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Bit wear is one of the fundamental challenges affecting the performance and
cost of drilling operations in oil, gas, and geothermal wells. Since identifying
the factors influencing bit wear rate (BWR) is essential, and the ability to
predict its variations during drilling operations is influenced by environmental
and operational factors, this study aims to develop an Adaptive Bit Wear Rate
Predictor (ABWRP) algorithm for estimating the BWR during drilling
operations for new wells. The structure of this algorithm consists of a data
transmitter, data processor, deep learning-based bit wear rate estimator, and a
bit wear updating module. To develop a model for the BWR estimation
module, data from two wells in an oil field in southwest Iran were collected
and analyzed, including petrophysical data, drilling data, and bit wear and run
records. Both studied wells were drilled using PDC bits with a diameter of 8.5
inches. After preprocessing the data, the key factors affecting the bit wear rate
were identified using the Wrapper method, including depth, confined
compressive strength, maximum horizontal stress, bit wear percentage, weight
on bit, bit rotational speed, and pump flow rate. Subsequently, seven machine
learning (ML) and deep learning (DL) algorithms were used to develop the bit
wear rate estimation module within the ABWRP algorithm. Among them, the
convolutional neural network (CNN) model demonstrated the best
performance, with Root Mean Square Error (RMSE) values of 0.0011 and
0.0017 and R-square (R?) values of 0.96 and 0.92 for the training and testing
datasets, respectively. Therefore, the CNN model was selected as the most
efficient model among the evaluated models. Finally, a simulation-based
experiment was designed to evaluate the performance of the ABWRP
algorithm. In this experiment, unseen data from one of the studied wells were
used as data from a newly drilled well. The results demonstrated that the
ABWRP algorithm could estimate final bit wear with a 14% error. Thus, the
algorithm developed in this study can play a significant role in the design and
planning of new wells, particularly in optimizing drilling parameters while
considering bit wear effects.
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1. Introduction

Drill bits are the key components in the
drilling operations of oil, gas, and geothermal
wells and directly affect the costs per meter [1].
Increasing the productivity and lifespan of a bit
requires the correct decisions to be made in
driving and replacing the bit and in selecting
suitable hydraulic and mechanical parameters.
Roller Cone Bits (RCBs) and polycrystalline
diamond compact (PDC) bits are used in
drilling operations. Of these, PDC bits are one
of the most widely used types used to drilling
oil, gas and geothermal wells [1-3]. Bit wear in
drilling can be described as an ongoing
phenomenon where the drill bit's surface
gradually erodes due to mechanical interactions
and the relative motion between the bit and the
rock surface. This process results in the
continuous loss of material from the drill bit
over time [4,5]. In general, in drilling operation,
about 20 to 25% of the total drilling time is
related to the formation drilling activity, in
which the bit is interacting with the rocks of the
formation. At first glance, this time may be less
than of other activities (such as tripping), but it
should be kept in mind that a wrong bit
selection or using a bit with a high degree of
wear in addition to reducing the drilling
performance and increasing invisible lost times
(ILT) As a result of reducing the drilling rate of
penetration, it may cause risks such as increased
string vibration and stuck pipe, which can lead
to a significant increase in Non-Productive
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-
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Journal of Mining & Environment, Vol. 16, No. 4, 2025

Times (NPTs). Therefore, paying attention to
bit wear is a key issue for controlling the time
and cost of drilling operation [6,7].

An example of PDC bit illustrated in Figure
1. As can be seen, a PDC (Polycrystalline
Diamond Compact) bit is composed of various
components including the matrix, main cutters
(such as inner and outer cutters), gauge cutters,
gauge pad, and up-drill cutters. During the
process of drilling oil, gas, and geothermal
wells, the PDC bit encounters two types of
forces. The first category involves "action"
forces, which encompass the axial force
resulting from the Weight On Bit (WOB) and
the lateral force generated by the Rotation
Speed of the Bit (RPM). The second category
comprises the "reaction" forces, which arise
from the interaction between the bit and the
rock formations. These reaction forces can
manifest as shear resistance (reaction to the
rotation of the bit) and normal forces (reaction
to the axial penetration of the bit) during the
drilling operation. To assess the efficiency of
the action forces, various response metrics of
the drilling operation are considered, including
the Rate Of Penetration (ROP), Torque On Bit
(TRQ), Mechanical Specific Energy (MSE),
and Bit Wear Rate (BWR) [8,9]. These
performance indicators offer valuable insights
into the performance of PDC bits during the
drilling process.

Figure 1. Schematic representation of the structure and key components of a PDC bit [10].

Among the various drilling response
metrics, the measurement of bit friction (BF)
per meter (introduced as Bit Wear Rate (BWR))
holds  particular  significance. = Timely
monitoring of this parameter is crucial to
prevent drilling operations from incurring
substantial fishing costs, encountering well
deviations, and experiencing premature wear
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and tear of the drill bit [11,12]. However,
assessing this parameter differs from other
response metrics such as ROP, TRQ, and MSE.

Practically, the measurement of BWR is
accomplished by recording the wear grade on
the main cutters of the drill bit after each
withdrawal of the Bottom Hole Assembly
(BHA) from the well. This wear amount is
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categorized within a range of 0 to 8, as depicted
in Figure 2, and is recorded at specific intervals.
The average wear of all teeth is computed as a
numerical value within the 0 to 8 range, and this
resulting value is rounded to the nearest integer
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for each rating. Subsequently, the BF is
converted into a percentage by dividing it by 8
[10]. To calculate the BWR, the amount of BF
is then divided by the drilled interval
corresponding to the each BHA run.

Figure 2. IADC guide for wear grading of PDC cutters [10].

Drilling efficiency is subject to multiple
factors, among, which BWR holds significant
importance. Throughout the drilling process,
various parameters, such as WOB, RPM, and
flow pump rate (FPR), are carefully adjusted to
optimize the ROP, while simultaneously
minimizing energy consumption, TRQ, and
potential bit damage. However, employing
these values uniformly, without considering the
specific physical and geomechanical properties
of the formation being drilled, can lead to
reduced drilling effectiveness and diminished
bit longevity. To address this, recent studies
have focused on optimizing WOB, RPM, and
FPR to maximize ROP. Nevertheless, it is
essential to also account for the BWR resulting
from the interplay between the operating
parameters and the drill-rock interactions under

the applied loads. Figure 3 shows the set of
factors affecting drilling efficiency.
Accordingly, the interaction of operating
parameters and formation rocks affects drilling
response indicators. The sum of BWRs
cumulatively forms the value of BF. With the
advancement of drilling operations, the increase
of BF in addition to affecting the ROP, TRQ
and consequently MSE, due to the unbalanced
transfer of operational forces from the cutters to
the rock (due to the presence of worn cutters,
healthy cutters are subjected to more force than
the worn state), the BWR intensifies each meter
[13]. Therefore, it is necessary to have a correct
understanding of the effect of different
parameters (action, reaction and response) in a
drilling operation.
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Figure 3. Bit-rock interaction and influential factors on bit wear and drilling response parameters.
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Accordingly, in the past decade, researchers
have developed models to estimate BWR so
that this index can be measured, predicted, and
then controlled by preventing the occurrence of
factors that negatively influence bit wear [14].
In these models, the physical characteristics of
the formation rocks and the controllable
parameters during the drilling operation (e.g.
weight on bit, bit rotation speed, and
hydraulics) are often used to calculate or
estimate the BWR.

