Mineral Chemistry of the Gowd-e-Howz Granitoid Stock, SE, Iran: mineralization potential in relation to tectonomagmatic setting | ||
Journal of Mining and Environment | ||
مقاله 9، دوره 16، شماره 5، مهر و آبان 2025، صفحه 1653-1678 اصل مقاله (18.27 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22044/jme.2025.15713.3020 | ||
نویسندگان | ||
Mahbubeh Arabzadeh Bani asadi1؛ Habib Ghasemi* 1؛ Mehdi Rezaei-Kahkhaei1؛ Lambrini Papadopoulou2 | ||
1Faculty of Earthscience, Shahrood University of Technology,Shahrood, Iran | ||
2Department of Mineralogy-Petrology-Economic Geology, School of Geology, AUTh, GR 54124 Thessaloniki, Greece | ||
چکیده | ||
The lower Jurassic (180 ± 1.5 Ma) Gowd-e-Howz granitoid stock, as a part of the Sanandaj-Sirjan Metamorphic-Magmatic Zone (SSMMZ), SE Iran, intruded in the Upper Paleozoic metamorphic and Triassic igneous-sedimentary rocks. It consists of three main rock units including diorite, granodiorite and granite/alkali feldspar granite, which accompanied by minor amounts of gabbro. The stock is predominantly composed of medium to coarse-grained granular granitoids consisting of clinopyroxene, amphibole, biotite, plagioclase, alkali feldspar and quartz. Clinopyroxenes exhibit calcic compositions, ranging from diopside to augite and salite, while amphiboles are primarily calcic with hornblende as the dominant phase. Feldspar display compositional ranges from orthoclase and oligoclase to labradorite. Mineralogical and geochemical evidence indicates this I-type calc-alkaline granitic magma produced in an active continental margin arc setting with potential for Cu-Au mineralization. Geothermobarometry estimations based on clinopyroxene (T= 800 to 1300°C and P= ~12 to 4.5 kbar), amphiboles (T= 742 to 769°C and P=4.5- 2 kbar) and biotite (T = 589 to 875°C and P= 0.45- 2.27 kbar), offer three different magma chamber levels for magma storaging and plumbing at the lower (~45 Km), middle (~16 Km) and upper (~5 Km) continental crust in an active continental arc setting in the Late Triassic-Early Jurassic in the southern part of the SSMMZ, SE Iran. | ||
کلیدواژهها | ||
Geothermobarometry؛ Mineral chemistry؛ granitoid؛ Gowd-e-Howz؛ Kerman | ||
مراجع | ||
[1]. Le Bas, M.J. (1962). The Role of Aluminium in Igneous Clinopyroxenes with Relation to Their Parentage. Am. J. Sci. 260(4): 267-288.
[2]. Le Terrier, J., Maury, R. C., Thonon, P., Girard, D., & Marchal, M. (1982). Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth and Plan. Sci. Lett. 59(1): 139-154.
[3]. Jiang, C., & An, S. (1984). On the chemical characteristics of calcific amphiboles from igneous rocks and their petrogenesis significance. J. Min. Petrol. 3(1): 1-9.
[4]. Abdel-Rahman, A.M. (1994). Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. J. Petrol. 35 (2): 525-541. doi.org/10.1093/petrology/37.5.1025.
[5]. Coltorti, M., Bonadiman, C., Faccini, B., Grégoire, M., O'Reilly, S.Y., & Powell, W. (2007). Amphiboles from suprasubduction and intraplate lithospheric mantle. Lithos 99(1-2): 68-84. doi.org/10.1016/j.lithos.2007.05.009.
[6]. Molina, J.F., Scarrow, J.H., Montero, P.G., & Bea, F. (2009). High-Ti amphibole as a petrogenetic indicator of magma chemistry: Evidence for mildly alkali hybrid melts during evolution of Variscan basic–ultrabasic magmatism of Central Iberia. Cont. Min. Petrol. 158: 69-98. doi 10.1007/s00410-008-0371-4.
[7]. Putirka, K.D. (2016). Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. Am. Min. 101(4): 841-858. doi.org/10.2138/am-2016-5506.
