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 This paper presents a Multi-Head Self-Attention Fusion Network 

(MHSA-FN) for real-time crop disease classification, addressing key 

limitations in existing models, including suboptimal feature 

extraction, inefficient feature recalibration, and weak multi-scale 

fusion. Unlike prior works that rely solely on CNNs or transformers, 

MHSA-FN integrates MobileNetV2, EfficientNetV2, and Vision 

Transformers (ViTs) with a structured multi-level attention 

framework for enhanced feature learning. A gated fusion mechanism 

and a Multi-scale Fusion Module (MSFM) optimize local texture 

details and global spatial relationships. The model was trained on a 

combined dataset of PlantVillage and locally collected images, 

improving adaptability to real-world conditions. It achieved 98.66% 

training accuracy and 99.0% test accuracy across 76 disease classes, 

with 99.34% precision, 99.01% recall, and 99.04% F1 score. 

McNemar’s test (p = 0.125) and Bayesian superiority probability 

(0.851) validated its robustness. Confidence variance analysis 

(0.000010) outperformed existing models, demonstrating MHSA-FN 

as a scalable, high-performance AI solution for precision agriculture 

in resource-constrained environments 
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1. Introduction 

Agricultural sustainability and food security are 

increasingly threatened by the prevalence of crop 

diseases, which can cause substantial yield losses if 

not detected early. Hossain et al. [1] illustrated that 

traditional methods require extensive laboratory 

analysis, leading to delays in diagnosis. Moreover, 

the study points out that these techniques often 

suffer from variability in accuracy due to 

environmental and human factors, further limiting 

their reliability. However, deep learning (DL) 

models require extensive training data and face 

challenges such as overfitting and high 

computational costs. Abdu et al.[2] demonstrated 

that training deep networks' computational 

demands can be prohibitive, especially in resource-

constrained settings. Transfer learning (TL) 

addresses these limitations by leveraging pre-

trained models, reducing computational costs, and 

enhancing efficiency. Unlike static methods, 

dynamic models are crucial in adapting to evolving 

data and emerging disease types. Nguyen et al. [3] 

illustrated how adaptive learning techniques enable 

models to update their parameters in response to 

new disease patterns, improving predictive 

accuracy over time. However, the limitation of 

CNNs lies in their inability to capture long-range 

dependencies. Shah et al. [4] demonstrated how the 

reliance on limited receptive fields restricts the 

ability to understand spatial relationships in 

complex images. This constraint affects tasks 

requiring a broader contextual understanding, such 

as medical image analysis. In contrast, the 

effectiveness of Vision Transformers (ViTs) in 

modeling global context through self-attention 

mechanisms was demonstrated by Barman et al. 

[5]. However, the study also emphasized that ViTs 

are computationally intensive and require large 
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datasets for effective training, posing challenges in 

resource-constrained environments.  

Despite these advancements, most current 

approaches rely on a single CNN model, which 

may not fully capture local and global feature 

representations necessary for robust disease 

detection. Relying solely on CNNs limits their 

ability to generalize across varying environmental 

conditions, diverse plant species, and disease 

variations. Furthermore, He et al. [8] illustrate that 

CNN-based models suffer from feature 

redundancy, often struggling to dynamically 

emphasize critical information in complex images. 

The study demonstrates that conventional CNN 

architectures tend to capture redundant or less 

informative features, reducing model efficiency 

and hindering performance in tasks requiring fine-

grained feature differentiation.  

To address these gaps, we propose a framework 

integrating MobileNetV2, EfficientNetV2, and 

ViT for parallel feature extraction. MobileNetV2 

and EfficientNetV2 extract local and scalable 

features, respectively, while ViT captures global 

dependencies directly from the input image. The 

CNN-extracted features are refined using SE 

blocks before concatenation with ViT features. A 

gated control mechanism then regulates the flow of 

fused features, which are further processed through 

a multi-scale fusion module (MSFM) to enhance 

representation learning. Finally, the output is 

passed through a classification layer for accurate 

crop disease identification. The primary 

contributions of this research include: 

A tri-branch architecture framework in which 

MobileNetV2, EfficientNetV2, and ViT operate in 

parallel to extract both local and global features. 

Squeeze-and-excitation (SE) blocks enhance 

channel-wise recalibration, improving feature 

discrimination. A gated control mechanism and 

multi-scale fusion module (MSFM) that regulate 

and integrate fused features, an optimized end-to-

end learning framework that seamlessly fuses CNN 

and transformer-based features, enhancing 

adaptability and scalability, and a Comprehensive 

statistical validation to confirm the model 

effectiveness. 

The paper is structured as follows: Section 2 

discusses related work on CNN-based models, 

ViTs, and attention-enhanced techniques. Section 3 

includes the proposed architecture framework and 

feature extraction process. Section 4 discusses 

results analysis, performance evaluations, 

statistical analysis, and discussion. Section 5 

presents the conclusions and outlines directions for 

future research.  

 

2. Related Work 

Ensemble approaches, such as integrating ResNet-

18 with multi-head attention, have demonstrated 

the potential of combining models for enhanced 

performance. Ramesh et al. [6] utilized a DNN 

combined with the Jaya Optimization Algorithm, 

achieving 98.9% classification accuracy for paddy 

diseases. However, their approach primarily 

focused on a single crop type, limiting its 

generalizability across diverse agricultural 

conditions. Findings by Le et al. [7] indicate that a 

hybrid convolutional model incorporating liquid 

neural networks and Neural Circuits achieved 

97.15% accuracy while mitigating overfitting. 

