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ON ANNIHILATOR PROPERTIES OF INVERSE SKEW
POWER SERIES RINGS

M. HABIBI

Abstract. Let α be an automorphism of a ring R. The authors
[On skew inverse Laurent-serieswise Armendariz rings, Comm.
Algebra 40(1) (2012) 138-156] applied the concept of Armendariz
rings to inverse skew Laurent series rings and introduced skew
inverse Laurent-serieswise Armendariz rings. In this article, we study
on a special type of these rings and introduce strongly Armendariz
rings of inverse skew power series type. We determine the radicals
of the inverse skew Laurent series ring R((x−1;α)), in terms of
those of R. We also prove that several properties transfer between
R and the inverse skew Laurent series extension R((x−1;α)), in
case R is a strongly Armendariz ring of inverse skew power series
type.

1. Introduction

Throughout this article, R denotes an associative ring with unity.
For a non-empty subset X of R, lR(X) and rR(X) denote the left
annihilator and the right annihilator of X in R, respectively.

Let R be a ring equipped with an automorphism α. We denote by
R((x−1;α)) the inverse skew Laurent series ring over the coefficient ring
R formed by formal series

f(x) =
n∑

i=−∞

aix
i,
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where x is a variable, n is an integer and ai ∈ R. In the ring R((x−1;α))
addition is defined as usual and multiplication is defined with respect
to the relation

∀i xia = αi(a)xi.

In 1974 Armendariz noted in [3] that whenever the product of two
polynomials over reduced rings (i.e. rings without non-zero nilpotent
elements) is zero, then the products of their coefficients are all zero.
In fact for a reduced ring R, the polynomial ring R[x] satisfies the
following condition:

∀ f(x) =
m∑
i=0

aix
i , g(x) =

n∑
j=0

bjx
j ∈ R[x],

if f(x)g(x) = 0, then aibj = 0, ∀ i, j.
Nowadays the above condition is known as the Armendariz condi-
tion, and a ring R which satisfies this condition is called Armendariz.
The systematic study of Armendariz rings was initiated by Rege and
Chhawchharia in 1997 in [35]. In [20] Hong, Kim and Kwak extended
the Armendariz property of rings to skew polynomial rings R[x;α]: For
an endomorphism α of a ring R, R is called an α-skew Armendariz ring
if for polynomials f(x) =

∑n
i=0 aix

i and g(x) =
∑m

j=0 bjx
j in R[x;α],

f(x)g(x) = 0 implies that aiα
i(bj) = 0, for each i, j.

Anderson and Camillo [2, Theorem 1] proved that a ring R is Ar-
mendariz if and only if so is R[x]. But Rege and Bhuphang in [34]
give an example of a commutative Armendariz ring R whose power
series ring R[[x]] is not Armendariz. In 2006 Kim et al. in [23] called
a ring R power-serieswise Armendariz, if aibj = 0, for all i, j, when-
ever power series f(x) =

∑∞
i=0 aix

i, g(x) =
∑∞

j=0 bjx
j in R[[x]] satisfy

f(x)g(x) = 0.
Recently, in [30] the authors studied the ring R((x−1;α)) and intro-

duced skew inverse Laurent-serieswise Armendariz ring as a generaliza-
tion of the standard Armendariz condition from polynomials to skew
inverse Laurent series. A ring R is said to be skew inverse Laurent-
serieswise Armendariz ring, if for each f(x) =

∑m
i=−∞ aix

i and g(x) =∑n
j=−∞ bjx

j ∈ R((x−1;α)), f(x)g(x) = 0, it implies aiα
i(bj) = 0, for

each i ≤ n and j ≤ m. They study relations between the set of
annihilators in R and the set of annihilators in R((x−1;α)). Among
applications, they show that a number of interesting properties of a
skew inverse Laurent-serieswise Armendariz ring R such as the Baer,
p.p. and the α-quasi Baer property transfer to its skew inverse Laurent
series extensions R((x−1;α)) and vice versa.
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The purpose of this article is to introduce and investigate a special
type of skew inverse Laurent-serieswise Armendariz rings. We say R is
a strongly Armendariz ring of inverse skew power series type (or sim-
ply, strongly ISP-Armendariz ring), if for each f(x) =