[8]. Li, W., Cheng, Y., & Yang, Z. (2019). Geo‐fO2: Integrated software for analysis of magmatic oxygen fugacity. Geochem. Geoph. Geosy. 20. doi.org/10.1029/ 2019GC008273.
[9]. Lisboa, V.A.C., Conceição, H., Rosa, M.L.S., Marques, G.T., Lamarão, C.N., & Lima, A.L. (2020). Amphibole crystallization conditions as record of interaction between ultrapotassic enclaves and monzonitic magmas in the Glória Norte stock, south of Borborema province. Braz. J. Petrol. 50(2): 1-10. doi.org/10.1590/2317-4889202020190101.
[10]. Ridolfi, F. (2021). Amp-TB2: An Updated Model for Calcic Amphibole Thermobarometry. Minerals 11: 324. doi.org/10.3390/min11030324.
[11]. Wang, X., Hou, T., Wang, M., Zhang, Ch., Zhang, Zh., Pan, R., Marxer, F., & Zhang, H. (2021). A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems. Euro. J. Min. 33: 621-637. doi.org/10.5194/ejm-33-621-2021.
[12]. Wieser, P. E., Kent, A. J. R., Till, C. B., Donovan, J., Neave, D. A., Blatter, D. L., & Krawczynski, M. J. (2023). Barometers Behaving Badly I: Assessing the Influence of Analytical and Experimental Uncertainty on Clinopyroxene Thermobarometry Calculations at Crustal Conditions. J. Petrol. 64: 1-27. doi.org/10.1093/petrology/egac126.
[13]. Sabzehei, M., Houshmandzadeh, A., Berberian, M., Nowgole Sadat, M.A.A., Alavi Tehrani, N., Majidi, B., Nazemzadeh, M., Azizan, H., & Roshan Ravan, J. (1993). Geological map of Haji Abad, Scale 1:250000. Geological Survey of Iran, Tehran.
[14]. Arvin, M., Pan, Y., Dargahi, S., Malekizadeh, A., & Babaei, A. (2007). Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: Implications for initiation of Neotethys subduction. J. Asian Earth Sci. 30: 474-489. doi:10.1016/j.jseaes.2007.01.001.
[15]. Jafari, A., Ao, S., Jamei, S., & Ghasemi, H. (2023). Evolution of the Zagros sector of Neo-Tethys: Tectonic and magmatic events that shaped its rifting, seafloor spreading and subduction history. Earth Sci. Rev. 241, 104419. doi: 10.1016/j.earscirev.2023.104419.
[16]. Malekizadeh, A. (2000). Geochemistry and petrogenesis of the Siyah Kouh granite batholith. M.Sc. Thesis, Shahid Bahonar University, Kerman, Iran.
[17]. Ghanbarzadeh, N. (2011). Geochemistry, petrology and origin of the intermediate and asidic dykes in the Deh Sard area, SE Baft, Kerman. M.Sc. Thesis, Shahid Bahonar University, Kerman, Iran.
[18]. Alavi, M. (1994). Tectonics of Zagros Orogenic Belt of Iran, New Data and Interpretation. Tectonophysics 229: 211-238. doi.org/10.1016/0040-1951(94)90030-2.
[19]. Shabanian, N., & Neubauer, F. (2024). From Early Jurassic intracontinental subduction to Early-Middle Jurassic slab break-off magmatism during the Cimmerian orogeny in the Sanandaj-Sirjan Zone, Iran. J. Asian Earth Sci. 267: 106153. doi.org/10.1016/j.jseaes.2024.106153.
[20] Angiboust, S., Agard, Ph., Glodny, J., Omrani, J., & Oncken, O. (2016). Zagros blueschists: Episodic underplating and. long-lived cooling of a subduction zone. Earth and Plan. Sci. Let. 443: 48-58. http://dx.doi.org/10.1016/j.epsl.2016.03.017.