However, the model’s complexity may hinder real-

time deployment and scalability. A similar study by 

Guo et al.[8] explored Convolutional Neural 

Network - Bidirectional Long Short-Term Memory 

(CNN-BiLSTM) architectures for attention 

prediction in real-time scenarios, demonstrating 

that BiLSTMs effectively captured complex 

dependencies in silica powder moving out of the 

warehouse. However, these approaches often 

require extensive computational resources, limiting 

their deployment on mobile or edge devices. Given 

the constraints of agricultural environments, 

lightweight CNN architectures have been explored 

for real-time crop disease classification. For 

instance, Bi et al. [9] proposed MobileNetV3 as an 

efficient model for crop disease detection on edge 

devices. Amin et al. [10] fused DenseNet121 and 

EfficientNetB0 through feature concatenation, 

balancing efficiency and accuracy. Zaki et al. [11] 

utilized MobileNetV2 to detect various tomato 

plant diseases by training the model on a complete 

dataset of images. However, the model 

performance was limited by diversity and the 

dataset's quality. Mousavi et al.[12] employed 

MobileNetV2 for grapevine disease detection, 

achieving favourable results compared to 

traditional models like VGG16 and ResNet.  

EfficientNetV2 has been applied in various 

scenarios, particularly for deployment on edge 

devices like smartphones and drones, which are 

crucial for real-time applications. Dai et al. [13] 

implemented EfficientNetV2 for disease detection 

on drones in precision agriculture. While 

promising, the approach faced challenges related to 

model size and real-time processing, which limited 

its application in field settings. The success of 

EfficientNetV2, as discussed by Saleem et al. [14], 

is largely due to its efficient balance between 

computational demands and high accuracy in 

agricultural settings. Compared to traditional 

models, EfficientNetV2, as demonstrated by He et 

al. [15], requires fewer parameters. This adaptation 
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ensures improved deployment on resource-

constrained devices like embedded systems and 

smartphones. However, its performance may 

fluctuate under different environmental conditions, 

posing challenges to its reliability. 

ViTs have shown promise in crop disease 

detection, surpassing traditional CNNs by 

overcoming the limitation of local receptive fields. 

Wang et al. [16] demonstrated how transformers 

excel in learning long-range dependencies across 

the entire image. However, despite their enhanced 

feature extraction capabilities, the computational 

demands of ViTs and the need for large training 

datasets pose challenges, particularly in resource-

constrained environments. Zhu et al. [17] examined 

the application of transformers in medical image 

analysis, focusing on tasks such as classification, 

segmentation, and detection. Christakakis et al. 

[18] conducted a detailed study using ViT-based 

deep learning models to detect Botrytis cinerea in 

Cucurbitaceae crops, attaining an accuracy of 92%. 

However, the variance performance of the model 

may vary with diverse crop types and field 

conditions, limiting its broader applicability in 

diverse agricultural settings. Barman et al. [5] 

implemented an edge-based disease detection 

approach using a ViT model trained on 10,010 

tomato leaf image datasets. The study compared 

the ViT and Inception V3 models for classifying 10 

disease types, with the ViT model achieving 

90.99% accuracy, outperforming Inception V3. 

While the integration into an Android app 

demonstrated the model's potential for large-scale 

agricultural applications, challenges remained in 

ensuring robustness across varying environmental 

conditions and optimizing the model for real-time 

performance. 

Wang et al. [19] argue that gated mechanisms play 

a key role in DL models by enabling them to focus 

on key features while suppressing inappropriate 

information. This leads to improved model 

performance and interpretability. However, the 

added complexity of these mechanisms may 

require additional computational resources and 

fine-tuning, potentially impacting the model’s 

efficiency and scalability in resource-constrained 

environments. Wang et al. [20] explored the use of 

gated mechanisms, specifically Gated Recurrent 

Unit (GRU), for classifying plant diseases based on 

leaf images at different growth stages. While the 

method improved feature selection by focusing on 

relevant patterns, it faced challenges in handling 

large-scale datasets and generalizing across various 

environmental conditions. Bi et al. [21] applied a 

combination of gated convolutional layers and 

recurrent units for detecting diseases in soybean 

crops. This hybrid approach effectively captured 

spatial and temporal features, but its computational 

demands may limit its scalability for real-time 

applications in field conditions, especially with 

large-scale datasets.  

Attention mechanisms have been crucial for crop 

disease detection in DL, enabling model 

improvement in efficiency and accuracy. Ni et al. 

[22] proposed a MaizeHT model by combining 

CNN with self-attention for accurate maize growth 

stage recognition. The model utilized ResNet34 for 

feature extraction and applied multi-head self-

attention to predict growth stages. MaizeHT 

achieved 97.71% accuracy with 224×224 

resolution and 98.71% accuracy with 512×512 

resolution on a self-built dataset and with 15.446 

million parameters. Wang et al. [23] introduced a 

crop mapping model that incorporated temporal 

and spatial modules for feature extraction, along 

with multi-head self-attention and positional 

encoding. The model demonstrated improved 

accuracy, surpassing Transformers by 3.35%, 

LSTM models by 6.42%, and CNNs by 1.40%. 