∑m
i=−∞ aix

i and
g(x) =

∑n
j=−∞ bjx

j ∈ R((x−1;α)), f(x)g(x) = 0 if and only if aibj = 0
for each i ≤ m and j ≤ n. We study radical properties of R and
R((x−1;α)) for strongly ISP-Armendariz rings; and show that if R is a
strongly ISP-Armendariz ring, then both R and R((x−1;α)) are semi-
commutative rings and satisfy the Köthe’s conjecture. We also prove
that for a strongly ISP-Armendariz ring R, R is symmetric (respec-
tively reversible, zip, prime, semiprime) if and only if so is R((x−1;α)).

We use N0(R), N∗(R), L-rad(R), N
∗(R), N∗

l (R), N(R) and J(R) to
denote the Wedderburn radical (i.e., sum of all nilpotent ideals), the
lower nil radical (i.e., the prime radical), the Levitzky radical (i.e., sum
of all locally nilpotent ideals), the upper nil radical (i.e., sum of all nil
ideals), the sum of all nil left ideals, the set of all nilpotent elements
and the Jacobson radical of R, respectively. Note that the sum of all
nil left ideals of R coincides with the sum of all nil right ideals of R,
since Ra is nil implies that Rxr is also nil, for any a ∈ R.

2. Main results

Definition 2.1. [30, Definition 2.2] A ring R is called a skew inverse
Laurent-serieswise Armendariz (or simply, SIL -Armendariz) ring, if
for each elements f(x) =

∑n
i=−∞ aix

i and g(x) =
∑m

j=−∞ bjx
j in

R((x−1, α)), f(x)g(x) = 0 implies that aiα
i(bj) = 0, for each i ≤ n

and j ≤ m.

As a first result of this article, in the following theorem, we state
several equivalent definitions for SIL-Armendariz rings.

Theorem 2.2. Let R be a ring with an automorphism α and A =
R((x−1;α)). Then the following statements are equivalent:

(i) R is SIL-Armendariz.
(ii) For each f(x) =

∑0
i=−∞ aix

i and g(x) =
∑0

j=−∞ bjx
j in A, if

f(x)g(x) = 0, it implies aiα
i(bj) = 0, for each i, j ≤ 0.

(iii) For each f(x) =
∑m

i=−∞ aix
i and g(x) =

∑n
j=−∞ bjx

j in A, if

f(x)g(x) = 0, it implies a0bj = 0, for each j ≤ n.

(iv) For each f(x) =
∑0

i=−∞ aix
i and g(x) =

∑0
j=−∞ bjx

j in A, if

f(x)g(x) = 0, it implies a0bj = 0, for each j ≤ 0.

Proof. We only need to prove (iv) ⇒ (i). For this purpose, let f(x) =∑m
i=−∞ aix

i and g(x) =
∑n

j=−∞ bjx
j be series of R((x−1;α)) with
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f(x)g(x) = 0. We have

f(x)g(x) = (
∑m

i=−∞ aix
i)(

∑n
j=−∞ bjx

j)

= (
∑m

i=−∞ aix
i−m)xm(

∑n
j=−∞ bjx

j)

= (
∑m

i=−∞ aix
i−m)(

∑n
j=−∞ αm(bj)x

j+m) = 0. (∗)

By multiplying x−m−n from the right-hand side of Eq. (∗), we obtain

(
m∑

i=−∞

aix
i−m)(

n∑
j=−∞

αm(bj)x
j−n) = 0.