[21]. Azizi, H., Nouri, F., Stern, R.J., Azizi, M., Lucci, F., Asahara, Y., Zarinkoub, M.H., & Chung, S.L. (2018). New evidence for Jurassic continental rifting in the northern Sanandaj Sirjan Zone, western Iran: the Ghalaylan seamount, southwest Ghorveh. INTER. GEOL. REV. doi.org/10.1080/00206814.2018.1535913.
[22]. Barbero, E., Delavari, M., Dolati, A., Saccani, E., Marroni, M., Catanzariti, R., & Pandolfi, L. (2020). The Ganj Complex reinterpreted as a Late Cretaceous volcanic arc: Implications for the geodynamic evolution of the North Makran domain (southeast Iran). J. Asian Earth Sci. 195, 104306. doi.org/10.1016/j. jseaes.2020.104306.
[23]. Barbero, E., Pandolfi, L., Delavari, M., Dolati, A., Saccani, E., Catanzariti, R., Luciani, V., Chiari, M., & Marroni, M. (2021). The western Durkan Complex (Makran Accretionary Prism, SE Iran): a Late Cretaceous tectonically disrupted seamounts chain and its role in controlling deformation style. Geosci. Front. 12 (3), 101106.doi.org/ 10.1016/j.gsf.2020.12.001.
[24]. Gharibnejad, P., Rosenberg, C.L., Agard, P., Kananian, A., & Omrani, J. (2022). Structural and metamorphic evolution of the southern Sanandaj‑Sirjan zone, southern Iran. J. Earth Sci. https://doi.org/10.1007/s00531-022-02255-5.
[25]. Saccani, E., Delavari, M., Dolati, A., Pandolfi, L., Barbero, E. Tassinari, R., & Marroni, M. (2022). Geochemistry of basaltic blueschists from the Deyader Metamorphic Complex (Makran Accretionary Prism, SE Iran): New constraints for magma generation in the Makran sector of the Neo-Tethys. J. Asian Earth Sci. 228: 105141. doi.org/10.1016/j.jseaes.2022.105141.
[27]. Hassanzadeh, J., & Wernicke, B.P. (2016). The Neotethyan Sanandaj-Sirjan zone of Iran as an arc type for passive margin-arc transitions. Tectonics 35(3): 586–621. doi:10.1002/2015TC003926.
[28]. Lechmann, A., Burg, J.P., Ulmer, P., Mohammadi, A., Guillong, M., & Faridi, M. (2018). From Jurassic rifting to Cretaceous subduction in NW Iranian Azerbaijan: geochronological and geochemical signals from granitoids. Cont. Min. Petrol. 173: 102. doi.org/10.1007/s00410-018-1532-8.
[29]. Azizi, H., & Whattam, S.A. (2022). Does Neoproterozoic-Early Paleozoic (570–530 Ma) basement of Iran belong to the Cadomian Orogeny? Precam. Res. 368 (2022) 106474. https://doi.org/10.1016/j.precamres.2021.106474.
[30]. Asadi, S.A.A., Ghasemi, H., Sepidbar, F., Mobasheri, M., Shi, Y., & Palin, R. M. (2023). A polygenetic origin for the Sikhoran ultramafic-mafic complex in South Iran. Lithos 456-457. 107336. doi.org/10.1016/j.lithos.2023.107336.
[31]. Mehdipour Ghazi, J. & Moazzen, M. (2015). Geodynamic evolution of the Sanandaj-Sirjan Zone, Zagros Orogen, Iran. Turk. J. Earth Sci. 24: 513-528. doi:10.3906/yer-1404-12.
[32]. Hassanzadeh, J., Stockli, D.F., Horton, B.K., Axen, G.J., Stockli, L.D., Grove, M., Schmitt, A.K. & Walker, J.D. (2008). U-Pb zircon geochronology of late Neoproterozoic- Early Cambrian granitoids in Iran. Implications for paleogeography, magmatism, and exhumation history of Iranian basement. Tectonophysics 451: 71-96.
[33]. Moghadam, H. S., Brocker, M., Griffin, W. L., Li, X. H Chen, R. X., & O’Reilly1 S. Y. (2017). Subduction, high–P metamorphism and collision fingerprints in SW Iran: Constraints from zircon U-Pb and mica Rb–Sr geochronology. Geochem. Geoph. Geosy. 18: 306-332. doi: 10.1002/2016GC006585.
