 
Figure B2. The comparison of row and de-noised petrophysical logs in studied interval of Well AHZa. 

 
Figure B3. The comparison of row and de-noised petrophysical logs in studied interval of Well AHZ-b. 
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Figure B4. The comparison of row and de-noised petrophysical logs in studied interval of Well AHZ-c. 

 
Figure B5. The comparison of row and de-noised petrophysical logs in studied interval of Well MRN-a. 

 
Figure B6. The comparison of row and de-noised petrophysical logs in studied interval of Well MRN-b. 
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Figure B7. The comparison of row and de-noised petrophysical logs in studied interval of Well AZN-a. 
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 Range of cleaned data after outlier detection and elimination. 
 

  
b) CGR a) Depth 

  
d) PEF c) RT 

  
f) RHOB e) NPHI 

  
h) DTSM g) DTCO 

Figure B8. Range of cleaned data after outlier detection and elimination. 
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Appendix C: Error and Performance Calculation Equations 

Equation (C1) was used to calculate Percent 
Deviation (ܲܦ) or Relative Error (ܴܧ) for each 
data point (݅) in the dataset (containing ݊ data 
points) based on the measured Parameters 
(ܲ௦௨ௗ) and predicted P ( ܲௗ௧ௗ). 

ܦܲ = ܲ௦௨ௗ − ܲௗ௧ௗ

ܲ௦௨ௗ
× 100 (C1) 

Once ܲܦ is known for each point in the 
dataset, one can calculate average percent 
deviation (ܦܲܣ) using Equation (C2). 

ܦܲܣ =
∑ ܦܲ


ୀଵ

݊  (C2) 

Average absolute percent deviation (ܦܲܣܣ) is 
given through Equation (C3). 

ܦܲܣܣ =
∑ |ܦܲ|

ୀଵ

݊  (C3) 

Standard deviation (ܵܦ) of error can be 
computed from mean error (ݎܧ) and error 

terms at individual data points (ݎܧ) through 
Equation (C4). 

ܦܵ =  ඨ∑ ݎܧ) − )ଶݎܧ
ୀଵ

݊ − 1  (C4) 

RMSE of each model can then be evaluated 
using Equation (C5). 

ܧܵܯܴ =  ඩ
1
݊

 ቀ ܲ௦௨ௗ  − ܲௗ௧ௗ 
ቁ

ଶ


ୀଵ

 (C5) 

For each prediction, the COD (ܴଶ) is 
calculated through Equation (C6). 

ܴଶ = 1 −
∑ ቀ ܲ௦௨ௗ  − ܲௗ௧ௗ 

ቁ
ଶ


ୀଵ

∑ ൬ ܲௗ௧ௗ
−

∑ ܲ௦௨ௗ

ୀଵ

݊ ൰
ଶ


ୀଵ

 (C6) 
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  چکیده:

ویژه در مطالعات ژئومکانیکی میادین نفت و گاز، کاربرد  هاي پتروفیزیکی اسـت که در مطالعات مخازن، بهترین لاگیکی از مهم (DTSM) لاگ کندي موج برشـی
ااین ارامتر در لاگدارد. بـ اه میحـال، عـدم وجود این پـ ابع بزرگی از عـدم گیري چـ د منـ ه توانـ ا هـدف ارائـ د. این مطـالعـه بـ انیکی ایجـاد کنـ قطعیـت را در مطـالعـات ژئومکـ

هاي دقیق یادگیري عمیق ماشـین انجام  با اسـتفاده از مدل گ کندي موج برشـیهاي ژئومکانیکی از طریق تخمین لاراهکارهایی براي کاهش عدم قطعیت در مدل
هاي  هاي آموزشـی و بهبود توانایی تخمین و قابلیت تعمیم مدلهاي میادین مجاور براي گسـترش دامنه دادهایده اصـلی این تحقیق، اسـتفاده از داده  .شـده اسـت

ها براي کاهش  پردازش دادهآوري شــد. در مرحله نخســت، پیشمیدان نفتی ایران جمع 4چاه در  8هاي پتروفیزیکی از یادگیري ماشــین اســت. بدین منظور، داده
هاي عصـبی هاي یادگیري ماشـین (مبتنی بر یادگیري رگرسـیونی و شـبکههاي پرت انجام شـد. سـپس، مدلرفته، نویز و دادهدسـتهاي نادرسـت، مقادیر ازاثرات داده

یهاي تحلیلی براي تخمیعمیق) و مدل دندپیاده ن کندي موج برشـ ازي شـ ان داد که مدل  .سـ تی دروازه نتایج نشـ بی عمیق واحد بازگشـ بکه عصـ با   (GRU) ايشـ
ریب تعیین ( براي 0.99و  )RMSEمجذور میانگین مربع خطاها ( براي  2.14و  1.9مقادیر   ترین نتایج را ارائه هاي آموزش و آزمون، دقیقبه ترتیب در داده)  R²ضـ

ت. همچنین، ارزیابی دقت مدل ان داد که مدلها بر روي دادهداده اسـ نجی نشـ ترین  دقیق R² براي 0.93و  RMSE براي 2.43با مقادیر    GRUهاي چاه اعتبارسـ
ــدانی و به بر این اساس، استفاده از یک بانک داده جامع چند .مدل بوده است در شرایطی  کندي موج برشی هاي یادگیري ماشین براي تخمینکارگیري روشمیــ

 .شودشدت توصیه میهاي محدودي از میادین مجاور در دسترس است، بهکه داده

  کندي موج برشی، لاگ پتروفیزیکی، یادگیري ماشین، یادگیري عمیق، مدل تحلیلی کلمات کلیدي:

 

 

 

 


