Characterization of Polyglycol-Based Frothers: Investigation of Dynamic Froth Stability and Dynamic Frothability | ||
Journal of Mining and Environment | ||
مقاله 12، دوره 16، شماره 6، آذر و دی 2025، صفحه 2015-2025 اصل مقاله (3.05 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22044/jme.2025.16203.3133 | ||
نویسندگان | ||
Arefeh Zahab Nazoori؛ Bahram Rezai* ؛ Aliakbar Abdolahzadeh | ||
Department of Mining Engineering, Amirkabir University of Technology, Tehran, Iran | ||
چکیده | ||
Assessing frother performance through various indices is crucial to understanding how their molecular structure affects functionality, as well as evaluating their effectiveness in floating both fine and coarse particles. This study investigates for the first time the frothing behavior and froth stability of Polyethylene Glycol 300 (PEG300), Dipropylene Glycol (DPG), and Tetraethylene Glycol (TEG) and compares them with conventional frothers such as Dow Froth-250 (DF-250). To evaluate frother performance, air flow rate and frother concentration were selected as the main operational variables influencing froth formation and stability index. Initially, the frothing behavior of the reagents was predicted using the HLB-MW diagram, and then the frothing power of the desired frothers was examined using the dynamic frothability and dynamic froth stability indices. The results revealed that PEG300 exhibited the highest dynamic frothing index (13000 s.dm3/mol) and high froth stability, which is suitable for the flotation of coarse particles. In contrast, DPG showed the lowest frothing power and froth stability, with a dynamic frothing index of 2500 s.dm3/mol. TEG, with an intermediate frothing index of 5000 s.dm3/mol, demonstrated moderate performance in both froth production and stability. DF-250, with an exceptionally high frothing index, outperformed all the other agents, providing both superior froth generation and stability. Froth stability was assessed using dynamic froth stability indices and dynamic frothing capability, providing meaningful insights into frother performance. The results also showed that both air flow rate and frother concentration had a significant impact on frothing index and stability, with higher concentrations generally enhancing froth stability, particularly for PEG300 and DF-250. | ||
کلیدواژهها | ||
Flotation Frother؛ Dynamic Frothability index؛ Dynamic Stability؛ Frothing index؛ Frother Performance | ||
مراجع | ||
[1]. Laskowski, J. S. (1993). Frothers and flotation froth. Mineral Procesing and Extractive Metallurgy Review, 12(1), 61-89.
[2]. Bulatovic, S. M. (2007). Handbook of flotation reagents: chemistry, theory and practice: Volume 1: flotation of sulfide ores. Elsevier.
[3]. Finch, J. A., Nesset, J. E., & Acuña, C. (2008). Role of frother on bubble production and behaviour in flotation. Minerals Engineering, 21(12-14), 949-957.
[4]. Somasundaran, P., & Wang, D. (2006). Solution chemistry: minerals and reagents (Vol. 17). Elsevier.
[5].Edwards, D. A., Shapiro, M., Brenner, H., & Shapira, M. (1991). Dispersion of inert solutes in spatially periodic, two-dimensional model porous media. Transport in Porous Media, 6(4), 337-358.
[6]. Wang, D. (2016). Flotation reagents: applied surface chemistry on minerals flotation and energy resources beneficiation. Springer Singapore.
[7]. Tan, Y. H., & Finch, J. A. (2016). Frother structure–property relationship: Effect of alkyl chain length in alcohols and polyglycol ethers on bubble rise velocity. Minerals Engineering, 95, 14-20.
[8]. Xue, Y., & Li, T. (2024). The Significance of Flotation Frothers Chemical Structure and Fundamental Properties: A Review. Open Journal of Applied Sciences, 14(8), 2124-2132.
[9]. Bhattacharya, S., & Dey, S. (2008). Evaluation of frother performance in coal flotation: A critical review of existing methodologies. Mineral Processing & Extractive Metallurgy Review, 29(4), 275-298.
[10]. Cho, Y. S., & Laskowski, J. S. (2002). Effect of flotation frothers on bubble size and foam stability. International Journal of Mineral Processing, 64(2-3), 69-80.
[11]. Khoshdast, H., & Sam, A. (2011). Flotation frothers: review of their classifications, properties and preparation. The Open Mineral Processing Journal, 4(1), 25-44.
[12]. Gupta, C. K. (2017). Extractive metallurgy of molybdenum. Routledge.
[13]. Leonov, S. B., Belkova, O. N., Kleimenova, N. V., Kukharev, B. F., Stankevich, V. K., Klimenko, G. R., ... & Kukhareva, V. A. (1999). Flotation activity of amino alcohols and their derivatives. Journal of Mining Science, 35(4), 434-438.