In some studies, laboratory tests have been
used to investigate the factors affecting the
friction of PDC bits, in addition to the effects of
bit friction on other indicators such as the
drilling Rate Of Penetration (ROP), torque on
bit, and Mechanical Specific Energy (MSE).
These  investigations have  effectively
constrained the relationship between changes in
bit performance and increases in MSE with
increasing bit friction [1,13,15-17]. Al-Sudani
(2017) concluded that the amount of energy
transferred from the bit to the formation rock
during the drilling operation is affected by the
amount of bit friction. Thus, the amount of
energy transferred to the rock from a
completely healthy bit differs from that
transferred from a bit with partial friction and,
in this case, partial energy loss is inevitable. In
addition, Wang et al. (2018) investigated the
role of bit geometry (the shape of the cutters,
including the angle of the cutter tip and the
height of the cutter) in determining bit friction
under conditions of equal operating parameters.
Their results showed that in addition to the
environmental and operational parameters, the
shape of the cutters also influences the rate of
friction of the bit per meter and the amount of
final bit friction.

In other studies, mathematical and analytical
relationships  have been developed to
investigate the bit friction process and its
interaction with the rock and drilling
operational parameters [18-24].

Another group of studies has also
investigated the factors affecting the PDC bit
friction using numerical modeling methods; in
these studies, due to the complexity of typical
bit geometry, more simple forms of the bit (e.g.,
single or double cutters) are commonly
simulated  [5,17,25-27].  Despite  these
limitations of existing numerical modeling
approaches in studies of bit friction, these
studies have nonetheless proven the effect of
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the cutter shape and amount of bit friction on
indicators such as BWR, ROP, and MSE.

In general, a review of existing literature in
the field of bit friction estimation shows that
these studies can be placed into three broad
categories: laboratory studies, numerical
studies, and analytical-mathematical studies.
The results of the studies to date have
contributed to an improved  general
understanding of the processes and magnitude
of bit friction in rock—bit interactions. However,
laboratory studies are inherently limited due to
their high costs, time-consuming nature, and
limitations in creating high pressure—
temperature conditions comparable to those
encountered in the drilling of oil, gas, and
geothermal wells. In addition, the use of
analytical and mathematical models for bit
friction estimation is complicated by the
specific conditions and coefficients required by
such models. Developing mathematical
relationships requires simplifications that limit
the generalizability of the solutions. As an
alternative approach, numerical modeling
methods are cheaper and less time-consuming
than laboratory studies and allow samples from
different conditions to be examined.
Nonetheless, the complexity of complete bit

modeling and matching the modeling
conditions with real conditions (i.e.,
temperature, pressure, and rock behavior)

remains a challenge for such studies.

Examining the history of the subject shows
that, to date, data-driven methods and machine
learning algorithms have not been widely used.
This is despite the increasing popularity of
machine learning algorithms due to their
multiple advantages over the limitations of
laboratory studies and mathematical and
numerical  models. = Machine  learning
algorithms have been widely used in studies of
the upstream oil industry, especially the drilling
sector, and in the field of drilling ROP
estimation, where they have been used to
achieve significant success and accuracy [9,28-
39].

Another key aspect of studies investigating
oil, gas, and geothermal well drilling bits are the
parameters introduced as factors influencing bit
friction. In general, these factors are often
considered in three main categories:
controllable parameters of drilling operations
(hydraulic—mechanical), bit characteristics
(design and profile), and formation rock
characteristics (especially abrasion) [24,40]. As
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the phenomenon of bit wear continuously
changes the geometry of cutters and bit buttons,
detecting the effect of BF, mechanical and
geomechanical parameters on the BWR are
very important to investigate.

Therefore, the current research has been
conducted with the aim of providing an
algorithm for estimating BWR under the
influence of wvarious operational and
environmental factors. The innovations of this
research can be presented from two aspects of
the method and the studied parameters. In this
research, for the first time, machine learning
methods have been used to develop BWR
estimator models. Also, in the studied
parameters, geomechanical parameters have
been used along with petrophysical and drilling
parameters. On the other hand, the algorithm
developed in this research is able to take into
account the role of the geometry of the cutters
in terms of its wear percentage in the input
parameters, which can play a significant role in
the more accurate evaluation of the bit wear
trend in drilling an interval.
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2. Methods

The purpose of this work is to provide an
innovative approach for quasi real-time
estimation of bit friction using surface-
controllable parameters and geomechanical
parameters. As shown in Figure 4, the
following steps were implemented:

e Step 1: Data gathering from two wells in an

oil field in the southwestern of Iran.

e Step 2: Data pre-processing including data
cleaning (range check, missing value
detection, and noise/outlier management),
geomechanical parameters estimation and
data preparation (scale matching,

normalization, and feature selection).

Step 3: Designing the conceptual model for
an adaptive Bit Wear Rate Predictor
algorithm (ABWRP) equipped with a high-
accuracy machine learning based BWR
predictor (developed with modelling data
from Well A).

Step 4: validating the ABWRP algorithm
using a simulation-based experiment with
unseen data from well B.

Step1: Data gathering (row data)
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logs
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Step4: Validating the ABWRP algorithm

Figure 4. Research workflow.

1273



Bajolvand et al.

2.1. Data description

In this study, data were collected from two
wells (A and B) in an oil field in the southwest
of Iran. The studied interval of two wells
(includes both reservoir and non-reservoir
formations comprising a dominantly limestone
lithology) were drilled with PDC-type bit and
bit size of 8.5 inches. Two main dataset from
studied wells were used includes petrophysical
and drilling data. The petrophysical data
includes Gamma Ray (GR), Neutron Porosity
(NPHI), density (RHOB), resistivity (RT),
compression wave slowness (DTCO), Shear
Wave Slowness (DTSM), and the Photo
Electricity Factor (PEF). Also surface drilling
parameters includes Weight On Bit (WOB),
Pump Flow Rate (FPR), Rotation Speed of the
Drill Bit (RPM), Rate Of Penetration (ROP),
Torque On Bit (TRQ), Equivalent Circulating
Mud Density (ECD). In general, drilling data in
time based format. In order to convert time-
based data to depth-based, the total data
recorded from each parameter (for example, the
weight on bit) averaged for drilling each meter
and considered for the corresponding depth.

