AI-Driven Mineral Exploration: Enhancing Geochemical Anomaly Detection with Generative adversarial Networks and Transfer Learning, A Case Study from Janja polymetallic deposit, SE Iran | ||
Journal of Mining and Environment | ||
مقاله 11، دوره 16، شماره 5، مهر و آبان 2025، صفحه 1693-1710 اصل مقاله (5.82 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22044/jme.2025.16169.3124 | ||
نویسندگان | ||
Mohammad Ebdali1؛ Ardeshir Hezarkhani* 1؛ Adel Shirazy1؛ Amin Beiranvand Pour2 | ||
1Department of Mining Engineering, Amirkabir University of Technology, Tehran, Iran | ||
2Institute of Oceanography and Environment (INOS), Higher Institution Center of Excellence (HICoE) in Marine Science, Universiti Malaysia Terengganu (UMT), 21030 Kuala Nerus, Terengganu, Malaysia | ||
چکیده | ||
This research endeavor concentrates on minerals exploration within the context of a hydrothermal polymetallic vein deposit environment. Stream sediment sampling was executed to acquire geochemical signatures pertinent to mineralization zones. The mineralization nature is classified as epithermal, predominantly involving polymetallic sulfides. The geochemical analyses yielded multi-element concentration maps, facilitating the identification of anomalies and the establishment of zoning. Although recent developments underscore the efficacy of machine learning, notably deep learning techniques, in the detection of geochemical anomalies, the majority of preceding studies were predicated on univariate statistical methodologies. To address this constraint, a multivariate approach was implemented, incorporating spatial characteristics such as shape, overlap, and zoning within anomalies and halos. Considering the limited availability of validated mineralized samples, unsupervised and semi-supervised methodologies—most notably Generative Adversarial Networks (GANs)—were employed. GANs were trained using multi-element geochemical maps, applying transfer learning to mitigate the challenges posed by restricted deposit data, thereby facilitating the delineation of prospective exploration zones. Quantitative analyses have indicated that the approach utilizing GANs attained an accuracy exceeding 92% alongside a minimal cross-entropy loss of approximately 0.07, thereby surpassing conventional methodologies in detecting of weak anomalies. The model effectively corroborated previously recognized anomalies while simultaneously detecting new prospective mineralization areas, thereby augmenting exploration opportunities. This investigation illustrates that GANs enable a more thorough utilization of geochemical datasets, integrating a wide range of variables and intricate spatial characteristics. Although GANs demonstrate superior proficiency in modeling weak anomalies, conventional techniques continue to be effective for more pronounced anomalies. The integration of both methodologies may enhance the efficiency of mineral exploration endeavors. In summary, the results emphasize the promise of GANs and sophisticated machine learning frameworks in enhancing anomaly detection and expanding mineral exploration within hydrothermal polymetallic systems. | ||
کلیدواژهها | ||
mineral exploration؛ machine learning؛ unsupervised learning algorithms؛ generative adversarial networks؛ transfer learning methods | ||
مراجع | ||
[1]. Pang, G., Shen, C., Cao, L., & Hengel, A. V. D. (2021). Deep learning for anomaly detection: A review. ACM computing surveys (CSUR), 54(2), 1-38.
[2]. Ghannadpour, S. S., Hezarkhani, A., Sharifzadeh, M., & Ghashghaei, F. (2019). Applying a structural multivariate method using the combination of statistical methods for the delineation of geochemical anomalies. Iranian Journal of Science and Technology, Transactions A: Science, 43, 127-140. doi:https://doi.org/10.1007/s40995-017-0452-1
[3]. Agterberg, F. P. (2012). Multifractals and geostatistics. Journal of Geochemical Exploration, 122, 113-122. doi:https://doi.org/10.1016/j.gexplo.2012.04.001
[4]. Asghari, O., & Hezarkhani, A. (2005). Geostatistical Modeling And Reserve Estimation Of Choghart Iron Ore Deposit Through Ordinary Kriging Method, IRAN. Paper presented at the In 5-th International Conference SGEM 2005, Iran.
