Stemming Materials Assessing and its Effect on Rock Fragmentation using Digital Image Analysis at Chouf Amar Quarry, M’sila, Algeria | ||
Journal of Mining and Environment | ||
مقاله 7، دوره 16، شماره 5، مهر و آبان 2025، صفحه 1623-1635 اصل مقاله (16.72 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22044/jme.2025.16106.3107 | ||
نویسندگان | ||
Kamel Menacer* 1، 2؛ Abderrazak Saadoun3؛ Abdellah Hafsaoui4، 2؛ Mohamed Fredj3؛ Abdelhak Tabet1، 2؛ Djamel Eddine Boudjellal1، 2؛ Riadh Boukarm3؛ Radouane Nakache2 | ||
1LAVAMINE Laboratory, Faculty of Earth Sciences, Badji Mokhtar University, Annaba, 23000, Algeria | ||
2LAVAMINE Laboratory, Mining Department, Faculty of Earth Sciences, Badji Mokhtar University, Annaba, 23000, Algeria | ||
3Mining and Geology Department, Faculty of Technology, University of Bejaia, Bejaia 06000, Algeria | ||
4LAVAMINE Laboratory, Faculty of Earth Sciences, Badji Mokhtar University, Annaba, 23000, Algeria LAVAMINE Laboratory, Faculty of Earth Sciences, Badji Mokhtar University, Annaba, 23000, Algeria | ||
چکیده | ||
Mining blasting efficiency is essential for mining operations for economic and technical reasons. Rock blasting operations should be conducted optimally to obtain a particle size distribution that optimises downstream operations, such as loading, transport, crushing, and grinding. The nature of the stemming material significantly impacts the degree of rock fragmentation during mining operations. Stemming refers to the material used to fill the space above explosives in a borehole, which helps confine the explosive energy and optimise rock fragmentation during detonation. This study aims to evaluate the stemming materials and their effect on the particle size distribution of blasted rocks at the Chouf Amar quarry in M'Sila, Algeria. The analyses performed in this study indicate that the blasting results obtained by the company reflect poor fragmentation quality, with a significant quantity of oversized fragments, making up 20–23% of the total pieces. To address this issue, a new operational blasting plan is proposed to enhance fragmentation quality. This plan employed three stemming materials: drill cuttings, 3/8 crushed aggregates, and sand. The test blasts were performed in a limestone quarry, and the results were evaluated using the highly reliable and widely respected image analysis software WipFrag 3.3. The results reveal that using crushed aggregates as stemming material significantly improves fragmentation quality, reducing the proportion of oversized fragments from an average of 23% (with sand stemming) to 2.6%. | ||
کلیدواژهها | ||
Fragmentation؛ stemming؛ WipFrag؛ blasting؛ particle size analysis | ||
مراجع | ||
[01]. Xu, P., Yang, R., Zuo, J., Ding, C., Chen, C., Guo, Y., ... & Zhang, Y. (2022). Research progress of the fundamental theory and technology of rock blasting. International Journal of Minerals, Metallurgy and Materials, 29(4), 705-716.
[02]. Al-Bakri, A., & Hefni, M. (2021). A review of some non-explosive alternative methods to conventional rock blasting. Open Geosciences, 13(1), 431-442.
[03]. Li, E., Yang, F., Ren, M., Zhang, X., Zhou, J., & Khandelwal, M. (2021). Prediction of blasting mean fragment size using support vector regression combined with five optimization algorithms. Journal of Rock Mechanics and Geotechnical Engineering, 13(6), 1380-1397.
[04]. Cevizci, H. (2013). A new stemming application for blasting: A case study. REM: Revista Escola de Minas, 66(4), 513-519.
[05]. Murlidhar, B. R., Armaghani, D. J., & Mohamad, E. T. (2020). Intelligence prediction of some selected environmental issues of blasting: A review. The Open Construction & Building Technology Journal, 14(1), 298-316.
[06]. Menacer, K., Hafsaoui, A., Korichi, T., & Saadoun, A. (2015). Study of the influence factors on rock blasting. Procedia Earth and Planetary Science, 15, 900-907.
[07]. Fredj, M., Boukarm, R., Saadoun, A., Menacer, K., & Nakache, R. (2024). Effect of stemming parameters on blast-induced rock fragmentation: A case study. In Proceedings CAUSummit, 0128-0135.
[08]. Saadoun, A., Boukarm, R., Fredj, M., Menacer, K., Boudjellal, D., Hafsaoui, A., & Yilmaz, I. (2024). Optimal blast design considering the effects of geometric blasting parameters on rock fragmentation: A case study. In Proceedings CAUSummit, 0136-0146.
[09]. Zong-Xian, Z., Yang, Q., Li, Y. C., & De-Feng, H. (2021). Experimental study of rock fragmentation under different stemming conditions in model blasting. International Journal of Rock Mechanics and Mining Sciences, 143, 104797.
[10]. Bhanwar, S. C., Anurag, A., & Rajesh, A. (2021). Stemming material and inter-row delay timing effect on blast results in limestone mines. Sådhanå, 46, 23.