In addition to the mentioned sensor-based
drilling parameters, the Bit Friction (BF) that
represent the dullness grade of bit (button) per
meters was used for calculating the Bit Wear
Rate (BWR) as target parameter for machine
learning based models. As these wells were
reservoir appraisal and test wells, in the studied
area, Bottom Hole Assembly (BHA) was drawn
up after drilling each two stand without change
in bit (studied interval of well A was drilled
with a fresh PDC bit. Also studied interval of
well B was drilled with another fresh PDC bit).
In each step, after drawn up the BHA, the IADC
dull grading code of PDC bit was recorded and
converted into percentage format (see Figure
3). Accordingly, the bit friction parameters was
updated per two stand. By dividing the
cumulative friction related to each interval
(about 54 meter), the bit friction (BF) was
achieved in each drilled meters. Accordingly,
the BWR per meter can be calculated in
percentage per meter (ppm) units using the
difference in BF recorded between two
consecutive depths.

The profiles of the petrophysical and drilling
parameters of Well A and Well B are shown in
Figure 5 and Figure 6, respectively.
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2.2. Data Pre-processing

In general, there are several key challenges
in the use of machine learning methods in the
field of petroleum geomechanics, especially in
oil and gas well drilling. The variety of data
forms, sensors, and measurement tools makes it
challenging to recognize the sources and types
of wrong, noisy, and outlier data and, in
addition, complicates the identification of
relationships between parameters. Accordingly,
one of the essential steps in preparing data for
use in this study was data pre-processing, which
involved two data cleaning and preparation
stages. Additionally, for investigating the role
of geomechanical parameters on the BWR, in
this step, one-dimensional geomechanical
modeling was performed to estimate the rock
strength and stress field parameters (related
Equations are presented in Appendix A).
Following this step, a database consisting of
petrophysical, geomechanical, and drilling
parameters was formed to develop intelligent
models. Data pre-processing step of this study
was described in Bajolvand et al. (2022).

2.3. Designing of the ABWRP algorithm

In addition to the environmental conditions
(geo-conditions) and the forces on the bit, the
geometric characteristics of the bit (e.g. number
of cutters, shape of the cutters, and arrangement
of cutters) also affect the bit’s performance. At
the beginning of driving a new bit (i.e., a bit
with zero percentage of friction) in each hole,
the geometric characteristics of the bit
correspond to the design standard. In this
situation, the applied forces (WOB, RPM) are
evenly distributed in the cutter tips, and the
energy transfer from the BHA to the formation
is minimized to crush the rocks in front of the
bit [17]. During the drilling operation, bit wear
(decrease in the height of the cutters,
deformation of the cutter tips, cut off, etc.)
causes energy loss [13]. This also results in
uneven distribution of the forces applied to the
bit cutters, which worsens the BWR per meter.
Thus bit wear increases exponentially with
increasing bit usage time. Accordingly, it is
essential to recognize the right time to change
the bit, and constraining the relationship
between the BWR and bit friction is a key part
of the BWR model.

Therefore, in this work, as an innovative
approach, an updating algorithm has been
developed. One of the most important
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applications of the ABWRP algorithm is to
predict bit friction during the planning and
design phase of drilling operations such that by
knowing the formation characteristics profile
and the designed operating parameters, the final
bit friction conditions after drilling the desired
interval can be predicted. Forecasting with the
developed algorithm allows the selection of a
suitable bit (either a undamaged bit or a bit with
a certain percentage of wear) or even different
operational parameters, which can be highly
effective for optimizing the controllable
parameters of drilling operations. This
algorithm comprises two main sections that

Journal of Mining & Environment, Vol. 16, No. 4, 2025

includes smart predictor and data provider. For
achieving the high accuracy model various
machine learning models are developed. These
models include regression learning-based
(Support Vector Regression (SVR), Gaussian
Process  Regression  (GPR),  Bootstrap
Aggregating), and deep neural network-based
models (Artificial Neural Network (ANN)
Recurrent Neural Network (RNN). Long Short-
term Memory (LSTM). Convolutional Neural
Network (CNN). Detailed description of these
algorithms can be find in the following
references [41-46].
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Figure 5. Parameters in the studied interval of well A; (a) petrophysical logs (b) drilling data.

1275



Bajolvand et al.

Journal of Mining & Environment, Vol. 16, No. 4, 2025

CGR (gapi) RT(ohm.m
900 (9 |p| )2900|| (\ T )2900
: . Kazhdumi ]
. Dariyan

3000 - 3000% 13000 % 3000
3100 3100f -4 3100 3100
~ 32005 3200'L 4 3000 3200
3 z
s £
[=%
g ;
a

3300 3300}~ 3300 3300

3400 3400 1 3400 3400

3500+ 3500f% 4 3500 3500

1 3500 ——1 3600

PEF (ble) RHOB (g/cc) NPHI(v/v)  DTC (usfft) DTS (us/ft
1 29007 2900 2900 T 2000

3000 -1 3000 3000

3100 -%‘”' - 3100 3100
5

3200 1 3200 320011

if‘-’?\

Al

”
Y

3300 3300 3300

N

3400 1 3400 3400+

¥

3500 (-~ 3500 3500 -

Y

Yre—

3600 3600 00— 3600 H 3600~ :
4 5 0 0204 50 100 100 150
(a)
BHARun ECD (gpm WOB (klb RPM (rpm FPR (gpm| ROP (m/h TRQ (kIb*ft BF (% BWR (%/m|
2000 No. [T (gpm) 20007 o) 2000 (rpm) 2000 X (gpm) 2000 — (mh) 2000 Qklb’ )2900‘ e 2000 — (a/m)
®  Kazhdumi
| .
sooof | o |t L o, 3000 T{ R E A | 3000 e a4 3000 1 3000l .
1 TRl B ¥ k
2 '-,1 N N .
300t —— 3100 % 31001 H 3100 % 3100 3100 awu}.
3 .
—— a i
I E .
300 32000 g ? 13200 3200 3200f " 3200 52001 ¢
. - . e
= rs 8
L "y e
§ L e £ #
o 3300 5 \ 3300 -f, 3300+ 3300 3300 3300 SSDng
& {
7 t:f . f‘-..,
3400+ —— + 3400 "’;‘S 3400+ 4 3400 T KLy 3400 { sa00f 3
.
! Jf -‘e_i'."" %
asoor | T | F 3500 + g | 3500f -} 3500 - 13500 ; 3500 3500 35001 #%
— L ' V¥,
/3 ) e I. 1. r.
10
1 f £ ¥
3600 i gpp bt 3600 —————+ 300 3600 L———— 3500 ——— 3600 b——— 3600L——
7476788082 0 10 20 100 120 300 340 0 5 10 4 6 8 0z 4 0 002

Figure 6. Parameters in the studied interval of well B; (a) petrophysical logs (b) drilling data.