[5]. Soltani-Mohammadi, S., Abbaszadeh, M., Hezarkhani, A., & Carranza, E. J. M. (2021). Uncertainty Analysis of Thermodynamic Variables of Fluid Inclusions: A Deposit-Scale Spatial Exploratory Data Modeling through Fuzzy Kriging. Natural Resources Research, 1-15. doi:https://doi.org/10.1007/s11053-021-09969-4
[6]. Ghannadpour, S. S., & Hezarkhani, A. (2022). A new method for determining geochemical anomalies: UN and UA fractal models. International Journal of Mining & Geo-Engineering, 56(2). doi: 10.22059/IJMGE.2021.321818.594907
[7]. Li, X., Yuan, F., Jowitt, S. M., Zhou, K., Wang, J., Zhou, T., Li, Y. (2017). Singularity mapping of fracture fills and its relationship to deep concealed orebodies–a case study of the Shaxi porphyry Cu-Au deposit, China. Geochemistry: Exploration, Environment, Analysis, 17(3), 252-260.
[8]. Mohammadi, N. M., Hezarkhani, A., & Saljooghi, B. S. (2016). Separation of a geochemical anomaly from background by fractal and U-statistic methods, a case study: Khooni district, Central Iran. Geochemistry, 76(4), 491-499.
[9]. Pazand, K., Hezarkhani, A., Ataei, M., & Ghanbari, Y. (2011). Application of multifractal modeling technique in systematic geochemical stream sediment survey to identify copper anomalies: a case study from Ahar, Azarbaijan, Northwest Iran. Geochemistry, 71(4), 397-402.
[10]. Saljooghi, B. S., & Hezarkhani, A. (2015). A new approach to improve permeability prediction of petroleum reservoirs using neural network adaptive wavelet (wavenet). Journal of Petroleum Science and Engineering, 133, 851-861. doi:https://doi.org/10.1016/j.petrol.2015.04.002
[11]. Shirazi, A., Hezarkhani, A., Beiranvand Pour, A., Shirazy, A., & Hashim, M. (2022). Neuro-Fuzzy-AHP (NFAHP) technique for copper exploration using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and geological datasets in the Sahlabad mining area, east Iran. Remote Sensing, 14(21), 5562.
[12]. Shirazi, A., Shirazy, A., & Hezarkhani, A. (2024). An Artificial Intelligence based Model for Optimal Exploratory Surveys: Geophysics and Geochemistry: LAMBERT Academic Publishing.
[13]. Shirazy, A., Hezarkhani, A., Timkin, T., & Shirazi, A. (2021). Investigation of magneto-/radio-metric behavior in order to identify an estimator model using K-means clustering and Artificial Neural Network (ANN)(Iron Ore Deposit, Yazd, IRAN). Minerals, 11(12), 1304.
[14]. Tahmasebi, P., & Hezarkhani, A. (2011). Application of a modular feedforward neural network for grade estimation. Natural Resources Research, 20, 25-32.
[15]. Tahmasebi, P., & Hezarkhani, A. (2012). A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation. Computers & geosciences, 42, 18-27.
[16]. Carranza, E. J. M. (2011). Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. Journal of Geochemical Exploration, 110(2), 167-185.
[17]. Cheng, Q., Agterberg, F. P., & Bonham-Carter, G. F. (1996). A spatial analysis method for geochemical anomaly separation. Journal of Geochemical Exploration, 56(3), 183-195. doi:https://doi.org/10.1016/S0375-6742(96)00035-0
[18]. Li, Q., & Cheng, Q. (2006). VisualAnomaly: A GIS-based multifractal method for geochemical and geophysical anomaly separation in Walsh domain. Computers & geosciences, 32(5), 663-672.
[19]. Zhang, C., Zuo, R., & Xiong, Y. (2021). Detection of the multivariate geochemical anomalies associated with mineralization using a deep convolutional neural network and a pixel-pair feature method. Applied Geochemistry, 130(104994). doi:https://doi.org/10.1016/j.apgeochem.2021.104994
[20]. Zhao, J., Chen, S., & Zuo, R. (2016). Identifying geochemical anomalies associated with Au–Cu mineralization using multifractal and artificial neural network models in the Ningqiang district, Shaanxi, China. Journal of Geochemical Exploration, 164, 54-64.
[21]. Yousefi, M., Kreuzer, O. P., Nykänen, V., & Hronsky, J. M. (2019). Exploration information systems–A proposal for the future use of GIS in mineral exploration targeting. Ore Geology Reviews, 111, 103005.