[34]. Ghasemi, H., Juteau, T., Bellon, H., Sabzehei, M., Whitechurch, H., & Ricou, L.E. (2002). The mafic-ultramafic complex of Sikhoran (Central Iran): A polygenetic ophiolite complex. C. R. Geosci. 334: 431-438. doi.org/10.1016/S1631-0713(02)01770-4.
[35]. Ghasemi, H., Sabzehei, M., Juteau, T., Bellon, H., & Emami, M.H. (2004). Radiometric age of mafic parts and metamorphic hosts of Sikhoran ultramafic-mafic complex, southeastern Iran. Geosci. 11(51-52): 58-67 (in Persian).
[36]. Ahmadipour, H., Sabzehei, M., Emami, M., Whitechurch, H., & Rastad, E. (2003). Soghan complex as an evidence for paleo spreading center and mantle diapirism in Sanandaj-Sirjan zone (south-east Iran). J. Sci. Islam. Repub. Iran 14: 157-172.
[37]. Baharifar, A., Moinevaziri, H., Bellon, H. & Piqué, A. (2004). The crystalline complexes of Hamadan (Sanandaj – Sirjan zone, western Iran): Meta-sedimentary Mesozoic sequences affected by Late Cretaceous tectono-metamorphic and plutonic events. C. R. Geosci. 336: 1443-1452.
[38]. Fazlnia, A., Schenk, V., Appel, P., & Alizade, A. (2013). Petrology, geochemistry, and geochronology of the Chah-Bazargan gabbroic intrusions in the south Sanandaj-Sirjan zone, Neyriz, Iran. Inter. J. Earth Sci. 102: 1403-1426, doi:10.1007/s00531-013-0884-6.
[39]. Didier, J., & Barbarin, B. (1991). The different types of enclaves in granites-nomenclature. In: J. Didier, & Barbarin, B. (Eds.). Enclaves and granite petrology: Development in Petrology. Elsevier, Amsterdam: 19-24. http://pascal-francis.inist.fr/vibad/index.php?action= getRec ordDetail&idt= 6546938.
[40]. Vernon, R. H. (1984). Microgranitoid enclaves in granites - globules of hybrid magma quenched in a plutonic environment. Nature 309: 438-439. doi.org/10.1038/309438a0.
[41]. Vernon, R.H. (2004). A practical guide to rock microstructures. Cambridge University Press. 594p.
[42]. Morimoto, N., Fabrise, J., Ferguson, A., Ginzburg, I. V., Ross, M., Seifert, F.A., Zussman, J., Akoi, K., & Gottardi, G. (1988). Nomenclature of pyroxenes. Am. Min. 173: 1123-1133.
[43]. Leake, B.E., Woolley, A.R., Arps, C.E., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., & Krivovichev, V.G. (1997). Nomenclature of amphiboles; report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on new minerals and mineral names. Min. mag. 61(405): 295-310.
[44]. Yavuz, F., & Döner, Z. (2017). WinAmptb: A Windows program for calcic amphibole thermobarometry. Periodico di Min. 86: 135-167. doi: 10.2451/2017PM710.
[45]. Putirka, K.D. (2008). Thermometers and barometers for volcanic systems. Rev. Min. Geochem. 69(1): 61-120. doi.org/10.2138/rmg.2008.69.3.
[46]. Nimis, P., & Taylor, W. (2000). Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Cont. Min. Petrol. 139: 541-554. doi.org/10.1007/s004100000156.
[47]. Williams, I. S., & Claesson, S. (1987). Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. II: Ion microprobe zircon U-Th-Pb. Cont. Min. Petrol. 97: 205-217.
[48]. Claoue-Long, J. C., Compston, W., Roberts, J., & Fanning, C. M. (1995). Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. In: Berggren, W. A., Kent, D. V., Aubry, M. P., & Hardenbol, J. (Eds.). Geochronology Time Scales and Global Stratigraphic Correlation. SEPM (Society for Sedimentary Geology) Special Publication No. 4: 3-21.