So amα
m(bj) = 0, for each j ≤ n, by (vi). This implies that

f(x)g(x) = (
∑m−1

i=−∞ aix
i)(

∑n
j=−∞ bjx

j)

= (
∑m−1

i=−∞ aix
i−m+1)xm−1(

∑n
j=−∞ bjx

j)

= (
∑m−1

i=−∞ aix
i−m+1)(

∑n
j=−∞ αm−1(bj)x

j+m−1) = 0. (∗∗)

By multiplying x−m−n+1 from the right-hand side of Eq. (∗∗), we have

(
m−1∑
i=−∞

aix
i−m+1)(

n∑
j=−∞

αm−1(bj)x
j−n) = 0.

Hence am−1α
m−1(bj) = 0, for each j ≤ n, by (vi). By continuing in

this way, we get aiα
i(bj) = 0, for each i ≤ m and j ≤ n and the result

follows. □
Definition 2.3. Let R be a ring with an automorphism α. We say
that R is a strongly Armendariz ring of inverse skew power series type
(or simply, strongly ISP -Armendariz ring), if R satisfies the following
condition.

∀ f(x), g(x) ∈ R((x−1;α)) f(x)g(x) = 0 ⇔ ab = 0 ∀ a ∈ Cf , b ∈ Cg,

where Cf and Cg are the sets of all coefficients of elements f(x) and
g(x), respectively.

Recall that a ring R is said to be semicommutative if for all a, b ∈ R
we have ab = 0 ⇒ aRb = 0. It is obvious that every commutative
ring is semicommutative. Thus, semicommutative rings provide a sort
of bridge between commutative and noncommutative ring theory. On
the one hand, the semicommutative condition forces a noncommutative
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ring to have certain affinities with its commutative cousins (e.g., it must
be Dedekind-finite, it cannot be a full matrix ring, etc.). Semicommu-
tative rings are studied in papers of Du [12], Hirano [19], Huh, Lee and
Smoktunowicz [22] and Nielsen [32]. In Bell’s paper [5] semicommu-
tative is called the insertion-of -factors-property, or (I.F.P.). Clearly,
reduced rings are semicommutative. In [15, Section 2], the authors
constructed a rich source of examples of non reduced semicommutative
rings.

Theorem 2.4. Let α be an automorphism of a ring R. If R is strongly
ISP-Armendariz, then we have the following statements:

(i) R is semicommutative.
(ii) N0(R) = N∗(R) = L-rad(R) = N∗(R) = N∗

l (R) = N(R).

Proof. (i) Let a and b be two elements of R with ab = 0 and r be
an arbitrary element of R. Suppose f(x) = arx−1 − a and g(x) =
· · ·+ rα−1(r)α−2(r)α−3(b)x−3 + rα−1(r)α−2(b)x−2 + rα−1(b)x−1 + b be
elements of R((x−1;α)). Theefore f(x)g(x) = 0 and so arb = 0, since
R is a strongly ISP-Armendariz ring. Hence R is semicommutative and
the result follows.
(ii) It is clear, by [23, Lemma 2.3]. □

According to Krempa [24], an endomorphism α of a ring R is said
to be rigid if aα(a) = 0 implies a = 0 for a ∈ R. A ring R is said to be
α-rigid if there exists a rigid endomorphism α of R. In [17], the authors
introduced α-compatible rings and studied its properties. A ring R is
α-compatible if for each a, b ∈ R, ab = 0 ⇔ aα(b) = 0. Clearly, this
may only happen when the endomorphism α is injective. Also, by [17,
Lemma 2.2], a ring R is α-compatible and reduced if and only if R is
α-rigid. Thus α-compatible rings are generalization of α-rigid rings to
the more general case, where R is not assumed to be reduced.

Lemma 2.5. Let α be an automorphism of a ring R. If R is strongly
ISP-Armendariz, then we have the following statements:

(i) R is an α-compatible ring.
(ii) If ab = 0, then aαk(b) = αk(a)b = 0 for all integers k.
(iii) If αk(a)b = 0 for some integer k, then ab = 0.