In the second part of the ABWRP algorithm, a
data provider unit is embedded. This
component comprises the data normalizer,
BWR storage, data parser, and bit friction
updater units. The main task of this part of the
algorithm is to use the BWR of the previous
depth to update the bit friction and then estimate
the BWR at the new depth based on the new bit
conditions (i.e. updated bit friction). This part
of the algorithm allows prediction of the BWR
and even other drilling response parameters in
a new well considering the practical role of
gradual bit friction.
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2.4. Validating scenario

To check the applicability of the BWR
estimation process, the dataset from well B was
used as a simulation input. As these data were
not used to develop the estimator model, it was
assumed that the operational parameters of well
B were obtained from a design process or
optimized based on best practices and
experience. It is also assumed that due to the
specificity of the drilling path, the
geomechanical properties estimated in this
research using 1D geomechanical modeling
were extracted from a 3D geomechanical
reservoir model. The amount of initial bit
friction was assumed to be zero due to the use
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of a new bit for drilling the studied interval in
Well B.

3. Results and Discussion
3.1. Data pre-processing

In this work, during the data cleaning step,
the intervals containing incorrect and missing
data were first identified and removed. A 1D
median filter with degree five was then used to
reduce the effect of sensor noise. Subsequently,
Tukey's method (using the frequency
distribution between the first and third
quartiles) was used to identify outlier data.
After cleaning the petrophysical and drilling
data, the cleaned petrophysical data was used to
calculate the geomechanical parameters. Most
of the petrophysical parameters and the
geomechanical model outputs are recorded and
calculated at a vertical measurement rate of
0.1524 meters. In addition, the mudlogging
parameters (WOB, RPM, and FPR) are reported
in a depth-based format at a rate of 1 meter.
Therefore, to unify the resolution of all
parameters, the geomechanical and
petrophysical parameters were scaled to a 1-
meter spacing. One of the most common
methods used for this step is averaging, as
shown in Equation 1:

n
j _ Y14
aupscaled - n

(D

where a; is the value of a data point, whose
depth is equal to the integer part of the
measured depth value, n is the number of data
tltpscale
number of data points. Then the database was
formed based on drilling, petrophysical and
geomechanical parameters with  similar
resolution. Furthermore, To normalize the
independent parameters used as machine
learning inputs, all parameters are mapped to
the [-1,1] range using Equation 2 to eliminate
the effect of data scaling.

Xt = g () g
Xmax - Xmin

where Xni is the normalized value of the i-
th parameter, X; is the value of the i -th
parameter, and X,,;, and X,,,, are the
minimum and maximum values of the X
parameter in the whole data series, respectively.
The processes related to this section can be find
in detail in Bajolvand et al. (2022).

points, and a q 18 the scaled value of this

)
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In the following, it is essential to constrain

the most effective independent parameters for
developing the BWR estimator model. The
drilling response parameters such as BWR,
ROP, TRQ, and MSE are all highly correlated;
however, all previous laboratory, numerical,
and  analytical studies have clearly
demonstrated the role of bit friction in the ROP,
TRQ, and MSE parameters [13,17]. In addition,
these parameters themselves are affected by
independent aspects such as rock-and geo-
dependent parameters, as well as the
controllable drilling parameters. Accordingly,
it is crucial to decipher these correlation and
dependence relationships when developing
estimator models. The interactions between geo
conditions and drilling parameters (i.e., power
and tools) determine the response parameters.
Thus the input parameters for estimator models
(ROP, TRQ, and BWR) should be examined as
independent parameters. However, BWR is a
complex issue, and the shape of the cutters also
affects their wear rate Wang et al. (2018) given
that bit friction influences cutter deformation
during drilling; hence, this parameter should
also be considered as an influencing factor for
BWR estimation.

In this work, the second version of the
NSGA-II algorithm introduced by Deb et al.
(2002) was used to select the best features for
BWR estimation. For this purpose, the NSGA-
I algorithm was used with an initial population
of 100 chromosomes, a mutation rate of 0.5,
and 100 repetitions with a three-layer neural
network containing seven, five, and four
neurons in the first to third layers, respectively.

While the NSGA-II algorithm is capable of
removing input parameters with linear
relationships, checking the co-linearity of input
parameters using the R coefficient through
cross-validation before introducing them to the
algorithm can help reduce computational time.
Cross-validation was performed between
petrophysical and geomechanical parameters,
and also between drilling parameters to each
other using data from well A. Evaluating the co-
linearity ~ between petrophysical and
geomechanical parameters is important because
geomechanical parameters are often estimated
from petrophysical parameters using linear
analytical relationships. As shown in Figure 7,
the E parameter has a linear relationship with
several others, so only one such parameter
needs to be used in feature selection by NSGA-
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II. Meanwhile, checking co-linearity between
drilling parameters, as shown in Figure 8
revealed no co-linearity, so all parameters
except ROP and TRQ were introduced to the
algorithm. Finally, a set of petrophysical,
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Figure 7. Correlation coefficient (R) between petrophysical and geomechanical parameters.
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geomechanical and drilling parameters
(including Depth, NPHI, RT, PEF, CCS, Fang,
Coh, PP, SH, ECD, WOB, RPM, FPR, and BF)
were introduced to the NSGA-II algorithm.

-0.06
-0.35 - 0.60 | 1.00
048 -024 026 0.05
2023 042 036 055 073

039 083 087 0.56 -0.04 057 100
020 | 0.86 087 0.65 005 0.6 --

Fang UCS CCS Coh PP Sv

PR

o
Ces [ieo|

0.58 0.68 -
0.49 0.39 0.26 -
RPM FPR ROP TRQ BWR

Figure 8. Correlation coefficient (R) values between drilling parameters.

The RMSE and R? results for different
numbers of features chosen in the BWR model
based on modelling data are shown in Figure 9
and Table 1. As shown, the trends of error
reduction and correlation increase for up to
seven parameters are quite pronounced;
however, adding more than seven parameters
led to only a slight decrease in error and a slight
increase in correlation. Based on this, seven
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parameters (Depth, CCS, SH, BF, WOB, RPM,
and FPR) were selected as the most effective
parameters for developing the BWR estimator
model. The correlation between selected input
parameters, two response parameters (ROP and
TRQ), and BWR based on modelling data
analysis is shown in Figure 10. Accordingly,
the selected parameters using the NSGA-II
approach have a high correlation with BWR.
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The CCS and SH geomechanical parameters
have the highest correlations with BWR,
corresponding to values of 0.67 and 0.58,
respectively. In addition, the TRQ and ROP
parameters also show a relatively high
correlation with BWR with values of -0.27 and
-0.57, respectively, indicating the relationship

Journal of Mining & Environment, Vol. 16, No. 4, 2025

of these parameters with each other and the
importance of considering the role of BWR in
the ROP and TRQ models. Therefore,
providing a solution to estimate the BWR based
on geo parameters and drilling parameters can
be highly effective for optimizing the
controllable parameters of drilling operations.
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0.0036 L 075

5 00034 07
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Figure 9. RMSE and R? in the feature selection process using modelling data.