[11]. Fredj Mohamed, A. Hafsaoui, K. Talhi, K. Menacer. (2015). Study of the Powder Factor in Surface Bench Blasting, Procedia Earth and Planetary Science, 15, 892-899.
[12]. Bamford, T., Medinac, F., & Esmaeili, K. (2020). Continuous monitoring and improvement of the blasting process in open pit mines using unmanned aerial vehicle techniques. Remote Sensing, 12(17), 2801.
[13]. Nayak, N. P. (2022). Blasting optimisation using O-Pitblast software. i-manager's Journal on Software Engineering, 17(2), 11-19.
[14]. Ohadi, B., Sun, X., Esmaieli, K., & Consens, M. P. (2020). Predicting blast-induced outcomes using random forest models of multi-year blasting data from an open pit mine. Bulletin of Engineering Geology and the Environment, 79, 329-343.
[15]. Zamora-Paredes, V., Arauzo-Gallardo, L., Raymundo-Ibañez, C., & Perez, M. (2020). Optimal mesh design methodology considering geometric parameters for rock fragmentation in open-pit mining in the Southern Andes of Peru. IOP Conference Series: Materials Science and Engineering, 758, 012015.
[16]. Jia, Z. Z., Li, H. J., Li, W., Yan, J., & Wang, X. H. (2024). Study on blasting fragmentation mechanism of burnt rock in the open-pit coal mine. Scientific Reports, 14(1), 5034.
[17]. Ronkin, M. V., Akimova, E. N., & Misilov, V. E. (2023). Review of deep learning approaches in solving rock fragmentation problems. AIMS Mathematics, 8(10), 23900-23940.
[18]. Mosinets, V. N., & Gorbacheva, N. P. (1972). A seismological method of determining the parameters of the zones of deformation of rock by blasting. Soviet Mining Science, 8(6), 640-647.
[19]. Kononenko, M., & Khomenko, O. (2021). New theory for the rock mass destruction by blasting. Mining of Mineral Deposits, 15(2), 111-123.
[20]. Elahi, E. (2021). New model of burden thickness estimation for blasting of open pit mines. International Journal of Engineering, 34(5), 1381-1389.
[21]. Moomivand, H., Amini Khoshalan, H., Shakeri, J., & Vandyousefi, H. (2022). Development of new comprehensive relations to assess rock fragmentation by blasting for different open pit mines using GEP algorithm and MLR procedure. International Journal of Mining and Geo-Engineering, 56(4), 401-411.
[22]. Taiwo, B. O., Angesom, G., Fissha, Y., Kide, Y., Li, E., Haile, K., & Oni, O. A. (2023). Artificial neural network modeling as an approach to Limestone blast production rate prediction: A comparison of PI-BANN, and MVR models. Journal of Mining and Environment. 14(2), 375-388.
[23]. Taiwo, B. O., Famobuwa, O. V., Mata, M. M., Sazid, M., Fissha, Y., Jebutu, V. A., Akinlabi, A. A., Ogunyemi, O. B., Abubakar, O. (2024). Granite Downstream Production Dependent Size and Profitability Assessment: an application of Mathematical-based Artificial Intelligence Model and WipFrag Software. Journal of Mining and Environment, 15(2), 497-515.
[24]. Moomivand, H., Soltanalinejad, S., Karwansara, A, M. (2025). Assessment of the optimized stemming length considering rock fragmentation and escape of explosive gases using actual large-scale results, Results in Engineering, 25. 103575.
[25]. Chandrahas, S., Choudhary, B. S., Venkataramayya, M. S., Fissha, Y., & Taiwo, B. O. (2024). An investigation of the cumulative impact of decking length and firing pattern on blasting results. Journal of Mining and Environment, 16(1), 97-110.
[26]. Inanloo Arabi Shad H., Sereshki F., Ataei M., Karamoozian M. (2018). Investigation of the rock blast fragmentation based on the specific explosive energy and in-situ block size, International Journal of Mining and Geo-Engineering. 52(1), 1-6.
[27]. Babaeian M., Sereshki F., Sotoudeh F., Ataei M., Mohammadi S. (2019). A new framework to evaluate rock fragmentation in open pit mines, Journal of Rock Mechanics and Geotechnical Engineering. 11(2), 325-336.
[28]. Koteleva, N., Khokhlov, S., & Frenkel, I. (2021). Digitalization in open-pit mining: A new approach in monitoring and control of rock fragmentation. Applied Sciences, 11(22), 10848.
[29]. Leng, Z., Fan, Y., Gao, Q., & Hu, Y. (2020). Evaluation and optimization of blasting approaches to reducing oversize boulders and toes in open-pit mine. International Journal of Mining Science and Technology, 30(3), 373-380.
[30]. Tavakol Elahi, A., & Hosseini, M. (2017). Analysis of blasted rocks fragmentation using digital image processing (case study: limestone quarry of Abyek Cement Company). International Journal of Geo-Engineering, 8(16), 1-11.