Proof. (i) Let a and b be elements of R. If ab = 0, then axb = 0, since
R is strongly ISP-Armendariz. Thus aα(b) = 0. Now, let aα(b) = 0. So
axb = 0 and consequently ab = 0, since R is strongly ISP-Armendariz.
Therefore R is an α-compatible ring.
(ii) and (iii) are clear, by [17, Lemma 3.2], since α is an automorphism.

□
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Note that for an α-compatible rings two concepts SIL-Armendariz
and strongly ISP-Armendariz over a ring R is coincide. Also all of
the examples of SIL-Armendariz rings which construct in [30] are α-
compatible. So we propose the following important question.

Question. Does a ring R with an automorphism α exist which R is
SIL-Armendariz but is not α-compatible?

Theorem 2.6. Let α be an automorphism of a ring R. Then R is
α-rigid if and only if R is reduced and strongly ISP-Armendariz.

Proof. Let α be a rigid endomorphism of R and a an element of R with
aα−1(a) = 0. Thus α(a)a = 0 and hence aα(a) = 0, since R is reduced.
Therefore a = 0, since R is α-rigid. This implies that R is α-rigid if
and only if R is α−1-rigid. Hence R is α-rigid if and only if R is reduced
and strongly ISP-Armendariz, by Theorem 2.10 of [30]. □
Proposition 2.7. Let α be an automorphism of a ring R and A =
R((x−1;α)). Then the following conditions are equivalent.

(i) R is strongly ISP-Armendariz.
(ii) For each f(x) =

∑m
i=−∞ aix

i and g(x) =
∑n

j=−∞ bjx
j in A,

f(x)g(x) = 0 if and only if aibj = 0, for each i ≤ m and j ≤ n.

Proof. (i)⇒ (ii) Let R be an strongly ISP-Armendariz ring and f(x) =∑m
i=−∞ aix

i and g(x) =
∑n

j=−∞ bjx
j be elements of R((x−1;α)). If

f(x)g(x) = 0, then aiα
i(bj) = 0 for each i ≤ m and j ≤ n, by Theorem

2.2 and consequently aibj = 0 for each i ≤ m and j ≤ n, since R is
α-compatible by Lemma 2.5. Now, suppose aibj = 0 for each i ≤ m
and j ≤ n. So aiα

i(bj) = 0, since R is α-compatible, by Lemma 2.5
and consequently f(x)g(x) = 0.
(ii) ⇒ (i) It is straightforward. □
Theorem 2.8. Let α be an automorphism of a ring R. If R is strongly
ISP-Armendariz, then we have the following statements:

(i) R((x−1;α)) is semicommutative.
(ii) N0(A) = N∗(A) = L-rad(A) = N∗(A) = N∗

l (A) = N(A),
where A = R((x−1;α)).

Proof. (i) Let f(x) =
∑m

i=−∞ aix
i and g(x) =

∑n
j=−∞ bjx

j be elements

of A with f(x)g(x) = 0 and h(x) =
∑t

k=−∞ ckx
k be an arbitrary el-

ement of A. Since R is strongly ISP-Armendariz, we have aibj = 0
for each i ≤ −m and j ≤ n. Also R is a semicommutative ring,
by part (i) of Theorem 2.4. Thus aickbj = 0 for each k ≤ t and so
aiα

i(ck)α
i+k(bj) = 0, for each i ≤ m, k ≤ t and j ≤ n, by Lemma 2.5.
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This implies that f(x)h(x)g(x) = 0. Hence R((x−1;α)) is a semicom-
mutative ring and the result follows.
(ii) It is similar to the proof of part (ii) of Theorem 2.4. □

Theorem 2.9. Let α be an automorphism of a ring R. Suppose R is
strongly ISP-Armendariz. Then

Rad(R((x−1;α))) ∩R = Rad(R),

where Rad(-) is one the radicals N0(-), N∗(-), L-rad(-), N
∗(-), N∗

l (-)
or N(-).