However, the increased model complexity and 

reliance on attention mechanisms may result in 

higher computational demands, limiting its 

scalability for large-scale, real-time applications. 

This paper addresses these critical gaps in existing 

plant disease detection models, enhancing their 

adaptability, efficiency, and accuracy. Firstly, 

while prior works such as Jouini et al. [24] and 

Hassan et al. [25] have explored CNN-based or 

transformer-based architectures individually, they 

often lack an optimal fusion strategy that fully 

leverages the strengths of both approaches. This 

limitation results in suboptimal feature extraction, 

mainly when dealing with complex plant disease 

patterns requiring local texture details and global 

spatial relationships. Secondly, existing models 

frequently struggle with effective feature 

recalibration, leading to inefficient utilization of 

learned representations. While attention 

mechanisms, as in the works of Ansari et al. [26], 

like SE blocks and CBAM, have been used, they 

are often applied in isolation rather than as part of 

a structured multi-level attention framework that 

prioritizes key features across multiple dimensions. 

Thirdly, Wang et al. [27] correctly argue that many 

current approaches lack robust multi-scale feature 

fusion, limiting their ability to handle variations in 

disease severity, lighting conditions, and 

background noise in real-world images. While 

inception-based architectures, such as in the works 

of Shah et al. [4], have shown promise in general 

image processing tasks, their application in plant 

disease detection remains underexplored. 
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3. Methods 

3.1 Proposed Model Architecture 

The hybrid Tri-branch multimodal design, 

developed for enhanced feature extraction, is 

illustrated in Figure 1. This architecture integrates 

two parallel convolutional backbones, 

MobileNetV2 and EfficientNetV2, which focus on 

extracting localized and hierarchical features. 

These models work in tandem to extract a broad 

spectrum of features, which are then refined 

through an SE block that reweights channels, 

amplifying the most relevant ones and reducing the 

impact of irrelevant features. A ViT block 

processes image patches parallel with 

convolutional backbones to capture global and 

long-range dependencies across the entire image. 

The local features extracted are then concatenated. 

This allows the model to leverage detailed local 

information and broader global patterns. 

An attention gate mechanism is applied to focus 

further the model’s attention on key areas of the 

image. This mechanism learns attention maps to 

show the most important areas of the image, 

effectively suppressing background noise and 

irrelevant features. Following this, a multi-scale 

fusion module aggregates fine-grained, medium, 

and coarse features using multiple receptive fields, 

ensuring that the model can capture information at 

various levels of abstraction.

 
Figure 1. Proposed Model Architecture. 

 

3.2. Data Preparation and Preprocessing 

The data was loaded from a directory structure 

where images were organized in subfolders based 

on their class labels, following a standard format. 

Each subfolder represented a distinct disease 

category, ensuring efficient label assignment 

during model training. This hierarchical 

organization streamlined data retrieval facilitated 

preprocessing, and enabled seamless integration 

with deep learning pipelines. TensorFlow's image 

dataset directory function was used to load the data 

with shuffling, batching, and resizing. As shown in 

Table 1, off-the-fly data augmentation was applied 

to enhance model generalization during training. 

This included random rotation, flipping, brightness 

adjustment, and zoom transformations, introducing 

variability to simulate real-world conditions and 

address class imbalance. 

The images were resized to a standard input size of 

224×224 pixels and normalized to the [0,1] range 

by dividing pixel values by 255.0. This 

preprocessing step ensured uniformity across all 

input images. A stratified sampling approach was 

applied to maintain a consistent class distribution 

within the training and validation datasets. This 

helped prevent biases that could arise from class 

imbalances. The number of samples allocated for 

the training set was determined using stratified 

sampling, ensuring proportional representation 

across dataset splits. Three backbone models were 

utilized for feature extraction, as shown in Figure 

1: MobileNetV2, EfficientNetV2, and ViT. 

MobileNetV2 and EfficientNetV2, both 

lightweight and efficient architectures, were pre-

trained on ImageNet, while ViT processed images 

as sequences of patches using self-attention 

mechanisms. A Squeeze-and-Excitation (SE) block 

was incorporated to enhance feature representation, 

recalibrating feature maps by capturing channel 

dependencies. This involved computing channel-

wise statistics through global average pooling, 

followed by two fully connected layers with ReLU 

activation and a sigmoid function to generate 
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attention weights. The attention vector was then 

applied to the input feature map, refining its 

representation. 

A multi-fusion module was integrated, leveraging 

convolutional operations with different kernel sizes 

(1×1, 3×3, and 5×5), along with max pooling, to 

capture multi-scale features. The extracted features 

from MobileNetV2, EfficientNetV2, and ViT were 

concatenated to form a comprehensive feature 

representation. The merged features were then 

processed through a fully connected layer, batch 

normalization, and dropout to mitigate overfitting. 

The final classification layer employed the softmax 

function to predict class probabilities, ensuring that 

outputs corresponded to the number of predefined 

classes. The AdamW optimizer was used with a 

fine-tuned learning rate and weight decay for 

model optimization. The model was trained using 

categorical cross-entropy as the loss function, 

which effectively handled multi-class 

classification tasks by comparing predicted 

probabilities against actual labels. Several training 

techniques were employed to enhance model 

performance and stability. ModelCheckpoint was 

used to save the best model based on validation 

loss. The model with the lowest validation loss was 

preserved during training, ensuring that the most 

optimal parameters were retained. EarlyStopping 

was implemented to halt training if the validation 

loss did not improve for a predefined number of 

epochs. This helped prevent overfitting and 

conserved computational resources by stopping 

training once performance plateaued. 

