- Badakhshan, N., Shahriar, K., Afraei, S., & Bakhtavar, E. (2023). Determining the environmental costs of mining projects: A comprehensive quantitative assessment. Resources Policy, 82, 103561.
- Mehrabi, A., Derakhshani, R., Nilfouroushan, F., Rahnamarad, J., & Azarafza, M. (2023). Spatiotemporal subsidence over Pabdana coal mine Kerman Province, central Iran using time-series of Sentinel-1 remote sensing imagery. Episodes Journal of International Geoscience, 46(1), 19–33.
- Li, J., Pei, Y., Zhao, S., Xiao, R., Sang, X., & Zhang, C. (2020). A review of remote sensing for environmental monitoring in China. Remote Sensing, 12(7), 1130.
- Rouhani, A., Skousen, J., & Tack, F. M. G. (2023). An overview of soil pollution and remediation strategies in coal mining regions. Minerals, 13(8), 1064.
- Kumari, M., & Bhattacharya, T. (2023). A review on bioaccessibility and the associated health risks due to heavy metal pollution in coal mines: Content and trend analysis. Environmental Development, 100859.
- Yu, J., Liu, X., Yang, B., Li, X., Wang, P., Yuan, B., Wang, M., et al. (2024). Major influencing factors identification and probabilistic health risk assessment of soil potentially toxic elements pollution in coal and metal mines across China: A systematic review. Ecotoxicology and Environmental Safety, 274, 116231.
- Cheng, B., Wang, Z., Yan, X., Yu, Y., Liu, L., Gao, Y., Zhang, H., & Yang, X. (2023). Characteristics and pollution risks of Cu, Ni, Cd, Pb, Hg and As in farmland soil near coal mines. Soil & Environmental Health, 1(3), 100035.
- Singh, S., Maiti, S. K., & Raj, D. (2023). An approach to quantify heavy metals and their source apportionment in coal mine soil: A study through PMF model. Environmental Monitoring and Assessment, 195(2), 306.
- Li, C., Wang, H., Liao, X., Xiao, R., Liu, K., Bai, J., Li, B., & He, Q. (2022). Heavy metal pollution in coastal wetlands: A systematic review of studies globally over the past three decades. Journal of Hazardous Materials, 424, 127312.
- Wang, F., Gao, J., & Zha, Y. (2018). Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility and challenges. ISPRS Journal of Photogrammetry and Remote Sensing, 136, 73–84.
- Suleymanov, A., Suleymanov, R., Kulagin, A., & Yurkevich, M. (2023). Mercury prediction in urban soils by remote sensing and relief data using machine learning techniques. Remote Sensing, 15(12), 3158.
- Zhong, L., Chu, X., Qian, J., Li, J., & Sun, Z. (2023). Multi-scale stereoscopic hyperspectral remote sensing estimation of heavy metal contamination in wheat soil over a large area of farmland. Agronomy, 13(9), 2396.
- Kopeć, A., Trybała, P., Głąbicki, D., Buczyńska, A., Owczarz, K., Bugajska, N., Kozińska, P., Chojwa, M., & Gattner, A. (2020). Application of remote sensing, GIS and machine learning with geographically weighted regression in assessing the impact of hard coal mining on the natural environment. Sustainability, 12(22), 9338.
- Zhu, H., Sun, R., Xu, Z., Lv, C., & Bi, R. (2020). Prediction of soil nutrients based on topographic factors and remote sensing index in a coal mining area, China. Sustainability, 12(4), 1626.
- Li, Q., Guo, J., Wang, F., & Song, Z. (2021). Monitoring the characteristics of ecological cumulative effect due to mining disturbance utilizing remote sensing. Remote Sensing, 13(24), 5034.
- Saini, V., Li, J., Yang, Y., Li, J., Wang, B., & Tan, J. (2022). Investigating the environmental impacts of coal mining using remote sensing and in situ measurements in Ruqigou Coalfield, China. Environmental Monitoring and Assessment, 194(10), 780.
- Nie, X., Hu, Z., Ruan, M., Zhu, Q., & Sun, H. (2022). Remote-sensing evaluation and temporal and spatial change detection of ecological environment quality in coal-mining areas. Remote Sensing, 14(2), 345.
- Ali, N., Fu, X., Ashraf, U., Chen, J., Thanh, H. V., Anees, A., Riaz, M. S., et al. (2022). Remote sensing for surface coal mining and reclamation monitoring in the Central Salt Range, Punjab, Pakistan. Sustainability, 14(16), 9835.
- Wang, J., Hu, X., Shi, T., He, L., Hu, W., & Wu, G. (2022). Assessing toxic metal chromium in the soil in coal mining areas via proximal sensing: Prerequisites for land rehabilitation and sustainable development. Geoderma, 405, 115399.