Proof. Note that N(R((x−1;α))) ∩ R = N(R). So the proof is clear,
by Theorems 2.4 and 2.8. □

Lemma 2.10. Let α be an automorphism of a ring R. Suppose R
is strongly ISP-Armendariz and n a positive integer. If f1, . . . , fn are
elements of R((x−1;α)) with f1 · · · fn = 0, then a1 · · · an = 0, where
ai ∈ Cfi for 1 ≤ i ≤ n.

Proof. Let fi(x) =
∑mi

l=−∞ a
(i)
l x

l, for each i = 1, . . . , n. The proof is by
induction on n. The proof of the case n = 2 is clear, by Proposition 2.7.
Now, let n > 2. Since R is strongly ISP-Armendariz and f1(f2 · · · fn) =
0, we have a1b = 0 for each a1 ∈ Cf1 , where b is a coefficient of f2 · · · fn.
So (a1f2)f3 · · · fk = 0. Thus a1a2 · · · an = 0 for each ai ∈ Cfi and we
are done. □

Corollary 2.11. Let α be an automorphism of a ring R. Suppose R
is strongly ISP-Armendariz. Then N(R((x−1;α))) ⊆ N(R)((x−1;α)).

Recall that a ring R is said to have bounded index of nilpotency if
there exists a positive integer n such that rn = 0 for each nilpotent
element r of R.

Proposition 2.12. Let α be an automorphism of a ring R. Suppose
R is strongly ISP-Armendariz. If N(R)((x−1;α)) ⊆ N(R((x−1;α))),
then R has bounded index of nilpotency.

Proof. To the contrary, let for each i ∈ N there exists ai ∈ N(R) such
that aii ̸= 0. Consider

f(x) = a1x
−1 + a2x

−2! + a3x
−3! + · · · ∈ N(R)((x−1;α)).

Since N(R)((x−1;α)) ⊆ N(R((x−1;α))), there exists t ≥ 2 with f t = 0.
Let n ≥ t. We have

f(x) = (a1x
−1 + a2x

−2! + · · ·+ anx
−n!) + x−(n+1)!h(x).
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The coefficient of x−tn! in f t is equal to the coefficient of x−tn! in a1x
−1+

a2x
−2! + · · ·+ anx

−n! which is

anα
−n!(an)α

−2n!(an) · · ·α−(t−1)n!(an).

So atn = 0, by α-compatibility of R which is impossible. Hence R has
bounded index of nilpotency and we are done. □
Theorem 2.13. Let α be an automorphism of a ring R. If R is a
strongly ISP-Armendariz ring which satisfies any one of the following
conditions:

(i) R has the ACC and DCC on left annihilators;
(ii) R has the ACC on ideals;
(iii) R is left or right Goldie;
(iv) R has right Krull dimension.

then
Rad(R((x−1;α))) = Rad(R)((x−1;α)),

where Rad(R) is one the radicals N0(R), N∗(R), L-rad(R), N
∗(R),

N∗
l (R) or N(R).

Proof. First we prove that if R is a strongly ISP-Armendariz ring,
then N(R((x−1;α))) ⊆ N0(R)((x

−1;α)). For this goal, let f(x) =∑n
i=−∞ aix

i ∈ N(R((x−1;α))). Thus the ideal generated by f(x) in
R((x−1;α)) is nil, by Theorem 2.8. So RaiR is nil ideal in R, by
Propositon 2.10 and consequently ai ∈ N∗(R) = N0(R), for each i ≤ n.
Conversely, let g(x) =

