Machine learning-based simulation of borehole grade identical twins from geophysical attributes: Comparative study of LR, GB, RF, and SVM in Kahang, Iran | ||
Journal of Mining and Environment | ||
مقاله 8، دوره 16، شماره 5، مهر و آبان 2025، صفحه 1637-1652 اصل مقاله (6.73 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22044/jme.2025.15310.2936 | ||
نویسندگان | ||
Hassanreza Ghasemi Tabar1؛ Sajjad Talesh Hosseini2؛ Andisheh Alimoradi* 2؛ Mahdi Fathi3؛ Maryam Sahafzadeh4 | ||
1Department of Mining, Petroleum and Geophysics, Shahrood University of Technology,Shahrood, Iran | ||
2Faculty Member, Department of Mining and Petroleum Engineering, Imam Khomeini International University, Qazvin, Iran | ||
3Senior Exploration Engineer, Kavoshgaran Consulting Engineers, Tehran, Iran | ||
4Senior Mining Engineer, SRK Consulting, Vancouver, Canada | ||
چکیده | ||
Estimating ore grades during the exploration phase is often time-consuming and costly due to the need for extensive drilling. Geophysical surveys, as the last indirect exploration method before drilling, offer valuable insights into subsurface mineralization. This study introduces a novel approach for simulating “identical twins” of borehole copper grade values using geophysical attributes derived from the geoelectrical method in the Kahang porphyry copper deposit, central Iran. By treating the simulated values as digital twins of actual borehole grades, we employed four machine learning algorithms—Linear Regression (LR), Gradient Boosting (GB), Random Forest (RF), and Support Vector Machine (SVM)—to model the complex relationships between geophysical inputs and copper grades. After data preprocessing with Principal Component Analysis (PCA), a refined dataset was used to train, test, and validate each model. The results demonstrate that GB yielded the highest predictive accuracy, generating grade estimates closely aligned with actual values. This identical twin modeling approach highlights the potential of machine learning to enhance early-stage mineral exploration by reducing dependence on costly drilling. | ||
کلیدواژهها | ||
Linear Regression؛ Gradient Boosting؛ Random Forest؛ Support Vector Machine؛ Identical Twin | ||
مراجع | ||
[1]. Tahmasebi, P., & Khashkarani, A. (2009). A method for optimization of the neural network for estimating grade using the information system of porphyry copper system of Saunajil-Ahar. Year 21, No. 81, 31–36.
[2]. Karimi, A. (2016). Determination of geophysical indicators of IP/RS relating to precise values and estimates in Zarshuran gold mine using artificial neural network technique. Master's thesis, Faculty of Engineering, Imam Khomeini International University.
[3]. Ghasemi Tabar, H. R., Alimoradi, A., Hemmati Ahooi, H. R., Fathi, M., & Sarookhani, M. (2024). Intelligent borehole simulation with Python programming.Journal of Mining and Environment, 15 (2).
[4]. Yuan, S., Wang, S., & Tian, N. (2009). Swarm intelligence optimization and its application in geophysical data inversion. Applied Geophysics, 6 (2), 166–174.
[5]. Alimoradi, A., Angorani, S., Ebrahimzadeh, M., & Shariat Panahi, M. (2011). Magnetic inverse modelling of a dike using the artificial neural network approach.Near Surface Geophysics, 9 , 339–347.
[6]. Ardjmandpour, N., Pain, C., Singer, J., Saunders, J., Aristodemou, E., & Carter, J. (2011). Artificial neural network forward modelling and inversion of electrokinetic logging data.Geophysical Prospecting, 59 , 721–748.
[7]. FitzGerald, D. (2019). Artificial intelligence techniques to the interpretation of geophysical measurements.ASEG Extended Abstracts, 1 , 1–5.
[8]. Alimoradi, A., Maleki, B., Karimi, A., Sahafzadeh, M., & Abbasi, S. (2020). Integrating geophysical attributes with new cuckoo search machine-learning algorithm to estimate silver grade values–case study: Zarshouran gold mine.Journal of Mining and Environment, 11 (3), 865–879.
[9]. Huang, G., Yu, Z., & Kheong Sew, C. (2006). Extreme learning machine: Theory and applications.Neurocomputing, 70 , 489–501.
[10]. Wang, X., Li, Y., Chen, T., Yan, Q., & Ma, L. (2017). Quantitative thickness prediction of tectonically deformed coal using extreme learning machine and principal component analysis: A case study. Computers and Geosciences, 101, 38–47.
[11]. Breiman, L. (2001). Random forests.Machine Learning, 45(1), 5–32.
[12]. Fukunaga, K., & Hostetler, L. D. (1975). The estimation of the gradient of a density function, with applications in pattern recognition.IEEE Transactions on Information Theory, 21 (1), 32–40.