[14]. Pearse, M. J. (2005). An overview of the use of chemical reagents in mineral processing. Minerals engineering, 18(2), 139-149.
[15]. Rao, S. R. (2013). Surface chemistry of froth flotation: Volume 1: Fundamentals. Springer Science & Business Media.
[16]. Dudenkov, S. V., & Galikov, A. A. (1969). Theory and practice of application of flotation reagents. Nedra: Moscow, Russia.
[17]. Amidon, G. L., Yalkowsky, S. H., & Leung, S. (1974). Solubility of nonelectrolytes in polar solvents II: Solubility of aliphatic alcohols in water. Journal of pharmaceutical sciences, 63(12), 1858-1866.
[18]. CM, P., Nakahara, H., Shibata, O., Moroi, Y., CV, N., & Chaudhary, D. (2012). Surface potential of MIBC at air/water interface: A molecular dynamics study. e-Journal of Surface Science and Nanotechnology, 10, 437-440.
[19]. Dukhin, S. S., Kretzschmar, G., & Miller, R. (1995). Dynamics of adsorption at liquid interfaces: theory, experiment, application (Vol. 1). Elsevier.
[20].Laskowski, J. S. (2004). Testing flotation frothers. Fizykochemiczne Problemy Mineralurgii/Physicochemical Problems of Mineral Processing, 38, 13-22.
[21]. Crozier, R. D. (1992). Flotation: theory, reagents and ore testing.
[22]. Gupta, A. K., Banerjee, P. K., & Mishra, A. (2009). Influence of chemical parameters on selectivity and recovery of fine coal through flotation. International Journal of Mineral Processing, 92(1-2), 1-6.
[23]. Leja, J., & Leja, J. (1982). Flotation Froths and Foams. Surface Chemistry of Froth Flotation, 549-610.
[24]. Pan, G., Gao, Z., Zhu, H., Yin, J., Shi, Q., & Zhang, Y. (2025). Effect of non‐ionic frothers on bubble characteristics in flotation: a review. Journal of Chemical Technology & Biotechnology, 100(3), 493-507.
[25]. Griffin, W. C. (1949). Classification of surface-active agents by" HLB". J. Soc. Cosmet. Chem., 1, 311-325.
[26]. Tanaka, K., & Igarashi, A. (2016). Determination of nonionic surfactants. In Handbook Of Detergents, Part C (pp. 167-232). CRC Press.
[27]. Wang, J., Nguyen, A. V., & Farrokhpay, S. (2016). A critical review of the growth, drainage and collapse of foams. Advances in colloid and interface science, 228, 55-70.
[28]. Davies, J. T. (1957). A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent. In Gas/Liquid and Liquid/Liquid Interface. Proceedings of the International Congress of Surface Activity (Vol. 1, pp. 426-438). Citeseer.
[29]. Davies, J. T., & Haydon, F. (1959). Proc. 2nd Int. Congr. Surface Activity.
[30]. Mittal, K. L., & Shah, D. O. (Eds.). (2013). Surfactants in Solution: Volume 11 (Vol. 11). Springer Science & Business Media.
[31]. Proverbio, Z. E., Bardavid, S. M., Arancibia, E. L., & Schulz, P. C. (2003). Hydrophile–lipophile balance and solubility parameter of cationic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 214(1-3), 167-171.
[32]. Wu, J., Xu, Y., Dabros, T., & Hamza, H. (2004). Development of a method for measurement of relative solubility of nonionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 232(2-3), 229-237.
[33]. Alsafasfeh, A., Alagha, L., & Al-Hanaktah, A. (2024). The effect of methyl isobutyl carbinol “MIBC” on the froth stability and flotation performance of low-grade phosphate ore. Mining, Metallurgy & Exploration, 41(1), 353-361.
[34]. Triffett, B. B., & Cilliers, J. J. (2004). Measuring froth stability. International Patent Application Number: PCT/AU2004/000331.
[35]. Farrokhpay, S. (2011). The significance of froth stability in mineral flotation—A review. Advances in colloid and interface science, 166(1-2), 1-7.
[36]. Elmahdy, A. M., & Finch, J. A. (2013). Effect of frother blends on hydrodynamic properties. International Journal of Mineral Processing, 123, 60-63.
[37]. Moyo, P., Gomez, C. O., & Finch, J. A. (2007). Characterizing frothers using water carrying rate. Canadian Metallurgical Quarterly, 46(3), 215-220.
[38]. Neethling, S. J., Lee, H. T., & Cilliers, J. J. (2003). Simple relationships for predicting the recovery of liquid from flowing foams and froths. Minerals Engineering, 16(11), 1123-1130.39. Stevenson, P., C. Stevanov, and G. Jameson, Liquid overflow from a column of rising aqueous froth. Minerals engineering, 2003. 16(11): p. 1045-1053.