∑n
i=−∞ aix

i ∈ N0(R)((x
−1;α)). Since R satisfies

one of the above conditions, N∗(R) = N0(R) is a nilpotent ideal of R,
by [18, Theorem 1], [25, Theorem 4.12], [27, Theorem 1] and [28], re-
spectively. So there exists a positive integer t such that (N0(R))

t = 0.
Therefore (p(x)g(x)q(x))t = 0 for each p(x), q(x) ∈ R((x−1;α)), by
Propositon 2.10. Hence g(x) ∈ N∗(R((x−1;α))) = N(R((x−1;α))), by
Theorem 2.8. So N0(R)((x

−1, α)) ⊆ N(R((x−1, α))) and the proof is
complete □
Proposition 2.14. Let α be an automorphism of a ring R. Suppose R
is strongly ISP-Armendariz. Then we have the following statements:

(i) R is prime if and only if so is R((x−1;α)).
(ii) R is semiprime if and only if so is R((x−1;α)).

Proof. (i) Let R be a prime ring and f(x)R((x−1;α))g(x) = 0, for
some f(x) and g(x) in R((x−1;α)). Suppose a and b are the leading
coefficients f(x) and g(x), respectively. Thus arb = 0 for each r ∈ R,
since R is α-compatible by Lemma 2.5. This implies that a = 0 or
b = 0, since R is prime and consequently f(x) = 0 or g(x) = 0.
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Therefore R((x−1;α)) is a prime ring. Conversely, suppose R((x−1;α))
is prime and a, b are elements of R with aRb = 0. So aR((x−1;α))b = 0,
by Lemma 2.5. Thus a = 0 or b = 0, since R((x−1;α)) is a prime ring.
Hence R is prime and the result follows.
(ii) The proof is similar to that of part (i). □

Perhaps the greatest unsolved problem in noncommutative ring the-
ory today is the Köthe’s conjecture, which posits that a ring with
no non-zero nil ideals has no non-zero nil one-sided ideals. (i.e., if
N∗(R) = 0, then R has no non-zero nil one-sided ideal; where N∗(R) is
the upper nil radical of R.) One can see more discussion of the Köthe
conjecture and various related problems, in [33]. The Köthe’s conjec-
ture has been resolved in several special cases, including for rings with
Krull dimension, for PI rings, and for algebras over uncountable fields.
We will presently add strongly ISP-Armendariz rings to this list.

Theorem 2.15. Let α be an automorphism of a ring R. Suppose R is
strongly ISP-Armendariz. Then we have the following statements:

(i) R satisfies the Köthe’s conjecture;
(ii) R((x−1;α, δ)) satisfies the Köthe’s conjecture;
(iii) J(R[x]) = N0(R)[x] = N∗(R)[x] = L-rad(R)[x] = N∗(R)[x] =

N∗
ℓ (R)[x];

(iv) N∗(Mn(R)) =Mn(N∗(R)) =Mn(N
∗(R)) = N∗(Mn(R));

(v) J(A[y]) = N0(A)[y] = N∗(A)[y] = L-rad(A)[y] = N∗(A)[y] =
N∗

ℓ (A)[y];
(vi) N∗(Mn(A)) =Mn(N∗(A)) =Mn(N

∗(A)) = N∗(Mn(A));

where A = R((x−1;α)).

Proof. (i) Let N∗(R) = 0. Thus R is semiprime and so, similar to the
proof of [29, Proposition 2.18(i)], R has no non-zero nil one sided ideal.
Hence R satisfies the Köthe’s conjecture.
(ii) Let N∗(R((x−1;α))) = 0. Thus R((x−1;α)) is semiprime an so R is
semiprime, by Proposition 2.14. Similar to the proof of [29, Proposition
2.18(i)], one can see that R((x−1;α)) has no non-zero nil one sided ideal.
So R((x−1;α)) satisfies the Köthe’s conjecture.
(iii) and (iv) follow from part (i) and [25, Exercise 10.25].
(v) and (vi) follow from part (ii) and [25, Exercise 10.25]. □

Note that Amitsur [1] proved that any ring R satisfies the following
inclusion:

J(R[x]) ∩R ⊆ N(R).