[49]. Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. A., Davis, D. W., Korsch, J. R., & Foudolis, C. (2003). TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chem. Geol. 200: 155-170.
[50]. Nisbet, E. G., & Pearce, J. A. (1977). Clinopyroxene composition in mafic lavas from different tectonic Settings. Cont. Min. Petrol. 63: 149-160.
[51]. Anderson, J.L. (1996). Status of thermobarometry in granitic batholiths, Earth and Env. Sci. Trans. Royal Society of Edinburgh. 87(1-2): 125-138. doi: 10.1017/S0263593300006544.
[52]. Anderson, J.L. 1997. Status of thermobarometry in granitic batholiths. Earth and Env. Sci. Trans. The Royal Society of Edinburgh. 87: 125-138. http://journals.cambridge.org/abstract-S0263593300006544.
[53]. Anderson, J.L., & Smith, D.R. (1995). The effect of temperature and oxygen fugacity on Al-in-hornblende barometry. Am. Min. 80(5-6): 549-559.
[54]. Anderson, J.L., Barth, A.P., Wooden, J.L., Mazdab, F., 2008. Thermometers and thermobarometers in granitic systems. Rev. Min. Geochem. 69: 121-142. https://doi.org/10.2138/rmg.2008.69.4.
[55]. Andrews, B.J., Gardner, J.E., & Housh, T.B. (2008). Repeated recharge, assimilation, and hybridization in magmas erupted from El Chichón as recorded by plagioclase and amphibole phenocrysts. J. Volcan. Geoth. Res. 175(4): 415-426.
[56]. Blundy, J.D. & Holland, T.J.B. (1990). Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Cont. Min. Petrol. 104: 208-24.
[57]. Ernst, W., & Liu, J. (1998). Experimental phase-equilibrium study of Al-and Ti-contents of calcic amphibole in MORB-A semiquantitative thermobarometer. Am. Min. 83: 952-969. doi.org/10.2138/am-1998-9-1004.
[58]. F´em´enias, O., Mercier, J.C.C., Nkono, C., Diot, H., Berza, T., Tatu, M., & Demaiffe, D. (2006). Calcic amphibole growth and compositions in calc-alkaline magmas: Evidence from the Motru dike swarm (southern Carpathians, Romania). Am. Min. 91: 73-81. doi: 10.2138/am.2006.1869.
[59]. Hammarstrom, J.M., & Zen, E.-a. (1986). Aluminum in hornblende: an empirical igneous geobarometer. Am. Min. 71(11-12): 1297-1313.
[60]. Helmy, H., Ahmed, A., El Mahallawi, M., & Ali, S. (2004). Pressure, temperature and oxygen fugacity conditions of calc-alkaline granitoids, Eastern Desert of Egypt, and tectonic implications. J. Afr. Earth Sci. 38(3): 255- 268.
[61]. Johnson, M.C., & Rutherford, M.J. (1989). Experimental calibration of an aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology 17(9): 837-841.
[62]. Kretz, R. (1994). Metamorphic Crystallization. John Wiley & Sons. New York. 507p.
[63]. Lindsley, D. H. (1983). Pyroxene thermometry. Am. Min. 68: 477-493.
[64]. Luhr, J.F., Carmichael, I.S. & Varekamp, J.C. (1984). The 1982 eruptions of El Chichón Volcano, Chiapas, Mexico: mineralogy and petrology of the anhydrite bearing pumices. J. Volcan. Geoth. Res. 23(1-2): 69-108. 10.1016/0377-0273(84)90057-X.
[65]. Ridolfi, F., Renzulli, A., & Puerini, M. (2010). Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes. Cont. Min. Petrol. 160(1): 45-66. doi 10.1007/s00410-009-0465-7.
[66.] Ridolfi, F., & Renzulli, A. (2012). Calcic amphiboles in calc-alkaline and alkaline magmas: Thermobarometric and chemometric empirical equations valid up to 1,130° C and 2.2 GPa. Cont. Min. Petrol. 163(5): 877-895. doi 10.1007/s00410-011-0704-6.