[40]. Zhang, W., Nesset, J. E., & Finch, J. A. (2010). Water recovery and bubble surface area flux in flotation. Canadian Metallurgical Quarterly, 49(4), 353-362.
[41]. Zhang, N., Chen, X., & Peng, Y. (2020). Effects of froth properties on dewatering of flotation products–A critical review. Minerals Engineering, 155, 106477.
[42]. Zheng, X., Johnson, N. W., & Franzidis, J. P. (2006). Modelling of entrainment in industrial flotation cells: Water recovery and degree of entrainment. Minerals Engineering, 19(11), 1191-1203.
[43]. Pawliszak, P., Bradshaw-Hajek, B. H., Skinner, W., Beattie, D. A., & Krasowska, M. (2024). Frothers in flotation: A review of performance and function in the context of chemical classification. Minerals Engineering, 207, 108567..
[44]. Zhao, L., & Zhang, Q. (2024). A significant review of froth stability in mineral flotation. Chemical Engineering Science, 120738.
[45]. Khoshdast, H., Hassanzadeh, A., Kowalczuk, P. B., & Farrokhpay, S. (2023). Characterization techniques of flotation frothers-a review. Mineral Processing and Extractive Metallurgy Review, 44(2), 77-101.
[46]. Zhang, W., Nesset, J. E., Rao, R., & Finch, J. A. (2012). Characterizing frothers through critical coalescence concentration (CCC) 95-hydrophile-lipophile balance (HLB) relationship. Minerals, 2(3), 208-227.
[47]. Chipfunhu, D., Bournival, G., Dickie, S., & Ata, S. (2019). Performance characterisation of new frothers for sulphide mineral flotation. Minerals Engineering, 131, 272-279.
[48]. Dey, S., Pani, S., & Singh, R. (2014). Study of interactions of frother blends and its effect on coal flotation. Powder Technology, 260, 78-83.
[49]. Gupta, A. K., Banerjee, P. K., Mishra, A., & Satish, P. (2007). Effect of alcohol and polyglycol ether frothers on foam stability, bubble size and coal flotation. International Journal of Mineral Processing, 82(3), 126-137.
[50]. Klimpel, R. and S. Isherwood, Some industrial implications of changing frother chemical structure. International journal of mineral processing, 1991. 33(1-4): p. 369-381.
[51]. Kowalczuk, P. B., & Drzymala, J. (2017). Selectivity and power of frothers in copper ore flotation. Physicochem. Probl. Miner. Process, 53(1), 515-523.
[52]. Kracht, W., Orozco, Y., & Acuña, C. (2016). Effect of surfactant type on the entrainment factor and selectivity of flotation at laboratory scale. Minerals Engineering, 92, 216-220.
[53]. Liu, D., & Somasundaran, P. (1994). Role of collector and frother, and of hydrophobicity/oleophilicity of pyrite on the separation of pyrite from coal by flotation. International journal of mineral processing, 41(3-4), 227-238.
[54]. Moreno, Y. S., Bournival, G., & Ata, S. (2022). Classification of flotation frothers–A statistical approach. Chemical Engineering Science, 248, 117252.
[55]. Drzymala, J., & Kowalczuk, P. B. (2018). Classification of flotation frothers. Minerals, 8(2), 53.
[56]. Gomez, C. O., Finch, J. A., & Muñoz-Cartes, D. (2011, November). An approach to characterise frother roles in flotation. In Proceedings of the 8th International Mineral Processing Seminar Procemin, Santiago, Chile (Vol. 30, pp. 223-231).
[57]. Laskowski, J. S., Tlhone, T., Williams, P., & Ding, K. (2003). Fundamental properties of the polyoxypropylene alkyl ether flotation frothers. International Journal of Mineral Processing, 72(1-4), 289-299.
[58]. Miller, J. D., & Ye, Y. (1989). Froth characteristics in air-sparged hydrocyclone flotation. Mineral Procesing and Extractive Metallurgy Review, 5(1-4), 307-327.
[59]. Moreno, Y. S., Bournival, G., & Ata, S. (2021). Foam stability of flotation frothers under dynamic and static conditions. Separation and Purification Technology, 274, 117822.
[60]. Barbian, N., Ventura-Medina, E., & Cilliers, J. J. (2003). Dynamic froth stability in froth flotation. Minerals Engineering, 16(11), 1111-1116.
[61]. Bikerman, J. E. (1973). General. Foam Films. In Foams (pp. 1-32). Berlin, Heidelberg: Springer Berlin Heidelberg.
[62]. Bikerman, J. J. (2013). Foams (Vol. 10). Springer Science & Business Media. | ||
آمار تعداد مشاهده مقاله: 120 تعداد دریافت فایل اصل مقاله: 91 |