[31]. Dhekne, P. Y., Balakrishnan, V., & Jade, R. K. (2020). Effect of type of explosive and blast hole diameter on boulder count in limestone quarry blasting. Geotechnical and Geological Engineering, 38, 4091-4097.
[32]. Saadoun, A., Hafsaoui, A., Khadri, Y., & Fredj, M. (2018). Numerical modelling of slope stability in Chouf Amar limestone quarry (M'sila), Algeria. Scientific Bulletin of National Mining University, 5(3).
[33]. Saadoun, A., Hafsaoui, A., Khadri, Y., Fredj, M., Boukarm, R., & Nakache, R. (2019). Study effect of geological parameters of the slope stability by numerical modelling: Case limestone career of Lafarge M'sila, Algeria. IOP Conference Series: Earth and Environmental Science, 221, 012021.
[34]. Zahri, F., Hadji, R., Zighmi, K., Guesmi, Y., Boudjellal, R., & Mahleb, A. (2019). Stability analysis of jointed rock slopes using geomechanical, kinematical, and limit equilibrium methods: The Chouf Amar career, M'sila, NE Algeria. Mining Science, 26, 21-36.
[35]. Saadoun, A., Fredj, M., Boukarm, R., & Hadji, R. (2022). Fragmentation analysis using digital image processing and empirical model (KuzRam): A comparative study. Journal of Mining Institute, 257, 822-832.
[36]. Zhang, Z. X., Sanchidrián, J. A., Ouchterlony, F., & Luukkanen, S. (2023). Reduction of fragment size from mining to mineral processing: A review. Rock Mechanics and Rock Engineering, 56(1), 747-778.
[37]. Moomivand, H., Vandyousefi, H. (2020). Development of a new empirical fragmentation model using rock mass properties, blasthole parameters, and powder factor. Arab J Geosci, 13, 1173.
[38]. Moomivand, H., Gheybi, M. (2024). Novel empirical models to assess rock fragment size by drilling and blasting, Measurment Journal, 238.
[39]. Azizi, A., Moomivand, H. (2021). A New Approach to Represent Impact of Discontinuity Spacing and Rock Mass Description on the Median Fragment Size of Blasted Rocks Using Image Analysis of Rock Mass. Rock Mechanics and Rock Engineering, 54, 2013–2038.
[40]. Lawal, A. I. (2021). A new modification to the Kuz-Ram model using the fragment size predicted by image analysis. International Journal of Rock Mechanics and Mining Sciences, 138(1), 104595.
[41]. Idowu, K. A., Olaleye, B. M., & Saliu, M. A. (2021). Analysis of blasted rocks fragmentation using digital image processing (Case study: Limestone quarry of Obajana Cement Company). Mining of Mineral Deposits, 15(4), 34-42.
[42]. Saadoun, A., Boukarm, R., Fredj, M., Isik, Y. (2023). Study the influence of the choice of blasting zones on the rock fragmentation quality and the stability of benches in open-pit mining by numerical modelling. In Proceedings of 23rd International Multidisciplinary Scientific GeoConference.
[43]. Maerz, N.H., Palangio, T.C., & Franklin, J.A. (1996). WipFrag Image Based Granulometry System. In B. Mohanty (Ed.), Proceedings of the 5th International Symposium on Rock Fragmentation by Blasting, Workshop on Measurement of Blast Fragmentation, 91–99. Montreal, Canada: Balkema
[44]. Taiwo, B. O., Fissha, Y., Palangio, T., Palangio, A., Ikeda, H., Cheepurupalli, N. R., Khan, N. M., Akinlabi, A. A., Famobuwa, O. V., Faluyi, J. O., & Kawamura, Y. (2023). Assessment of Charge Initiation Techniques Effect on Blast Fragmentation and Environmental Safety: An Application of WipFrag Software. Mining, 3(3), 532-551.
[45] Hoseini S.M., Sereshki F., Ataei M., 2016, Blast Fragmentation Measurement Using Image Processing, Int. Journal of Mining and Geo-Engineering (IJMGE), 50(2), 211–218.
[46] Taiwo, B. O. (2022). Improvement of small-scale dolomite blasting productivity: comparison of existing empirical models with image analysis software and artificial neural network models. Journal of Mining and Environment, 13(3), 627-641.
[47]. Sudhakar, R., Abhishek, K. T., & Satyajeet, P. (2020). Influence of stemming material on performance of blasting. PalArch’s Journal of Archaeology of Egypt / Egyptology, 17(7), 9797 - 9809. Retrieved from https://archives.palarch.nl/index.php/jae/article/view/3968
[48]. Bedri, K., Bachar Assed, M. A., Taib, H., Hadji, R., Defaflia, N., Filali, M. (2024). Blast design and improvement of the quality of fragmentation in the aggregate quarries. Case study: Djebel Bouzegza C01. Geomatics, Landmanagement and Landscape, (2). | ||
آمار تعداد مشاهده مقاله: 162 تعداد دریافت فایل اصل مقاله: 104 |