[13]. Yizong, C. (1995). Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17 (8), 790–799.
[14]. Dorin, C., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis.IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619.
[15]. Simorgh, M., Alimoradi, A., Hemmati Ahooi, H., Salsabili, M., Fathi, M., Ghasemi Tabar, H., & Rezakhani, P. (2023). Application of supervised machine learning inversion in the estimation of iron ore grade from geophysical data: Comparative investigation of GB, RF and SVM algorithms. Journal of Geomine, 1 (3), 123–136.https://doi.org/10.22077/jgm.2024.7358.1018
[16]. Ashok Kumar, L. (2020). Proceedings of international conference on artificial intelligence, smart grid and smart city applications.In Proceedings of International Conference on Artificial Intelligence, Smart Grid and Smart City Applications.
[17]. Liu, H., Wen, S., Li, W., Xu, C., & Hu, C. (2009). Study on identification of oil/gas and water zones in geological logging based on support-vector machine. Fuzzy Information and Engineering, 2 , AISC 62, 849–857.
[18]. Automation, P., & Khashkarani, A. (2011). The use of neural-fuzzy-genetic networks to estimate characteristics in porphyry copper deposit in Zar-Kerman Valley.Volume 6, No. 12 , 1–9.
[19]. Azadi, M., & Mirmohammadi, M. (2014).Geometric-Genetic and Mineralogical Classification of Veinlets and Breccias in Kahang Porphyry Copper Deposit, Northern East Isfahan, Iran. https://www.researchgate.net/publication/259010665
[20]. Embaby, A., Ismael, A., Faisal, A. Ali, H., Farag, A., Mousa, B.G., Gomaa, S., Elwageeh, M. (2023). An approach based on Machine Learning Algorithms, Geostatistical Technique, and GIS analysis to estimate phosphate ore grade at the Abu Tartur Mine, WesternDesert, Egypt. Mining of Mineral Deposits, Volume 17, Issue 1, pp. 108 – 119,.
[21]. Fathi, M., Alimoradi, A., & Hemmati Ahooi, H. (2021). Optimizing the extreme learning machine algorithm using particle swarm optimization to estimate iron ore grade.Journal of Mining and Environment, 12 (2), 397–411.
[22]. Hassani Pak, A. A. (2001).Exploratory data analysis. Tehran: Tehran University Press.
[23]. Ismael, A., Embaby, A., Faisal A. Ali, H. A. Farag, B. G., Gomaa, S., Elwageeh, M. (2024). Prediction of Iron Ore Grade using Artificial Neural Network, Computational Method, and Geostatistical Technique at El-Gezera Area, Western Desert, Egypt. Journal of Mining and Environment (JME), Volume 15, Issue 3, May 2024, Pages 889-905,
[24]. Jolliffe, I. T. (1986). Principal component analysis and factor analysis.In Principal Component Analysis (Chapter 7). Springer, New York.
[25]. Kalagari, A. S. (1992).Principles of geophysical exploration.Radish Publishing.
[26]. Kia, M. (2011).Neural networks in MATLAB. Kian Publishing.
[27]. Li, X., Xie, Y., Guo, Q., & Li, L. (2010). Adaptive ore grade estimation method for the mineral deposit evaluation. Mathematical and Computer Modelling, 52(11–12), 1947–1956. https://doi.org/10.1016/j.mcm.2010.04.018
[28]. Luo, X., Yang, X., Chang, X., & Zhang, C. (2015). Prediction of hidden dangers in mine production using timeliness managing extreme learning machine for cloud services. IEEE Computer Society. https://doi.org/10.1109
[29]. Mahdi Farh, S., & Kamali, G. (2013). Estimation of iron grade in anomalous of the red hill of Sangan iron ore using three comparative neural fuzzy algorithms. No. 5, 1–10.
[30] .Mannhaj, B. M. (2014). Fundamentals of neural networks. Amirkabir University of Technology.
[31]. Narrosi, G. H. (2016). Exploratory geophysics. Tehran University Press.
[32]. Shahibi Far, M. (2004). Estimation of reservoir deposit with artificial neural network technique. Iranian Mining Engineering Conference, 12-14 Bahman, Tarbiat Modarres University, Iran.
[33]. Shirani Bidabadi, B. (1996).Multi-stage transformation petrology of skarns in Isfahan pressure zone. Ph.D. thesis, Tabriz University.
[34]. Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems.
[35]. Zahidi, M. Geological map of Kashan. Geological Survey of the Country.
[36]. Zooseri, M., Amami, N. H., Hariun, A., & Amani, H. M. (2007). Petrography and fault of the alteration zones of the volcanic volcanic aggregate complex. Third Conference on Applied and Environmental Geology , Dec. 20, Tehran, Iran. | ||
آمار تعداد مشاهده مقاله: 175 تعداد دریافت فایل اصل مقاله: 188 |