Table 1. RMSE and R? of feature combination for BWR estimation based on modelling data.

Number of selected

Selected parameters RMSE R?
parameters

1 Depth  0.0038 0.45
2 Depth - WOB 0.0034 0.51
3 Depth — WOB - RPM 0.003 0.58
4 Depth — WOB - RPM — CCS 0.0028 0.66
5 Depth— WOB - RPM - CCS-BF  0.00262 0.7
6 Depth — WOB —RPM - FPR - CCS-BF  0.00257 0.75
7 Depth— WOB - RPM -FPR-CCS-BF-SH  0.00251 0.77
8 Depth— WOB —RPM -~ FPR-CCS—-BF —-SH-NPHI  0.0025 0.775
9 Depth — WOB — RPM — FPR -~ CCS —BF —SH-RHOB - RT  0.00248 0.78
10 Depth — WOB — RPM — FPR - CCS - BF - SH-NPHI-RHOB-PP  0.00246  0.785
11 Depth — WOB — RPM — FPR — CCS — BF — SH - NPHI - RHOB - PP - RT  0.00245 0.79

Correlation with BWR
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Figure 10. Correlation Coefficient (R) between BWR and selected input parameters in well A (ROP and

TRQ).
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3.2. Development of ABWRP algorithm

As detailed above, the geometric conditions
of PDC bit cutters play a crucial role in
determining the BWR. In the feature selection
stage, the role of the bit friction parameter in
BWR was also found to be significant.
Therefore, due to the gradual shape change of
bit cutters due to the friction phenomenon,
when estimating the BWR, the friction
percentage of the bit should also be considered
in addition to the chosen geomechanical and
operational parameters. An important aspect of
applying artificial intelligence methods is the
need for a complete set of input parameters that
can be normalized before building the
predictive model. This makes it challenging to
use these methods to predict bit friction in new
wells because this parameter changes with the
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progress of the operation and is based on the
BWR of the previous measurement; thus the bit
friction is not known in advance. Accordingly,
the ABWRP algorithm in this work was
developed using the workflow shown in Figure
11. The main goal of developing this algorithm
was to provide the potential to consider the role
of bit condition (amount of friction during
drilling) in the BWR value per drilling meter,
thus enabling drilling engineers to predict the
friction process of bit with acceptable accuracy
and, in the future, adopt appropriate operational
parameters value to increase the life of the bit.
As shown in the conceptual diagram, this
algorithm comprises two main parts-a smart
predictor and a data provider. In the following
sections, the accuracy of different machine
learning models and the function of the drill
wear updater are explained.

Data from new (unseen) well

First row (depth of bit running) of data

Geo related inputs
based on well path

Designed drilling
parameters

Initial bit friction

Second to end row of data
E Geo related inputs Designed drilling Bit friction '
| based on well path parameters (update required) | !
v
ABWRP algorithm

> Data parser

v

Input normalizer

Machine learning-based
BWR predictor

! BWR storage

! A 4

Bit friction

updater

Figure 11. The conceptual model of the ABWRP algorithm.

3.2.1. Smart predictor section

In order to use an intelligent model in the
predictor part of the ABWRP algorithm,
various machine learning models were
developed in this study for BWR estimation
using the parameters selected in the feature
selection stage. From the two wells chosen as
case studies in this work, an interval with
thickness 1198 m (depth from 2351 m to 3549
m) from well A was selected as modeling data
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(training and testing), and an interval with
thickness 560 m (depth from 2989 m to 3549
m) from well B was selected as validation data.
In the following, the data from well A were
randomly divided into training and testing sets
with a ratio of 0.8 to 0.2. Accordingly, 959 data
rows were selected as training data and 239 data
rows have been selected as test data. To avoid
the impact of random selection of training and
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test data in different models, the k-fold cross-
validation method was used in all models.

As shown in Figure 12, the data were
divided into k sections (k = 5 in this instance)
using different random distributions. In each of
the k repetitions, one section is used for test data

Journal of Mining & Environment, Vol. 16, No. 4, 2025

and the other sections are used as network
training data. The average error of all k
repetitions is then determined as the error of
that model on the test data, and the model with
the lowest error value is chosen as the most
representative model.

Train

RMSE #1

Iteration 1 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 >

RMSE #2

RMSE #3

RMSE #4

RMSE #5

_1lgk
RMSE = XX, RMSE ;

®=5)

. Data Partitions
Iterations

Error Calculation

Figure 13. 5-fold cross-validation approach implemented in this research work.

e Support Vector Regression

The accuracy results of SVR models with
different kernel functions on the training and
test datasets are shown in Table 2. Based on a
comparison of the RMSE, R?, and average
absolute percent deviation (AAPD) indices, the
best result was obtained for the SVR model
with a Gaussian kernel function. Figure 14
illustrates the results of BWR estimation using
the SVR model with a Gaussian kernel function
on the training and test datasets. This
comparison of the predicted and measured
values shows that the model fits the training
data well. However, the difference between the
results on the test data and the training data
indicates a relatively poor performance on the
test data; thus, this model does not have
satisfactory generalization capability.

e Gaussian Process Regression

The accuracy results of the GPR models on
the training and testing data are shown in Table
3. Based on this, the best result was obtained for

the model with Matern kernel function; the
results of BWR estimation on the training and
testing datasets using this model and kernel are
shown in Figure 15. A comparison between the
predicted and measured values shows that the
model fits the training data well but exhibits
relatively poor performance on the test data.
Similar to the SVR approach, the difference
between the results for the training and test data
shows the poor generalizability of this method
for BWR estimation.

e Bootstrap aggregating

The modeling method with bootstrap
aggregating implemented in this work is
presented in Figure 16. As shown, in this
method, unlike boosting, the accuracy of the
second predictor is not dependent on the
accuracy of the first predictor and both are
completely independent of each other
throughout the process. Notably, selecting the
optimal number of decision trees in each of the
predictors, as well as the number of leaves,
requires solving an optimization problem.

Table 2. Performance of SVR models in BWR estimation.

Kernel Function R’ AAPD RMSE
Train Test Train Test Train Test
Linear 0.76 0.52 32.12 41.02 0.002 0.0041
Radial Basis Function 0.79 0.45 28.22 35.32 0.0023 0.004
Gaussian 0.79 0.73 20.32 31.26 0.0025 0.003
Polynomial 0.75 0.56 23.33 33.25 0.0021 0.004
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Figure 14. Performance of SVR model with gaussian kernel; (a) train (b) test.

Table 3. Performance of GPR models in BWR estimation.