- Qi, X.-l., Xu, H.-j., Chen, T., Shan, S.-y., & Chen, S.-y. (2022). Effects of climate change, coal mining and grazing on vegetation dynamics in the mountain permafrost regions. Ecological Informatics, 69, 101684.
- Yang, X., Yao, W., Li, P., Hu, J., Latifi, H., Kang, L., Wang, N., & Zhang, D. (2022). Changes of SOC content in China’s Shendong coal mining area during 1990–2020 investigated using remote sensing techniques. Sustainability, 14(12), 7374.
- Mishra, M., Guimarães Santos, C. A., Medeiros do Nascimento, T. V., Dash, M. K., Marques da Silva, R., Kar, D., & Acharyya, T. (2022). Mining impacts on forest cover change in a tropical forest using remote sensing and spatial information from 2001–2019: A case study of Odisha (India). Journal of Environmental Management, 302, 114067.
- Liu, Y., Heng, W., & Yue, H. (2023). Quantifying the coal mining impact on the ecological environment of Gobi open-pit mines. Science of the Total Environment, 883, 163723.
- Zhang, Z., He, G., Wang, M., Wang, Z., Long, T., & Peng, Y. (2015). Detecting decadal land cover changes in mining regions based on satellite remotely sensed imagery: A case study of the stone mining area in Luoyuan county, SE China. Photogrammetric Engineering & Remote Sensing, 81(9), 745–751.
- Xiao, D., Yin, L., & Fu, Y. (2021). Open-pit mine road extraction from high-resolution remote sensing images using RATT-UNet. IEEE Geoscience and Remote Sensing Letters, 19, 1–5.
- Su, Z., Li, W., Ma, Z., & Gao, R. (2022). An improved U-Net method for the semantic segmentation of remote sensing images. Applied Intelligence, 52(3), 3276–3288.
- Gu, X., Li, S., Ren, S., Zheng, H., Fan, C., & Xu, H. (2022). Adaptive enhanced swin transformer with U-net for remote sensing image segmentation. Computers and Electrical Engineering, 102, 108223.
- Fan, X., Yan, C., Fan, J., & Wang, N. (2022). Improved U-net remote sensing classification algorithm fusing attention and multiscale features. Remote Sensing, 14(15), 3591.
- Hao, X., Yin, L., Li, X., Zhang, L., & Yang, R. (2023). A multi-objective semantic segmentation algorithm based on improved U-Net networks. Remote Sensing, 15(7), 1838.
- Singh, K., Bhardwaj, V., Sharma, A., & Thakur, S. (2024). A comprehensive review on landslide susceptibility zonation techniques. Quaestiones Geographicae.
- Sinha, K., Sharma, P., Sharma, A., Singh, K., & Hassan, M. (2024). Analysis of land subsidence in Joshimath Township using GIS and remote sensing. Journal of Mining and Environment, 15(3), 817–843.
- Thakur, T., Singh, K., & Sharma, A. (2024). A review on analysis and mitigation strategies for landslide risk management: Case studies of Nainital, Satluj Valley, Pipalkoti, Jhakri, Panjpiri in Himalayan Region, India. Journal of Mining and Environment, 15(4), 1255–1270.
- Singh, K., Khaidem, S., Gupta, S. K., & Sharma, A. (2024). Assessment of landslide occurrence and prediction of susceptible zone based on GIS along national highway 37, Manipur, India. Sādhanā, 49(1), 74.
- Jallayu, P. T., Sharma, A., & Singh, K. (2024). Vulnerability of highways to landslide using landslide susceptibility zonation in GIS: Mandi district, India. Innovative Infrastructure Solutions, 9(9), 354.
- Kumar, S., Sharma, A., & Singh, K. (2024). A comprehensive review on debris flow landslide assessment using rapid mass movement simulation (RAMMS). Geotechnical and Geological Engineering, 42(7), 5447–5475.
- Vahneiki, S. K., Singh, K., & Sharma, A. (2024). Behavior of granular pile anchors against uplift forces and heave reduction: A review. Indian Geotechnical Journal, 1–18.
- Altaf, S., Sharma, A., & Singh, K. (2024). A sustainable utilization of waste foundry sand in soil stabilization: A review. Bulletin of Engineering Geology and the Environment, 83(4), 143.
- Sharma, A., Singh, K., & Vishwakarma, D. K. (2024). Temporal variability of precipitation and humidity in Mandi, Himachal Pradesh, India using GIS modelling: a multi decadal study. Water Supply, 24(10), 3438-3455.
- Sharma, A., & Singh, K. (2024). ARIMA-based forecasting of monthly rainfall in Mandi district, Himachal Pradesh. Water Supply, 24(9), 3226–3237.
- Potin, P., Rosich, B., Grimont, P., Miranda, N., Shurmer, I., O’Connell, A., Torres, R., & Krassenburg, M. (2016). Sentinel-1 mission status. In Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar (pp. 1–6). VDE.