ReduceLROnPlateau dynamically adjusted the 

learning rate when validation loss stopped 

improving. If the loss remained stagnant for a set 

number of epochs, the learning rate was reduced by 

a predefined factor. This adjustment allowed the 

model to refine its parameters more effectively, 

leading to better convergence and improved overall 

performance. 

 

3.3 Dataset Description 

This study combined the Kaggle dataset [28] with 

a locally developed dataset, FieldPlant, to create a 

comprehensive resource named the DEMF dataset. 

The FieldPlant dataset consisted of 25,775 images, 

as detailed in Table 1, while the Kaggle dataset, 

comprising 38 distinct classes and 60,343 images 

(see Table 2), provided a globally diverse and well-

structured resource ideal for training and validating 

the models. Annotated images of plant leaves were 

collected over different seasons from farms in 

Central Kenya. April–May and October–

November was prioritized for capturing fungal and 

bacterial diseases, while June–July and December–

January focused on chronic infections like viral 

diseases and stress-related symptoms. A plant 

pathologist classified the images into different 

disease categories, annotated them, and organized 

them into folders. A combination of agricultural, 

ecological, and methodological factors drove the 

decision to collect field images from six counties in 

central Kenya. These counties span diverse 

agroecological zones, representing varying 

climatic conditions, soil types, and farming 

practices. 

Table 1. Field Plant Dataset. 

Crop Disease Count Region 

Banana Cordana 483 Murang'a 

Banana Healthy 479 Murang'a 

Banana Pestalotiopsis 480 Murang'a 

Banana Sigatoka 507 Murang'a 

Bean Angula-Leaf  377 Kiambu 

Bean Rust 403 Kiambu 
Bean Healthy 408 Kiambu 

Cassava Brown Spot 1533 Murang'a 

Cassava Green Mite 1152 Murang'a 
Cassava Healthy 1415 Murang'a 

Cassava Mosaic 1305 Murang'a 
Maize Grasshopper 707 Kirinyaga 

Maize Fall Army 331 Kirinyaga 

Maize Healthy 271 Kirinyaga 
Maize Leaf Beetle 1181 Kirinyaga 

Maize LeafBlight 1151 Kirinyaga 

Maize Streak Virus 1164 Kirinyaga 
Maize Leaf Spot 1453 Kirinyaga 

Rice LeafBlight 114 Kirinyaga 

Rice Brown Spot 118 Kirinyaga 
Rice Healthy 123 Kirinyaga 

Rice LeafBlast 112 Kirinyaga 

Rice Brown Spot 116 Kirinyaga 
Sugarcane Healthy 614 Embu 

Sugarcane Mosaic 534 Embu 

Sugarcane Red Rot 606 Embu 
Sugarcane Rust 606 Embu 

Sugarcane Yellow 591 Embu 

Tea Algal Leaf 138 Nyeri 
Tea Anthracnose 114 Nyeri 

Tea Eye Spot 113 Nyeri 

Tea Bro- blight 132 Nyeri 
Tea Healthy 79 Nyeri 

Tea Leaf Spot 169 Nyeri 

Sunflower Downy mild 139 Meru 
Sunflower Fresh Leaf 147 Meru 

Sunflower Gray Mold 80 Meru 

Sunflower Leaf Scars 160 Meru 
Maize Streak Virus 1154 Muranga 

Maize Grasshopper 794 Muranga 

Maize Fall-Army 336 Muranga 
Cassava Green Mite 1196 Muranga 

Cassava Brown Spot 1746 Muranga 

Banana Cordana 472 Kirinyaga 
Banana Sigatoka 472 Kirinyaga 

Total  25775  

  

The Kaggle dataset is highly valuable for crop 

disease detection due to its extensive variety, 

covering multiple crops and diseases with a well-

balanced representation of healthy and diseased 

samples. With 60,343 labeled instances, it provides 

a robust foundation for training machine learning 

models, ensuring diversity across plant species and 

disease types. The dataset's class distribution, 
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particularly for critical diseases like 

Huanglongbing in oranges and Tomato Leaf Curl 

Virus, supports effective model generalization. 

Additionally, the inclusion of healthy samples 

across crops aids in distinguishing between 

diseased and non-diseased conditions, enhancing 

real-world applicability for precision agriculture 

solutions.  
Table 2. Kaggle Dataset. 