[67]. Ridolfi, F., Renzulli, A., Perugini, D., Cesare, B., Braga, R., & Del Moro, S. (2016). Unravelling the complex interaction between mantle and crustal magmas encoded in the lavas of San Vincenzo (Tuscany, Italy). Part II: Geochemical overview and modelling. Lithos 244: 233-249. doi:10.1016/j.lithos.2015.09.029.
[68]. Scaillet, B., & Evans, B.W. (1999). The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption P-T-f O2-f H2O conditions of the dacite magma. J. Petrol. 40(3): 381-411. doi: 10.1093/petroj/40.3.381.
[69]. Schmidt, M.W. (1992). Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer. Cont. Min. Petrol. 110: 304-310.
[70]. Schweitzer, E. L., Papike, J. J. & Bence, A. E. (1979). Statistical analysis of clinopyroxenes from deep-sea basalts. Am. Min. 64: 501-513.
[71]. Soesoo, A. (1997). A multivariate statistical analysis of clinopyroxene composition: Empirical coordinates for the crystallisation PT-estimation. Geol. Soci. Swed. (Geologiska Föreningen) 119: 55-60.
[72]. Stein, E., & Dietl, C. (2001). Hornblende thermobarometry of granitoids from the Central Odenwald (Germany) and their implications for the geotectonic development of the Odenwald. Min. petrol. 72 (1): 207-285. www.researchgate.net/publication/225775322.
[73]. Sial, A., Ferreira, V., Fallick, A., & Cruz, M.J.M. (1998). Amphibole-rich clots in calc-alkali granitoids in the Borborema province, northeastern Brazil. J. South Am. Earth Sci. 11(5): 457-471.
[74]. Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C., & Welch, M.D. (2012). Nomenclature of the amphibole super group. Am. Min. 97(11-12): 2031-2048. doi.org/10.2138/am.2012.4276
[75]. Giret, A., Bonin, B., & Leger, J.M., 1980. Amphibole compositional trends in oversaturated and undersaturated alkaline plutonic ring-complexes. Can. Min. 18, 481/495.
[76]. Hawthorne, F.C., & Oberti, R. (2007). Classification of the Amphiboles. Rev. Min. Geochem. 67: 55-88. doi: 10.2138/rmg.2007.67.2.
[77] .Deer, W.A., Howie, R.A., & Sussman, J. (1991). An introduction to the rock forming minerals. Longman Ltd. 528p. www.geokniga.org/bookfiles/geokniga-anintroductiontotherock-formingminerals.pdf.
[78]. Partin, E., Hewitt, D.A., & Wones, D.R. (1983). Quantification of ferric iron in biotite, Geol. Soci. Am. Abstract with programs 15: 659.
[79]. Wones, D.R., Burns, R.G., & Carrol, B.M. (1971). Stability and properties of synthetic annite. Am. Geophy. Uni. Trans. 52: 369.
[80]. Abbot R.N. Jr., & Clarke, D.B. (1979). Hypothetical liquidus relationships in the subsystem Al2O3-FeO-MgO projected from quartz, alkali feldspar and plagioclase for (H2O) < 1. Can. Min. 17: 549-560.
[81]. Henry, D.J., Guidotti, C.V., & Thomson, J.A. (2005). The Ti-saturation surface for low-to-medium pressure metapelitic biotite: Implications for Geothermometry and Ti-substitution Mechanisms. Am. Min. 90(2-3): 316-328. doi.org/10.2138/am.2005.1498.
[82]. Nachit, H., Razafimahefa, N., Stussi, J.M & Caron, J.P. (1985). Composition chimique des biotites et typologie magmatique des granitoïdes. C. R. Acad. Sci. Paris, Ser. II 301: 813-818.
[83]. Nachit, H., Ibhi, A., Abia, El.-H. & Ohoud, M.B. (2005). Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. C. R. Geosci. 337(16): 1415-1420. doi.org/10.1016/j.crte.2005.09.002.
[84]. Abrecht, J. & Hewitt, D.A. (1988). Experimental evidence on the substitution of Ti in biotite. Am. Min. 73(11-12): 1275- 1284. www.minsocam.org/ammin/AM73/AM7 3-1275.pdf.