- Radeloff, V. C., Roy, D. P., Wulder, M. A., Anderson, M., Cook, B., Crawford, C. J., Friedl, M., et al. (2024). Need and vision for global medium-resolution Landsat and Sentinel-2 data products. Remote Sensing of Environment, 300, 113918.
- Liu, X., Frey, J., Munteanu, C., Still, N., & Koch, B. (2023). Mapping tree species diversity in temperate montane forests using Sentinel-1 and Sentinel-2 imagery and topography data. Remote Sensing of Environment, 292, 113576.
- Candes, E., Demanet, L., Donoho, D., & Ying, L. (2006). Fast discrete curvelet transforms. Multiscale Modeling & Simulation, 5(3), 861–899.
- Tirandaz, Z., & Akbarizadeh, G. (2015). A two-phase algorithm based on kurtosis curvelet energy and unsupervised spectral regression for segmentation of SAR images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(3), 1244–1264.
- Huang, Y., Zhou, F., & Gilles, J. (2019). Empirical curvelet based fully convolutional network for supervised texture image segmentation. Neurocomputing, 349, 31–43.
- Wang, Y., Zhou, G., & You, H. (2019). An energy-based SAR image segmentation method with weighted feature. Remote Sensing, 11(10), 1169.
- Krishnammal, P. M., & Raja, S. S. (2020). Medical image segmentation using fast discrete curvelet transform and classification methods for MRI brain images. Multimedia Tools and Applications, 79(15), 10099–10122.
- Chen, C., He, X., Guo, B., Zhao, X., & Chu, Y. (2020). A pixel-level fusion method for multi-source optical remote sensing image combining the principal component analysis and curvelet transform. Earth Science Informatics, 13, 1005–1013.
- Chen, C., He, X., Guo, B., Zhao, X., & Chu, Y. (2020). A pixel-level fusion method for multi-source optical remote sensing image combining the principal component analysis and curvelet transform. Earth Science Informatics, 13, 1005–1013.
- Wu, Z., Huang, Y., & Zhang, K. (2018). Remote sensing image fusion method based on PCA and curvelet transform. Journal of the Indian Society of Remote Sensing, 46, 687–695.
- Yu, W. (n.d.). Research on statistic segmentation method of high resolution remote sensing image based on curvelet feature weighted. Acta Geodaetica et Cartographica Sinica, 49(3), 402.
- Akbarizadeh, G., Tirandaz, Z., & Kooshesh, M. (2014). A new curvelet-based texture classification approach for land cover recognition of SAR satellite images. Malaysian Journal of Computer Science, 27(3), 218–239.
- Candès, E. J. (1998). Ridgelets: Theory and applications (Doctoral dissertation). Stanford University.
- Marukatat, S. (2023). Tutorial on PCA and approximate PCA and approximate kernel PCA. Artificial Intelligence Review, 56(6), 5445–5477.
- Shlens, J. (2014). A tutorial on principal component analysis [Preprint]. arXiv. https://arxiv.org/abs/1404.1100
- Naidu, V. P. S., & Raol, J. R. (2008). Pixel-level image fusion using wavelets and principal component analysis. Defence Science Journal, 58(3), 338.
- Singh, S., Mittal, N., & Singh, H. (2021). Review of various image fusion algorithms and image fusion performance metric. Archives of Computational Methods in Engineering, 28(5), 3645–3659.
- Yin, J., Wang, T., Du, Y., Liu, X., Zhou, L., & Yang, J. (2021). SLIC superpixel segmentation for polarimetric SAR images. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–17.
- Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Süsstrunk, S. (2012). SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11), 2274–2282.
- Xie, F., Lei, C., Jin, C., & An, N. (2020). A novel spectral–spatial classification method for hyperspectral image at superpixel level. Applied Sciences, 10(2), 463.
- Wang, X., Li, G., Plaza, A., & He, Y. (2022). Revisiting SLIC: Fast superpixel segmentation of marine SAR images using density features. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–18.
- Sasmal, B., & Dhal, K. G. (2023). A survey on the utilization of superpixel image for clustering based image segmentation. Multimedia Tools and Applications, 82(23), 35493–35555.
- Wang, Y., You, H. T., & Liu, T. L. (2020). An energy segmentation method of high-resolution SAR image based on multiple features. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 303–307.
- Golpardaz, M., Helfroush, M. S., & Danyali, H. (2020). Nonsubsampled contourlet transform-based conditional random field for SAR images segmentation. Signal Processing, 174, 107623.
- Starck, J.-L., Candès, E. J., & Donoho, D. L. (2002). The curvelet transform for image denoising. IEEE Transactions on Image Processing, 11(6), 670–684.
- Cressie, Noel, and Matthew T. Moores. (2023). Spatial statistics. Encyclopedia of mathematical geosciences. Springer Nature, 1362-1373.
|