[22]. Yousefi, M., Lindsay, M. D., & Kreuzer, O. (2024). Mitigating uncertainties in mineral exploration targeting: Majority voting and confidence index approaches in the context of an exploration information system (EIS). Ore Geology Reviews, 165, 105930.
[23]. Yousefi, M., Nykänen, V., Harris, J., Hronsky, J. M., Kreuzer, O. P., Bertrand, G., & Lindsay, M. (2024). Overcoming survival bias in targeting mineral deposits of the future: Towards null and negative tests of the exploration search space, accounting for lack of visibility. Ore Geology Reviews, 106214.
[24]. Abbaszadeh, M., Khosravi, V., & Pour, A. B. (2024). Comparison of support vector machines (SVMs) and the learning vector quantization (LVQ) techniques for geological domaining: a case study from Darehzar porphyry copper deposit, SE Iran. Earth Science Informatics, 1-16.
[25]. Shabankareh, M., & Hezarkhani, A. (2017). Application of support vector machines for copper potential mapping in Kerman region, Iran. Journal of African Earth Sciences, 128, 116-126.
[26]. Xiong, Y., & Zuo, R. (2016). Recognition of geochemical anomalies using a deep autoencoder network. Computers & geosciences, 86, 75-82.
[27]. Zhuo, R., & Xiong, Y. (2018). Big data analytics of identifying geochemical anomalies supported by machine learning methods. Natural Resources Research, 27, 5-13. doi:https://doi.org/10.1007/s11053-017-9357-0
[28]. Zuo, R., Xiong, Y., Wang, J., & Carranza, E. J. M. (2019). Deep learning and its application in geochemical mapping. Earth-Science Reviews, 192, 1-14.
[29]. Wang, Z., Chen, Z., Ni, J., Liu, H., Chen, H., & Tang, J. (2021). Multi-scale one-class recurrent neural networks for discrete event sequence anomaly detection. Paper presented at the Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining.
[30]. Luo, Z., Zuo, R., Xiong, Y., & Zhou, B. (2023). Metallogenic-factor variational autoencoder for geochemical anomaly detection by ad-hoc and post-hoc interpretability algorithms. Natural Resources Research, 32(3), 835-853.
[31]. Guo, M., & Chen, Y. (2024). A SMOTified-GAN-augmented bagging ensemble model of extreme learning machines for detecting geochemical anomalies associated with mineralization. Geochemistry(126156). doi:https://doi.org/10.1016/j.chemer.2024.126156
[32]. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C. (2017). Improved training of wasserstein gans. Advances in neural information processing systems, 30.
[33]. Hong, Y., Hwang, U., Yoo, J., & Yoon, S. (2019). How generative adversarial networks and their variants work: An overview. ACM computing surveys (CSUR), 52(1), 1-43.
[34]. Cenggoro, T. W. (2018). Deep learning for imbalance data classification using class expert generative adversarial network. Procedia Computer Science, 135, 60-67.
[35]. Aghanabati, A. (2004). Geology of Iran. GeoIran Publishing, Tehran.
[36]. Alavi, M. (Cartographer). (1991). Tectonic map of the Middle East, 1:5000000
[37]. Berberian, M., & King, G. C. P. (1981). Towards a paleogeography and tectonic evolution of Iran. Canadian journal of earth sciences, 18(2), 210-265. doi:https://doi.org/10.1139/e81-019
[38]. Eftekharnezhad, J. (1991). Structural separation of Iran in relation to sedimentary basins. Journal of Iranian Petroleum Society, 82, 19-27.
[39]. Nabavi, M. H. (2002). An introduction to the geology of Iran. Tehran, Iran.
[40]. Streeckeisen, A. (1980). Classification and nomenclature of igneous rocks. New Jahrrb.Miner.Agb, 107, 144-214.
[41]. Clapp, F. G. (1940). Geology of eastern Iran. Bulletin of the Geological Society of America, 51(1), 1-102. doi:https://doi.org/10.1130/GSAB-51-1
[42]. Khankhdani, K. (2006). An Introduction to Metamorphic Petrology. University of Tehran, Tehran.
[43]. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27. doi:https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
[44]. Panigrahi, S., Nanda, A., & Swarnkar, T. (2021). A survey on transfer learning. Paper presented at the Intelligent and Cloud Computing: Proceedings of ICICC 2019, Volume 1.