Kernel function R’ AAPD RMSE
Train Test Train Test Train Test
Squared Exponential 0.75 0.42 32.36 41.02 0.0031 0.0033
Radial Basis Function 0.76 0.45 31.25 38.25 0.0025 0.0031
Matern 0.84 0.72 29.95 32.56 0.002 0.003
Rational Quadratic 0.86 0.53 30.35 33.25 0.0026 0.0036
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Figure 15. Performance of GPR model with Matern kernel; (a) train (b) test.
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Figure 16. Bootstrap aggregating modeling approach [42].
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To develop the bootstrap aggregating model
in this research, a strategy was chosen in which
different training data sets and the same
predictors of the decision tree type were used.
Therefore, to determine the model’s optimal
hyper parameter values, including the leaf size
and number of trees in each predictor, an
optimization problem needed to be solved. A
sensitivity analysis and examination of leaf size
and different trees were conducted as shown in
Figure 17; based on this, the best results were
achieved for five training data categories and
five predictors with 50 trees. With an increasing
number of leaf sizes, the model’s accuracy did
not increase and the lowest error was always
recorded for five leaf sizes. Meanwhile,
increasing the number of decision trees in each
predictor up to 50 consistently reduced the
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N
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model error. Accordingly, the optimal bagging
tree model structure was selected as five leaf
sizes and 50 decision trees per predictor.

The estimation results of the bagging tree
model with the optimized structure on the
training and test datasets are shown in Figure
18. A comparison between the predicted and
measured values shows that the model fits the
training data well with values of 0.84 and 0.002
for the R* and RMSE metrics, respectively.
This model also performed relatively well on
the test data with values of 0.74 and 0.003 for
the R* and RMSE values, respectively. In
addition, the AAPD values for the training and
test datasets were 25.52 and 19.92, respectively,
which was the best result among the regression-
based methods.

5-bags

10-bags

20-bags
—&— 50-bags
—0— 100-bags

30 40 50 60

Number of grown trees in each bags

Figure 17. RMSE different bag numbers and the number of grown trees in each bag.
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Figure 18. Performance of BGT model with 5 bag and 50 tree; (a) train (b) test.
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Artificial Neural Network

In this research, an MLP network with the
Levenberg—Marquardt training algorithm was
used to develop the BWR estimation model. To
achieve the optimal network structure, a trial
and error process was used. For this purpose,
two-layer networks with a minimum of seven
and a maximum of 18 neurons in each layer
were developed. For each neuron configuration
in the first and second layers, the average error
obtained from five-fold cross-validation on the
test data was used to evaluate the model’s
accuracy. Figure 19 illustrates the error heat
map for this analysis; as shown, the network for
BWR estimation with 14 neurons in the first
layer and 12 neurons in the second layer had the
lowest RMSE value on the test data (RMSE =
0.0032). To evaluate the model’s accuracy for
three hidden layers, neural networks were then
developed with 14 neurons in the first layer, 12
neurons in the second layer, and 7 to 18 neurons
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in the third layer. The results of this
investigation are plotted in Figure 20; as shown,
the maximum error reduction corresponded to
nine neurons in the third layer, which reduced
the RMSE error of the network by 25%
compared to the two-layer mode. When the
number of neurons in the third layer exceeded
nine, the network experienced overfitting and
the test error increased. Therefore, a final three-
layer network configuration with 14, 12, and
nine neurons was selected as the ANN-MLP
model for BWR estimation. Figure 21
illustrates the results of BWR estimation using
the ANN-MLP model on the training and test
datasets. A comparison of the predicted and
measured values shows that the model fits the
training data well and achieves relatively good
performance on the test data. However, the
relatively high AAPD values of this model
(26.48 and 23.32 for the training and test
datasets, respectively) showed that the accuracy
of the model is not very satisfactory.

RMSE*0.001 (percent per meter) ANN-MLP with 2-HL on test dataset

Number of neurons in the second hidden layer

10 11 12

13

14 15 16 17 18

Number of neurons in the first hidden layer

Figure 19. Heat map RMSE of 2-hidden layer neural network for BWR estimation.

5.5
5 == RMSE achieved best performing network with 2-HL [14,12] ®
® RMSE of network with 3-hidden layer ¢
~45 o
g [ )
S
s 4 ]
&
( ]
L{E 35
25 ° v
[ J
2
6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 20. RMSE of 3-hidden layer neural network for BWR estimation.

1284



Bajolvand et al.

R2=0.87 RMSE =0.0019
0.03 : 5

0.025 |
0.02 |
0015 |

0.01 ¢

Predicted BWR (ppm)

O  DataWellA
Y=X
best fit

0.005

0 H
0 0005 0.01 0.015 0.02 0.025 0.03
Measured BWR (ppm)

()

Predicted BWR (ppm)

Journal of Mining & Environment, Vol. 16, No. 4, 2025

R2=0.83 RMSE =0.0024

0.03 ;
0025 ........................................................... O .........
0.02
0.015
o
0.01
0.005 - O DataWellA
Y=X
best fit

0 L i
0 0005 001 0015 0.02 0.025 0.03
Measured BWR (ppm)

(b)

Figure 21. Performance of ANN model with 3-hidden layer (14-12-9); (a) train (b) test.

e Recurrent neural network

In this work, in addition to the feed-forward
ANN-MLP neural network type, an RNN with
the architecture shown in Table 4 was used. The
results of BWR estimation on the training and
testing datasets with the RNN network are
shown in Figure 22. This model fitted the
training data well, with values of 0.0013 and
0.94 for RMSE and R? respectively. In

addition, the AAPD value for the training data
was 14%. In terms of the model’s accuracy on
the test data showed that this model performed
relatively well on the test data with RMSE and
R? values of 0.0024 and 0.83, respectively, and
an AAPD value of 23%. However, the observed
difference between the error values for the
testing and training datasets demonstrates the
relatively low generalizability of this model.

Table 4. The structure of the recurrent neural network employed for BWR estimation.

Main layer Number Type/id Properties Value/type
Input layer 1 Sequential - -
Hidden unit number 200
LSTM layer 1 LSTM optimizer Adam
output mode Last
Dropout layer 1 Dropl - 0.25
Fully connected layer 1 - - -
Regression layer 1 - - 1
R2=0.94 RMSE =0.0013 R2 =0.83 RMSE =0.0024
0.03 ; ‘ 0.03 ‘ ‘
0.025 |-~ 0.025
o
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Figure 22. Performance of RNN model; (a) train (b) test.
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¢ Long short-term memory

In addition to a simple RNN model, an
LSTM network with the architecture shown in
Table 5 was also used. The BWR estimation
results of the LSTM network on the training and
testing datasets are shown in Figure 23. As
shown, similar to the RNN model, the LSTM
model achieved RMSE and R? values of 0.0014
and 0.93, respectively, indicating good fitting
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accuracy on the training data. However, the
AAPD value for the training dataset in this
model was 18%. A comparative analysis of the
test data yielded RMSE and R? values of 0.002
and 0.87, respectively, and an AAPD value of
20%. Thus, this model achieved good
performance compared to RNN, ANN, and the
other regression learning-based models on the
testing data.

Table S. The structure of the long short-term memory network employed for BWR estimation.