Crop Disease Count 

Apple Apple Scab 1000 

Apple Black Rot 1000 
Apple Cedar Apple Rust 1000 

Apple Healthy 1645 

Blueberry Healthy 1502 
Cherry Powdery Mildew 1052 

Cherry Healthy 1000 

Corn Cercospora Spot 1000 

Corn Common Rust 1192 

Corn Northern Blight 1000 

Corn Healthy 1162 
Grape Black Rot 1180 

Grape Esca Black Measles 1383 

Grape Leaf Blight 1076 
Grape Healthy 1000 

Orange Huanglongbing 5507 

Peach Bacterial Spot 2297 
Peach Healthy 1000 

Pepper Bacterial Spot 1478 

Pepper Healthy 1000 
Potato Early Blight 1000 

Potato Late Blight 1000 

Potato Healthy 1000 
Raspberry Healthy 1000 

Soybean Healthy 5090 

Squash Powdery Mildew 1835 

Strawberry Leaf Scorch 1109 

Strawberry Healthy 1000 

Tomato Bacterial Spot 2127 
Tomato Early Blight 1000 

Tomato Late Blight 1909 

Tomato Leaf Mold 1000 
Tomato Septoria Leaf Spot 1771 

Tomato Spider Mites 1676 

Tomato Target Spot 1404 
Tomato Tomato Leaf Curl  5357 

Tomato Tomato Mosaic Virus 1000 
Tomato Healthy 1591 

Grand Total  60343 
 

To create the final combined dataset, 

augmentations were applied to classes with fewer 

images. Rotation involves rotating the images by a 

specified angle (e.g., 0–40 degrees) to help the 

model learn rotational invariance. Shear distorts 

the image along the x or y axis by a certain angle 

to simulate 3D transformations, with a proposed 0-

20 degrees value. Zooming adjusts the image scale 

by a factor of 0.8-1.2, allowing the model to handle 

different object sizes. Horizontal Flip mirrors the 

image to enhance recognition of objects in reversed 

orientations, with a proposed value of True. 

Vertical Flip functions similarly but is less 

commonly used, with a proposed value of False. 

The Final dataset, as shown in Table 3, consisted 

of 99,551 images of 22 different crop types, 

including apples, bananas, beans, corn, maize, 

grapes, and tomatoes, with the largest category 

being tomatoes at 18,841 images.  

Table 3. Combined Dataset. 

Crop Type Total 

Images 

Training 

Images 

Validation 

Images 

Apple 4,651 3,719 932 

Banana 4,008 3,204 804 

Beans 8,096 6,475 1,621 
Blueberry 1,502 1,201 301 

Cassava 4,894 3,914 980 

Cherry 2,054 1,642 412 
Corn 4,358 3,484 874 

Grape 4,641 3,711 930 

Maize 1,002 801 201 
Maize-L 1,239 991 248 

Maize 4,985 3,986 999 

Orange 5,507 4,405 1,102 
Peach 3,299 2,638 661 

Pepper 2,480 1,983 497 

Potatoes 3,006 2,403 603 
Raspberry 1,002 801 201 

Rice 5,010 4,005 1,005 

Squash 1,835 1,468 367 
Strawberry 2,111 1,688 423 

Sugarcane 5,010 4,005 1,005 

Sunflower 4,008 3,204 804 
Tea 6,012 4,806 1,206 

Tomatoes 18,841 15,067 3,774 

Total 99,551 79,601 19,950 
 

3.4 Experimental Parameters and Environment 

Table 4 presents the hyperparameter configurations 

used in our experiments. The model was trained on 

images resized to 224 × 224 with three channels to 

maintain consistency across architectures. The ViT 

encoder was designed with six layers, each 

containing eight multi-head self-attention blocks. 

A patch size of 7 was used to segment feature maps, 

with an embedding dimension of 128 to balance 

computational efficiency and feature 

representation. The multi-layer perceptron (MLP) 

dimension was set to 2048 and 0.5 dropout rate. 

The model was trained for 17 epochs using the 

AdamW optimizer with an initial learning rate of 

0.00001 and a weight decay 0.0001. Experiments 

were conducted on an NVIDIA RTX 3090 GPU, 

ensuring efficient performance. Additionally, the 

setup included a virtualized Intel Xeon CPU with 

access to virtualized GPUs, including NVIDIA T4, 

Tesla P100, and K80. 
 

Table 4. Hyperparameter Configurations. 
Hyperparameter Value 

Image size 224 × 224 
Image channels 3 

Patch size 7 

ViT encoder layers 6 
Number of multi-head self-attention blocks 8 

Hidden dimensions 128 

Layer perceptron dimension 2048 
Dropout rate 0.5 

Epochs 17 

  

3.5. Evaluation Approach 

A diverse range of metrics was selected to assess 

the model's predictive accuracy and overall 
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performance. Accuracy measured the proportion of 

correctly classified instances, providing an overall 

effectiveness indicator. Precision evaluated the 

proportion of correctly predicted positive cases out 

of all positive predictions, ensuring the model's 

reliability in identifying diseases. Recall assessed 

the percentage of positive cases detected, which is 

crucial in disease detection to minimize false 

negatives and prevent missed diagnoses. The F1 

score balanced precision and recall, making it 

particularly valuable when false positives and 

negatives carry significant implications. The ROC-

AUC (Receiver Operating Characteristic - Area 

Under the Curve) quantified how well the model 

differentiated between categories, with a higher 

AUC score (closer to 1.0) indicating superior 

classification accuracy.  

 

4. Results and Discussion 

4.1. Classification Results 

Table 5 presents the model’s training and 

validation results, demonstrating notable 

performance improvements. These findings 

emphasize the model robustness and efficiency 

during training. The model demonstrated steady 

improvement over 17 epochs, consistently 

increasing training and validation performance. 

Training loss decreased from 2.1238 in the first 

epoch to 0.8382 in the final epoch, while validation 

loss also shows a downward trend, indicating 

effective optimization. Accuracy improved 

significantly, with training accuracy rising from 

61.31% to 99.61% and validation accuracy 

increasing from 89.56% to 98.66%, suggesting 

strong generalization. The learning rate remained 

constant at 1e-5, ensuring stable training without 

sudden fluctuations.  