[85]. Foster, M.D. (1960). Interpretation of the composition of trioctahedral micas. U.S. Geological Survey Professional Paper, Washington, 49 pp. pubs.usgs.gov/pp/0354b/report.
[86]. Zhao, K., Jiang, S., Yang, S., Daí, B., & Lu, J. (2012). Mineral chemistry, trace elements and Sr-Nd-Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholith in the Shi-Hang zone, South China. Gondw. Res. 22: 310-324. doi.org/10.1016/j.gr.2011.09.010.
[87]. Nimis, P.A. (1995). Clinopyroxene geobarometer for basaltic systems based on crystal-structure modeling. Cont. Min. Petrol. 121: 115-125. doi.org/10.1007/s004100050093.
[88]. Wood, B. J., & Banno, S. (1973). Garnet-Orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Cont. Min. and Petrol. 42: 109-124.
[89]. Wells, P. R. A. (1977). Pyroxene thermometry in simple and complex systems. Cont. Min. Petrol. 62: 129-139.
[90]. Davidson, P. M. (1985). Thermodynamic analysis of quadrilateral pyroxenes. Part 1: Derivation of the ternary nonconvergent site-disorder model. Cont. Min. Petrol. 91: 383-389.
[91]. Davidson, P. M., & Lindsley, D. H. (1985). Thermodynamic analysis of quadrilateral pyroxenes. Part 2: model calibration from experiments and application to geothermometry. Cont. Min. Petrol. 91: 390-404.
[92]. Yavuz, F. (2013). WinPyrox: A Windows program for pyroxene calculation classification and thermobarometry. Am. Min. 98: 1338-1359. doi.org/10.2138/am.2013.4292.
[93]. Bertrand, P., & Mercier, J. C. (1985). The mutual solubility of coexisting ortho and clinopyroxene: Toward an absolute geothermometr for natural systems? Earth and Plan. Sci. Lett. 76: 109-122.
[94]. Elkins, L.T., & Grove, T.L. (1990). Ternary feldspar experiments and thermodynamic models. Am. Min. 75:544-559.
[95]. Hollister, L.S., Grissom, G., Peters, E., Stowell, H., & Sisson, V. (1987). Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Am. Min. 72(3-4): 231-239.
[96]. Patino Douce, A. (1993). Titanium substitution in biotite: an empirical model with applications to thermometry, O2 and H2O barometries, and consequences for biotite stability. Chem. Geol. 108(1–4): 133-162. doi.org/10.1016/0009-2541(93)90321-9.
[97]. Uchida, E., Endo, S. & Makino, M. (2007). Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Reso. Geol. 57(1): 47-56. doi.org/10.1111/j.1751- 3928.2006.00004.x.
[98]. Avanzinelli, R., Bindi, L., Menchetti, S., & Conticelli, S. (2004). Crystallisation and genesis of peralkaline magmas from Pantelleria Volcano, Italy: an integrated petrological and crystal-chemical study. Lithos 73: 41-69. doi: 10.1016/j.lithos.2003.10.007.
[99]. Zhu, Y., & Ogasawara, Y. (2004). Clinopyroxene phenocrysts (with green salite cores) in trachybasalts: implications for two magma chambers under the Kokchetav UHP massif, North Kazakhstan. J. Asian Earth Sci. 22(5): 517-527. doi.org/10.1016/S1367-9120(03)000919.
[100] .Molina, J.F., Moreno, J.A., Castro, A., Rodríguez, C., & Fershtater, G.B. (2015). Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos, 232, 286-305. doi.org/10.1016/j.lithos.2015.06.027.
[101]. Karimpour, M.H., Stern, C.R., Mouradi, M., (2011). "Chemical composition of biotite as a guide to petrogenesis of granitic rocks from Maherabad, Dehnow, Gheshlagh, Khajehmourad and Najmabad, Iran". Journal of Crystallography and Mineralogy, 18(4), 89-100. ijcm.ir/article-1-502-en.html.