Main layer Number Type/id Properties Value/type
Input layer 1 Sequential - -
Hidden unit number 200
LSTM layer 4 LSTM Optimizer Adam
Dropout layer 1 Dropl - 0.5
ReLU layer 1 Relu 1 - -
Fully connected layer 1 Densel - 100
Regression layer 1 - 1
R2=0.93 RMSE =0.0014 R2=0.87 RMSE =0.002
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Figure 23. Performance of LSTM model; (a) train (b) test.

e Convolutional Neural Network
(CNN)

For BWR estimation, a 1D Convolutional
CNN with four layers was also used. The
detailed architecture of the CNN is presented in
Table 6, and the corresponding BWR modeling
results are shown in Figure 24. This model
achieved high accuracy on the training data
estimation with RMSE and R? values of 0.0011
and 0.96, respectively; similar accuracy was
also recorded on the testing data with RMSE
and R? values of 0.0017 and 0.91 respectively.
These results, combined with respective AAPD
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values of 13.44% and 17.38% on the training
and testing datasets, demonstrate that the CNN
model has high generalization ability. A
comparison between all the developed machine
learning models revealed that the CNN model
was the most accurate, so the generalizability of
this model was checked on the validation data
(Well B), as shown in Figure 25. The results of
this analysis show that the CNN model has a
high generalization ability, with results close to
those of the test data (0.0016, 0.8, and 18% for
RMSE, R? and AAPD, respectively).
Therefore, this model was used in the predictor
part of the ABWRP algorithm.
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Table 6. The structure of the convolutional neural network employed for BWR estimation.

Main layer Number Type/id Properties Value/type
Input layer 1 Sequential - -
Kernel size 3
. Filter number 200
Filter layer 4 Conv 1D Padding Same
Activation ReLU
Dropout layer 1 Drop 1 - 0.5
Pooling layer 1 Maxpooling 1D - -
Flatten layer 1 Flatten 1 - -
Fully connected layer 1 Dense 1 - 100
Fully connected layer 1 Dense 2 - 1
R2=0.96 RMSE =0.0011 R2=0.91 RMSE =0.0017
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Figure 24. Performance of CNN model; (a) train (b) test.
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3.2.2. Data Provider Components

As shown in Figure 26, in the data provider
part of the ABWRP algorithm, BWR; is
estimated at the first stage/meter (i = 1) with
the initial bit friction value (BF;_;=BF;), the
designed controllable drilling parameters, and
the geomechanical parameters of the first
drilling path. Then i is updated (i =i + 1) and
the target depth condition (i > n) is checked. If
the condition is not met, in the second
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step/meter (i = 2), BWR; is added to BF, and
the value of BF; is calculated to estimate
BWR, . Using this approach, the value of
BWR;_4 is iteratively added to BF;_; until the
target depth is reached to provide the required
inputs for estimating BWR;. Note that at each
stage, after completing the inputs, the algorithm
first sends the inputs to the normalization
section and then sends the corresponding
normalized inputs to the intelligent model
(based on the above analysis, a CNN model was
used in this study; however, any machine
learning model can be used) via a data parser to
estimate the BWR of each step/meter. The
BWR is thus estimated meter by meter, and the
bit friction value is progressively updated to
predict the final bit friction value.

3.3. Validation of the ABWRP algorithm

The results of this simulation process are
illustrated in Figure 27. As shown, the CNN
model combined with the ABWRP algorithm
estimated the amount and trend of BWR
changes and, thus, the final bit friction with
acceptable accuracy. The simulation results
estimated the final bit friction to be 4.3%
compared to the measured bit friction of around
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3.7% recorded after drilling about 560 meters in
well B; this finding represents an error of
around 14%. Accordingly, the designed
ABWRP process can be used to effectively
estimate the bit friction during the design phase

Journal of Mining & Environment, Vol. 16, No. 4, 2025

of the drilling operation considering all relevant
influencing parameters, including
geomechanics, drilling, and the bit wear
conditions.

> BWR, =0

Loading data from new well includes:
> Depthyy, CCSny, SHn1, BF11, WOByy, RPMyy, FPRyy
» BFix1 =BF, =Initial bit friction

BF (i) = BF (i-1) + BWR (i-1)

No

}

b
.

N _inputs (i) = Normalized (input row (i))

!

BWR (i) = CNN. Predict (N_inputs (i))

=i+l

Figure 26. The performance of the data provider part in the ABWRP algorithm.
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Figure 27. Comparison of measured and ABWRP algorithm prediction results based on data of well B;
(a) Bit wear rate, (b) Bit friction.

4. Conclusionss

This work aims to develop an adaptive
machine learning-based algorithm to estimate
bit friction in drilling operations of new oil, gas,
and geothermal wells. For this purpose, data
from two wells were used from an oil field in
southwest Iran. Nonetheless, the key findings of
this study are as follows:
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e Geomechanical parameters such as CCS and
SH play a significant role in the BWR.

e Bit friction is crucial parameter to consider in
parameter when estimating the BWR to
determine the best time to change the bit.

e Among the tested machine learning methods
used to estimate the BWR, the CNN
approach was identified as the most accurate
and generalizable model.



Bajolvand et al.

e The CNN model achieved RMSE values of
0.0011, 0.0017, and 0.0016 per meter for the
training, testing, and validation datasets,
respectively; the corresponding R? values
were 0.96, 0.91 and 0.8. Based on this
assessment,

e The ABWRP algorithm developed in this
study estimated the final bit friction value in
the validation well with a 14% error based on
only the profile of geomechanical properties
and the designed operational parameters.

e Simulation-based validation results showed
that the use of the ABWRP algorithm has the
potential to evaluate bit friction and increase
the life of bits in studies targeting multi-
objective optimization of the controllable
drilling parameters.

Due to the limitations in data availability,
the data used in this work were only from the
reservoir sections of two wells; more accurate
assessments could likely be achieved by using
a wider data bank (including several bit types
with different diameters).
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Nomenclatures
BF Bit Friction %
BP Breakout Pressure MPa
BS Bit Size Inch
BWR Bit Wear Rate percent per meter (ppm)
Cp Pore Compressibility unitless
Cp Bulk Compressibility unitless
E Static Elastic Modulus GPa
Egyn Dynamic Elastic Modulus GPa
Fang Internal Friction Angle deg
FP Fracture Pressure MPa
g Gravity Acceleration m/s?
n Number of data points in Equation 1 -
PP Pore Pressure psi or MPa
PR Static Poisson's Ratio v/v
PRgyn Dynamic Poisson’s Ratio v/iv
RMSE Root Mean Square Error ppm
SD Standard Deviation %
Sh Minimum Horizontal Stress MPa
Sy Vertical Stress MPa
SH Maximum Horizontal Stress MPa
UCS Unconfined Compression Strength MPa
Vp Compressional Wave Velocity km/sec
Vi Shear Wave Velocity km/sec
Vihale Volume of Shale %
X, Normalized value in Equation 2 -
X; Value of the i-th parameter in Equation 2 -
Xoninmax Minimum and maximum values in Equation 2 -
o Biot Coefficient unitless
aitpscaled Scaled value of data point in Equation 1 -
a; Value of a data point in Equation 1 -
€p Tectonic strain in the minimum horizontal stress direction %
€x Tectonic strain in the maximum horizontal stress direction %
[0) Porosity in pore pressure-related equations v/v
Ooff Effective stress MPa
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Acronyms