Table 5. Training and Validation Performance. 

Epoch Loss Accuracy 

(%) 

Val.Loss Val.Acc 

(%) 

L.Rate 

1 2.1238 61.31 1.1773 89.56 1e-5 

2 1.2297 88.15 1.0571 94.89 1e-5 

3 1.0932 93.02 0.9983 96.37 1e-5 
4 1.0306 95.06 0.9615 96.95 1e-5 

5 0.9886 96.30 0.9462 97.54 1e-5 

6 0.9581 97.18 0.9218 97.94 1e-5 
7 0.9347 97.85 0.9061 98.06 1e-5 

8 0.9171 98.23 0.8912 98.27 1e-5 

9 0.9030 98.51 0.8836 98.31 1e-5 
10 0.8899 98.76 0.8763 98.37 1e-5 

11 0.8783 99.03 0.8697 98.37 1e-5 

12 0.8711 99.15 0.8648 98.45 1e-5 
13 0.8626 99.27 0.8556 98.56 1e-5 

14 0.8559 99.33 0.8503 98.52 1e-5 

15 0.8496 99.42 0.8472 98.55 1e-5 
16 0.8443 99.43 0.8453 98.55 1e-5 

17 0.8382 99.61 0.8368 98.66 1e-5 

The training and validation loss graphs, as shown 

in Figure 2 and Figure 3, typically showed a steady 

decline, indicating that the model was effectively 

learning from the data. 

 
Figure 2. Training and Validation Loss. 

 
Figure 3. Training and Validation Loss. 

 

Table 6(a). Classification Performance for Classes (1-18). 
Class Name Precision Recall F1-

Score 

Support 

Apple_Apple-scab 1.00 1.00 1.00 200 
Apple_Black-rot 1.00 1.00 1.00 200 

Apple_ apple-rust 1.00 1.00 1.00 200 

Apple___healthy 1.00 1.00 1.00 329 
Banana_cordana 1.00 0.98 1.00 200 

Banana-healthy 0.99 1.00 1.00 200 

Banana_pestalotiopsi 0.99 0.99 0.99 200 

Banana_sigatoka 1.00 0.99 1.00 200 

Bean_angular spot 1.00 0.97 0.98 201 

Beans_healthy 1.00 0.99 1.00 200 
Blueberry_healthy 1.00 1.00 1.00 301 

Cassava_brown 1.00 1.00 1.00 296 

Cassava_mite 0.99 0.95 0.96 203 
Cassava healthy 0.98 0.99 0.98 239 

Cassava -mosaic 0.96 0.98 0.97 241 

Cherry_Powdery_ 1.00 1.00 1.00 211 
Cherry_healthy 1.00 0.99 1.00 200 

Corn_healthy 1.00 0.99 0.99 233 

 

Table 7(b). Classification Performance for Classes (19-40). 
Class Name Precision Recall F1-

Score 

Support 

Corn_leaf_spot 0.97 0.96 0.96 201 

Corn_Common_rust 1.00 1.00 1.00 239 
Corn _Leaf_Blight 0.95 0.97 0.96 200 

Corn_healthy 1.00 0.99 0.99 233 

Grape Black_rot 0.99 1.00 1.00 236 
Grape Esca 1.00 0.99 1.00 277 

Grape Leaf_blight 1.00 1.00 1.00 215 

Grape healthy 1.00 1.00 1.00 200 
Maize _grasshoper 0.99 0.98 0.99 200 

Maize_leaf_spot 0.75 0.68 0.72 248 
Maize_fall_Army 0.95 1.00 0.97 201 

Maize-healthy 0.92 1.00 0.95 199 

Maize_leaf_beetle 0.97 0.97 0.97 199 
Maize-leaf_bligh 0.74 0.73 0.72 200  

Maize_streak-virus 0.91 0.89 0.90 199 

Orange_Haunglongb 1.00 1.00 1.00 1102 

Peach _spot 1.00 1.00 1.00 460 
Peach_healthy 1.00 1.00 1.00 200 

Pepper_spot 1.00 0.99 1.00 200 

Pepper _healthy 1.00 1.00 1.00 296 
Potato_Early_blight 1.00 1.00 1.00 200 

Potato_Late_blight 1.00 0.99 0.99 201 
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Table 7(c). Classification Performance for Classes (41-70). 
Class Name Precision Recall F1-