[45]. Hosna, A., Merry, E., Gyalmo, J., Alom, Z., Aung, Z., & Azim, M. A. (2022). Transfer learning: a friendly introduction. Journal of Big Data, 9(1), 102.
[46]. Bai, S., Zhao, J., Yu, T., & Shao, Y. (2024). Fusion of Geochemical Data and Remote Sensing Data Based on Convolutional Neural Network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 18, 1212-1225. doi:doi: 10.1109/JSTARS.2024.3502634
[47]. Li, H., Li, X., Yuan, F., Jowitt, S. M., Zhang, M., Zhou, J., Wu, B. (2020). Convolutional neural network and transfer learning based mineral prospectivity modeling for geochemical exploration of Au mineralization within the Guandian–Zhangbaling area, Anhui Province, China. Applied Geochemistry, 122, 104747. doi:https://doi.org/10.1016/j.apgeochem.2020.104747
[48]. Wu, B., Li, X., Yuan, F., Li, H., & Zhang, M. (2022). Transfer learning and siamese neural network based identification of geochemical anomalies for mineral exploration: A case study from the CuAu deposit in the NW Junggar area of northern Xinjiang Province, China. Journal of Geochemical Exploration, 232(106904). doi:https://doi.org/10.1016/j.gexplo.2021.106904
[49]. Nogueira, A. F. R., Oliveira, H. S., Machado, J. J., & Tavares, J. M. R. (2022). Transformers for urban sound classification—A comprehensive performance evaluation. Sensors, 22(22), 8874. doi:https://doi.org/10.3390/s22228874
[50]. Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy, 52(6), 119-139.
[51]. Matheron, G. (1963). Principles of geostatistics. Economic geology, 58(8), 1246-1266.
[52]. Daya, A. A. (2019). Nonlinear disjunctive kriging for the estimating and modeling of a vein copper deposit. Iranian Journal of Earth Sciences, 11(3), 226-236.
[53]. Keykhay-Hosseinpoor, M., Kohsary, A.-H., Hossein-Morshedy, A., & Porwal, A. (2020). A machine learning-based approach to exploration targeting of porphyry Cu-Au deposits in the Dehsalm district, eastern Iran. Ore Geology Reviews, 116, 103234.
[54]. Riahi, S., Bahroudi, A., Abedi, M., Aslani, S., & Lentz, D. R. (2022). Evidential data integration to produce porphyry Cu prospectivity map, using a combination of knowledge and data‐driven methods. Geophysical Prospecting, 70(2), 421-437.
[55]. Shirmard, H., Farahbakhsh, E., Heidari, E., Beiranvand Pour, A., Pradhan, B., Müller, D., & Chandra, R. (2022). A comparative study of convolutional neural networks and conventional machine learning models for lithological mapping using remote sensing data. Remote Sensing, 14(4), 819.
[56]. Seydi, A., Abedi, M., Bahroudi, A., & Ferdowsi, H. (2024). Geochemical prospectivity of Au mineralization through Concentration-Number fractal modelling and Prediction-Area plot: a case study in the east of Iran. Geopersia, 14(1), 213-229.
[57]. Riahi, S., Abedi, M., & Bahroudi, A. (2023). A hybrid fuzzy ordered weighted averaging method in mineral prospectivity mapping: a case for porphyry Cu exploration in Chahargonbad District, Iran. International Journal of Mining and Geo-Engineering, 57(4), 373-380.
[58]. Ebdali, M., & Hezarkhani, A. (2024a). A comparative study of decision tree and support vector machine methods for gold prospectivity mapping. Mineralia Slovaca, 56, 2.
[59]. Rahimi, N., Kargaranbafghi, F., Shahid, M. R., & Afkhami, S. (2024). Using fuzzy Logic Method and Analytic Hierarchy Process to Mineral Potential Mapping in Janja Exploration Area (South of Nehbandan, Iran). Jordan Journal of Earth & Environmental Sciences, 15(4).
[60]. Ebdali, M., & Hezarkhani, A. (2024b). Comparison of clustering methods in determining gold mineralization anomalies in the Janja area, Iran. Geochemistry: Exploration, Environment, Analysis, 24(4), geochem2024-2029. | ||
آمار تعداد مشاهده مقاله: 166 تعداد دریافت فایل اصل مقاله: 142 |