ANN Artificial Neural Network

BF Bit friction

BGT Bootstrap aggregating

BP Breakout Pressure

BS Bit Size

BWR Bit Wear Rate

CNN Convolutional Neural Network
CCS Confined Compression Strength
Coh Cohesion Strength

DTCO Compressional Slowness
DTSM Shear Slowness

ECD Equivalent Circulating Mud Density
FPR Flow Pump Rate

FFBP Feed-Forward Back Propagation
GPR Gaussian Process Regression
GR Gamma ray log

HL Hidden Layer

MLP Multi-layer Perceptron

MSE Mechanical Specific Energy
NSGA-II Non-dominated Sorting Genetic Algorithm
NPHI Neutron Porosity Log

PEF Photoelectric Log

RBF Radial Basis Function

RPM Rotary Speed per Minute

ROP Rate of Penetration

RT Resistivity

RHOB Density

SVR Support Vector Machine

TRQ Torque

WOB Weight On Bit
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Appendix A: 1D MEM (Relations and Results Descriptions)

This section describes the one-dimensional
geomechanical model (1D MEM), which is
applied to estimate the mechanical properties of
the formation rocks and geo-stress parameters
within a well [48].

[49,50]. Subsequently, the rock strength
parameters, namely the CCS [51,52], UCS [53],
internal friction angle, and cohesion, were
obtained by applying the relationships given in
Egs. A5 to AS.

. . , 3VZ—4v?
¢ Rock mechanical properties Eg4yn = RHOB X Vg (W) (AD)
(dynamic and statics) p s
In this part, the cleaned petrophysical logs, V5 —2V2
namely the compressive wave velocity (Vp), PRyyn = [ZCVE _ Vsz)z] (A2)
shear wave velocity (Vs), density (RHOB), and
neutron porosity (NPHI), core test results, and E=0.7 X Egy, (A3)
well test findings, were wused as input
parameters to the 1D MEM. First, the rock PR = PRgyy, (A4)
dynamic modulus was computed using Eqs. Al
and A2. The static modulus was then UCS=2.27E+4.74 (A5)
determined by applying Eqgs. A3 and A4)
CCS = UCS + (ECD — PP) + 2 (ECD — PP) sin(Fang) A6
- (1 - sin(Fang)) (A6)
Fang =
Coh = UCS/ (2 tan ( >+ Z)) (A7)
Fang = 26.5 — 37.4(1 — NPHI — Vg4,;.) + 62.1(1 — NPHI — Vg,.10)? (A8)

e  Vertical Stress (Sy)

At a given point within the Earth’s crust, the
vertical stress is dictated by the rock column’s
overburden weight. Equation A9 can be
employed to determine the vertical stress at
depth z based on the density (RHOB) log:

Sy = RHOB x g X depth (2)

e  Pore Pressure (PP)

In this work, a model previously developed
by Atashbari and Tingay (2012) was used to
estimate the PP. To estimate PP measurements
in carbonate rocks, this model considers four
parameters: pore compressibility (Cp), bulk
compressibility (Cy), effective stress (oefr), and
porosity (¢ ) (see the relationship shown in
Equation A10). Note that the log-measured
porosity values recorded (NPHI) were used for
estimating PP in the present work. Equation
A1l was applied to determine Off.

(1= @)Cpoesr )y (A10)

PP = (
(1-@)Cy, — Cp

(A9))
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Where 0.9 <y <1 and the pore pressure,
effective stress, and overburden stress are
related through Equation (A11).

Oett = Sy — PP (Al1)
where o4 represents the effective stress, Sy
is the overburden stress, PP denotes pore
pressure, and a is the Biot coefficient (assumed
to be equal to 1 in this case).

The bulk compressibility in sandstone and
limestone was computed using Equation A12
and Equation A13, respectively [55].

97.32x 107°
CP,Sandstone = (1+55.8721 x (P)1_42859

0.853531

= (A13)

Cosimestone = (75 27664 x 106¢)05257

e  Horizontal stress and strain
components

The poroelastic relationships given in
Equation A14 and Equation A15 were used to
calculate the minimum horizontal stress (Sh)
and the maximum Horizontal Stress (SH).

(Al12)
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Sh=—R g PR _ PP+ PP+ —" ;. PRxE (A14)
T1-pRYV T I—prRY T TI preth T T _prztH

SH=—R g PR _ PP+ PP+ PRxE (A15)
T1-pRYV 1-pRY™ T

1-prEH T T_przth

where €, and €y denote, respectively, the
tectonic strains in the maximum and minimum
horizontal stress directions.

° 1D MEM model calibration

The 1D MEM model established in this
study was calibrated in two stages. In the first
stage, PP predictions were made within the
wells; the well test measurements (repeat
formation tester (RFT)) were then compared
with the estimated PP values [54]. The model’s
coefficient was then calibrated to match the real
pore pressure as measured by RFT.

In the second stage, SMWW calculations
(Fracture Pressure (FP) and Breakout Pressure
(BP)) were performed with respect to Mohr—
Coulomb criteria [49,56]. By comparing the
wellbore instabilities, such as shear or tensile
collapse, with the calculated FP and BP values,
&p and ey were calibrated to match the well
instabilities with the considered safe mud
weight window.

Appendix B: Error and performance
calculation

Equation Al was used to calculate the
Percent Deviation (PD) or Relative Error (RE)
for each data point (i) in the dataset (containing
n data points) based on the measured
parameters ( Ppeqsurea ) and predicted
parameters (Ppregicted)-

Pmeasured - Ppredicted

PD; = X 100 (B1)

Pmeasured
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Once PD is known for each point in the
dataset, the average percent deviation (APD)
can be calculated using Equation B2.

n .
i=1PDl. (Bz)

APD =
The average absolute percent deviation
(AAPD) is given by Equation B3.

AAPD = i |PDil

(B3)

Standard deviation (SD) of error can be
computed from the mean error (E7y,eqy,) and
error terms at individual data points (E7) using
Equation B4.

Sp = \/Z?zl(Eri - Ermean)2

n—1

The RMSE of each model can then be
evaluated using Equation BS5.

n

2
E (Pmeasuredi - Ppredictedi)
i=1

For each prediction, the COD (R?) is
calculated by Equation B6.

RMSE =

S|

2
n
i=1 (Pmeasuredi - Ppredictedi)

n
Zn P _ Zi:l Pmeasured
i=1 predictedi

R?=1-

n

(B4)

(B5)

2 (B6)
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