Score 

Support 

Potato_healthy 0.99 1.00 0.99 200 

Raspberry healthy 1.00 0.99 1.00 201 

Rice-bact blight 1.00 1.00 1.00 200 
Rice_brown_spot 0.99 0.98 0.98 201 

Rice_healthy 1.00 1.00 1.00 201 

Rice_leaf_blast 0.98 0.99 0.99 200 
Rice _brown_spot 1.00 1.00 1.00 200 

Soybean_healthy 1.00 1.00 1.00 1018 

Squash_ mildew 1.00 0.99 1.00 367 
Strawberry/scorch 0.99 1.00 1.00 222 

Strawberry_healthy 1.00 1.00 1.00 200 

Sugarcane_Healthy 0.99 0.99 0.98 200 
Sugarcane_Mosaic 0.98 0.98 0.97 201 

Sugarcane_RedRot 0.99 1.00 0.99 200 

Sugarcane_Rust 1.00 0.96 0.98 200 
Tea_Anthracnose 1.00 1.00 1.00 201 

Tea_algal-leaf 0.97 0.98 0.96 200 

Tea_bird eye spot 0.98 0.99 1.00 201 

Tea_brown-blight 1.00 1.00 1.00 200 

Tea_healthy 1.00 1.00 1.00 200 

Tea_redleaf-spot 1.00 1.00 1.00 200 
Tomato _spot 0.99 1.00 1.00 426 

Tomato_Early 0.99 0.96 0.97 201 

Tomato_Lateblight 0.99 0.99 0.99 382 
Tomato-Target_ 0.99 0.99 0.99 281 

Tomato- Curl_ 1.00 1.00 1.00 1072 

Tomato_mosaic_ 1.00 1.00 1.00 200 
Tomato-healthy 1.00 1.00 1.00 318 

bean_rust 0.97 1.00 0.98 201 

 

The confusion matrices shown in Figure 4(a-f) 

illustrate the performance of the disease detection 

task across all classes (ranging from class 0 to class 

70). These matrices display actual class labels on 

the X-axis and predicted labels on the Y-axis, 

providing insights into the model’s classification 

accuracy for each class.  

 
Figure 4(a). Confusion Matric for Classes 0-10. 

 
Figure 4(b). Confusion Matric for Classes 10-20. 

 
Figure 4(c). Confusion Matric for Classes 30-40. 

 
Figure 4(d). Confusion Matric for Classes 40-50. 
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Figure 4(e). Confusion Matric for Classes 50-60. 

 
Figure 4(f). Confusion Matric for Classes 60-70. 

 

The AUC score reflects the model’s ability to 

effectively differentiate between positive and 

negative classes, with higher AUC values 

indicating stronger predictive power and better 

overall performance. An AUC score closer to 1.0 

suggests superior classification ability, whereas 

lower values indicate room for improvement. The 

per-class precision, recall, and F1 score provide a 

more granular evaluation of the model’s strengths 

and weaknesses.  

 
Figure 5(a). ROC AUC Scores. 

 
Figure 5(b). ROC AUC Scores. 

 
Figure 5(c). ROC AUC Scores. 

 

4.2. Ablation Studies  

Ablation studies evaluated the impact of 

components like the Multi-scale Module, Gated 

Mechanism, SE blocks, and ViT on model 

performance. The most effective configurations for 

crop disease detection were identified by 

systematically adding or removing these elements. 

The baseline CNN model with EfficientNetV2 and 

MobileNetV2 achieved 98.55% accuracy, slightly 

dropping to 98.45% with minor modifications. 

Introducing a Multi-scale Module improved 

accuracy to 98.57% while adding SE attention and 

a Gated Mechanism further enhanced it to 98.66%, 

as shown in Table 10. Parameter analysis showed 

that the baseline model had 8.85M parameters 

while integrating all enhancements, which 



Kinyanjui et al./ Journal of AI and Data Mining, Vol. 13, No. 2, 2025 
 

236 
 

increased complexity to 38.86M. Extraction 

mechanisms. The exclusion of the Multi-scale 

Module and Gated Mechanism resulted in 

parameter reductions to 11.87M and 14.23M, 

respectively, showing their contribution to model 

size as shown in Table 11. 
 

Table 8. Impact of Different Architectural Modifications. 
Model 

Number 

Model Configuration Multi-scale 

Module 

Gated 

Mechanism 

Accuracy 

1 CNN model: EfficientNetV2 and MobileNetV2 No No 98.55% 

2 CNN models: EfficientNetV2 and MobileNetV2 (Epochs Reduction) No No 98.45% 
3 CNN models: EfficientNetV2 and MobileNetV2, with Multiscale 

module 

Yes No 98.57% 

4 Proposed Model: EfficientNetV2 and MobileNetV2, with Multi-scale 
module, SE, and Gated Mechanism 

Yes Yes 98.66% 

 

Table 9. Parameters Comparison and Training Configurations. 
Model Configuration Total 

Parameters 

Trainable 

Parameters 

Non-Trainable 

Parameters 

Epochs Batch 

Size 

Learning 

Rate 

EfficientNetV2 + MobileNetV2 8,853,468 8,758,236 95,232 17 4978 0.00001 

EfficientNetV2 + MobileNetV2 + SE + ViT + 

Gated Mechanism + Multiscale Module 

38,863,998 38,767,742 96,256 17 4978 0.00001 

EfficientNetV2 + MobileNetV2 + SE + ViT + 

Gated Mechanism + Multiscale Module (No 
Multiscale Module) 

11,871,964 11,776,220 95,744 17 4978 0.00001 

EfficientNetV2 + MobileNetV2 + SE + ViT + 

Gated Mechanism (No Gated Mechanism) 

14,227,932 14,132,700 95,232 17 4978 0.00001 

Data augmentation techniques were also carried 

out to test the influence on the model's 

performance. Figures 6 and 7 show that each 

transformation aimed to introduce variability, 

simulating real-world conditions. The rotation 

randomly altered the leaf's orientation, while 

flipping helped the model generalize across 

orientations. Brightness adjustment simulated 

lighting conditions, and zoom introduced scale and 

focus variation.  

 
Figure 6. Grape Leaf Sample Augmentation. 