[102]. Azadbakht, Z., Lentz, D.R., McFarlane, C.R.M., Whalen, J.B., (2020). "Using magmatic biotite chemistry to differentiate barren and mineralized Silurian- Devonian granitoids of New Brunswick, Canada". Contribution to Mineralogy and Petrology, 175. doi.org/10.1007/s00410- 020-01703-2.
[103]. Khosravi, M., Christiansen, E.H., Rajabzadeh, M.A., (2021). "Chemistry of rockforming silicate and sulfide minerals in the granitoids and volcanic rocks of the Zefreh porphyry Cu-Mo deposit, central Iran: implications for crystallization, alteration, and mineralization potential. Ore Geology Review". doi.org/10.1016/j.oregeorev.2021.104150.
[104]. Kumar, A.A., Ashok, Ch., (2023). "Geochemistry and mineral chemistry of the armoor granitoids, eastern dharwar craton: implications for the redox conditions and tectonomagmatic environment". Acta Geochim. doi.org/10.1007/s11631-023-00647-1.
[105]. Villaseca, C., Ruiz-Martı´nez, V.C., Pe´rez-Soba, C., (2017). "Magnetic susceptibility of Variscan granite- types of the Spanish central system and the redox state of magma". Geol Acta, 15, 379-394. doi.org/10.1344/GeologicaActa2017.15.4.8
[106]. Jiang, Y.H., Jiang, S.Y., Ling, H.F., Zhou, X.R., Rui, X.J. and Yang, W.Z., (2002). "Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: implications for granitoid geneses". Lithos, 63(3-4), 165-187. 10.1016/ S0024- 4937(02) 00140-8.
[107]. Williamson, B.J., Herrington, R. J., & Morris, A. (2016). Porphyry copper enrichment linked to excess aluminium in plagioclase. Nature Geosci. 9: 237-241.
[108]. Richards, J.P. (2016). Clues to hidden copper deposits. Nature Geosci. 9: 195-196.
[109]. Zarasvandi, A., Rezaei, M., Raith, J.G., Pourkaseb, H., Asadi, S., Saed, M., & Lentz, D. R. (2018). Metal endowment reflected in chemical composition of silicates and sulfides of mineralized porphyry copper systems, Urumieh-Dokhtar magmatic arc, Iran. Geoch. Cosm. Acta, 223: 36-59.
[110]. Rezaei, M., & Zarasvandi, A. (2022). Combined Feldspar-Destructive Processes and Hypogene Sulfide Mineralization in the Porphyry Copper Systems: Potentials for Geochemical Signals of Ore Discovering. Ir. J. Sci. and Tech. 46: 1413-1424.
[111]. Sepahi, A.A., Nemati, B., Asiabanha, A., Miri, M., & Deniz, K. (2023). Mineral chemistry and petrology of magmatic rocks from NW Takestan (NW Iran). Geopersia 13(1): 123-143 doi: 10.22059/GEOPE.2023.350569.648686.
[112]. Dehghani, G.A., & Makris, J. (1984). The gravity field and crustal structure of Iran. N. Jb. Geol. Palaontol. Agh. 168:215-229.
[113]. Tatar, M., & Nasrabadi, A. (2013). Crustal thickness variations in the Zagros continental collision zone (Iran) from joint inversion of receiver functions and surface wave dispersion. J. Seismo. doi 10.1007/s10950-013-9394-z.
[114]. Motaghi, K., Shabanian, E. & Kalvandi, F. (2017). Underplating along the northern portion of the Zagros suture zone, Iran. Geophy. J. Inter. 210(1): 375-389. doi.org/10.1093/gji/ggx168.
[115]. Chaussard, E. & Amelung, F. (2014). Regional controls on magma ascent and storage in volcanic Arcs. Geochem. Geoph. Geosy. 1407-1418.
[116]. Humphreys, MC.S, Blundy, J.D, & Sparks, R.S.J. (2006). Magma evolution and open-system processes at Shiveluch volcano: Insights from phenocryst zoning. J. Petrol. 47: 2303-2334. doi:10.1093/petrology/egl045.
| ||
آمار تعداد مشاهده مقاله: 103 تعداد دریافت فایل اصل مقاله: 116 |