 
Figure 7. Potato Leaf Augmentation. 

On the unseen data, 249 images were processed, 

with 232 correctly classified, resulting in an 

accuracy of 93.17%. Only 17 images (6.83%) were 

misclassified. Further supporting the model's 

strong performance overall. The model 

demonstrated its ability to accurately classify plant 

diseases, even when the confidence scores were 

low for a few classes lacking dominant features, as 

shown in Figure 8. This suggested that the 

proposed model, as shown in Figures 9 and 10, 

generally distinguished between healthy and 

diseased plants from the unseen data. 
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Figure 8. Test Classification Summary. 

 

Figure 9. Mixed Random Classes Actual Vs. Predicted Classification. 

 

Figure 10. Beans Class Actual Vs. Predicted Classification. 
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4.3. Statistical Testing 

Statistical testing evaluated the significance of 

performance differences across model variations. 

The performance metrics, as shown in Table 10, 

demonstrate the superiority of the proposed model 

across all evaluation parameters. The evaluation 

metrics, including accuracy, precision, recall, F1-

score, Cohen’s Kappa, and AUC, provided a 

comprehensive assessment of model performance. 

The proposed model outperformed other 

architectures across all metrics, with an 85.1% 

Bayesian superiority probability over ShuffleNet, 

which was second, reinforcing its selection as the 

optimal model for deployment. 

Table 10. Statistical Comparison of the Models. 

Model Accuracy Precision Recall F1-score Kappa AUC Rank 

Proposed Model 0.990 0.993421 0.990085 0.990365 0.989855 0.999997 1st 

ShuffleNet 0.982 0.983906 0.982153 0.980596 0.981740 0.999991 2nd 

EfficientNetV2 0.972 0.976770 0.973841 0.973155 0.971595 0.999935 3rd 

VGG-16 0.972 0.976770 0.973841 0.973155 0.971595 0.999935 3rd 

DenseNet 0.956 0.966270 0.962312 0.958693 0.955368 0.999863 4th 

AlexNet 0.942 0.953236 0.947609 0.942789 0.941164 0.998949 5th 

DenseNet50 0.884 0.907292 0.889661 0.883751 0.882337 0.998823 6th 

4.4. Statistical Analysis of Confidence Scores 

Confidence variance reflects the consistency of a 

model’s classification confidence. Lower variance 

indicates greater stability in predictions, reducing 

fluctuations in confidence levels. The results show 

The proposed model had the lowest confidence 

variance, as shown in Table 11 and Figure 11. 
 

Table 11. Confidence Variance Across Models. 
Model Confidence Variance 

DenseNet50 0.000034 

AlexNet 0.000030 

DenseNet 0.000023 
EfficientNetV2 0.000016 

VGG_16 0.000016 

ShuffleNet 0.000013 

Proposed Model 0.000010 

 

 
Figure 11. Confidence score Distribution. 

 

4.5. Comparison with Existing Models 

The proposed model consistently outperformed 

existing crop disease detection and related models 

we used in our study, as summarized in Table 12 

and Table 13. It demonstrated superior accuracy, 

efficiency, and robustness across multiple 

evaluation metrics. These results highlight its 

effectiveness in real-time crop disease detection, 

making it a reliable solution for agricultural 

applications. 
Table 12. Comparison with Existing Models. 

Model Training 

Accuracy 

Validation 

Accuracy 

Training 

Loss 

Validation 

Loss 

Proposed 

Model 
99.61% 98.66% 0.0331 0.8458 

MobileNetV2 98.92% 98.21% 0.0507 0.8663 

EfficientNetB0 97.65% 91.02% 0.0811 1.2424 

EfficientNetV2 99.08% 97.95% 0.0702 1.0291 

DenseNet121 98.80% 97.75% 0.0675 1.0733 

DenseNet50 98.75% 96.11% 0.0706 1.0975 

ResNet152 98.74% 96.45% 0.0852 1.2092 

AlexNet 97.88% 93.50% 0.1189 1.5391 

Custom CNN 92.10% 61.84% 0.2750 2.5675 

 

Table 13. Comparison with State-of-the-Art Models. 
Related Studies Classification Accuracy 

[28] 98.00%% 
[17] 97.50%% 

[29] 90.00% 

[30] 90.99% 
[31] 85.02% 

The proposed model 98.66% 

 

5. Conclusion 

This study demonstrated the potential of hybrid 

deep learning models integrating MobileNetV2, 

EfficientNetV2, and Vision Transformers (ViT) for 

state-of-the-art crop disease classification. The 

proposed model achieved 99.0% accuracy and an 

AUC of 0.999997, excelling in distinguishing 

healthy from diseased crops and combining 

lightweight CNNs with ViT’s self-attention 

balanced speed and accuracy, outperforming 

ShuffleNet and VGG-16 while maintaining low 

computational costs. Squeeze-and-excitation 

blocks and gated attention further improved feature 

focus, enabling detection in complex field 
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conditions. However, challenges remain in 

generalizing across diverse environments, 

particularly underrepresented disease strains and 

real-world complexities. Future research should 

explore self-supervised learning to reduce reliance 

on annotated datasets, dynamic inference for 

resource-efficient deployment, and expanded 

datasets through agricultural collaborations. 

Addressing these issues will enhance real-world 

reliability, support scalable, AI-driven crop health 

monitoring, and promote global food security. 
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