But it remains an open question whether J(R((x−1;α))) ∩ R is nil.
Concerning this problem, we have the following theorem:
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Theorem 2.16. Let R be a ring with an endomorphism α and A1, A2

be two subrings of R((x−1;α)), as follows:

A1 = {f(x) =
n∑

i=−m

aix
i : ai ∈ R ,m, n ∈ N},

A2 = {f(x) =
n∑

i=0

aix
i : ai ∈ R , n ∈ N}.

If R is a strongly ISP-Armendariz ring, then J(A1)∩R and J(A2)∩R
are nil.

Proof. Let a ∈ R be an element of J(A1). Then 1− ax is an invertible
element in A1. So there exists an element

∑n
i=−m bix

i in A1 such that

(1− ax)(
n∑

i=−m

bix
i) = 1.

Therefore we have:

..

..

b−m = 0;
b−m+1 − aα(b−m) = 0;
.

b−1 − aα(b−2) = 0;
b0 − aα(b−1) = 1;
b1 − aα(b0) = 0;
.

bn − aα(bn−1) = 0;
aα(bn) = 0.

So by replacing b−m = 0 in Equation b−m+1 − aα(b−m) = 0, we get
b−m+1 = 0. By continuing in this way, we obtain b−m = · · · = b−1 = 0
and b0 = 1. Now, by replacing b0 = 1 in Equation b1 − aα(b0) = 0, we
have b1 = a. So b2 − aα(b1) = 0 implies that b2 = aα(a). Continuing
in this way, we get aα(a)α2(a) · · ·αn(a) = 0 and hence an+1 = 0, since
R is α-compatible by Lemma 2.5.Thus a ∈ N(R) and so J(A1) ∩ R
is nil. Similarly, we can show that J(A2) ∩ R is nil and the proof is
complete. □

Proposition 2.17. Let α be an automorphism of a ring R. Suppose
R is strongly ISP-Armendariz, U = {lR(I)| I is a subset of R}, V =
{lR((x−1;α))(J)| J is a subset of R((x−1;α))}, ϕ : U → V and ψ : V →
U , given by ϕ(L) = L((x−1;α)) and ψ(L′) = L′ ∩ R, respectively; then
oϕ = idU .
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Proof. Let I be a subset of R and A = R((x−1;α)). First we prove
that lR(I)((x

−1;α)) = lA(I). For this purpose, suppose that f(x) =∑n
i=−∞ rix

i ∈ lR(I)((x−1;α)). Thus ri ∈ lR(I) for each i ≤ n and so
riα

i(I) = 0, by Lemma 2.5. So f(x) ∈ lA(I) and hence lR(I)((x
−1;α)) ⊆

lA(I). Now, assume g(x) =
∑m

j=−∞ sjx
j ∈ lA(I). So (

∑m
j=−∞ bjx

j)I =

0. Therefore bjα
j(I) = 0 and hence bjI = 0, by Lemma 2.5. Thus

bj ∈ lR(I) for each j ≤ m. Hence g(x) ∈ lR(I)((x
−1;α)) and con-

sequently lR(I)((x
−1;α)) = lA(I). Therefore ϕ is well defined. Next

assume that J is a subset of A. Clearly, lA(J) ∩ R = lR(CJ). So ψ is
well defined. Therefore ψoϕ(U) = U((x−1;α, δ)) ∩ R = U and we are
done. □
Theorem 2.18. Let α be an automorphism of a ring R. Suppose R is
strongly ISP-Armendariz. Then R satisfies the ascending chain condi-
tion on left (resp., right) annihilators if and only if so does R((x−1;α)).

Proof. It is clear, by Proposition 2.17. □
According to Cohn [11], a ring R is called reversible if ab = 0 implies

ba = 0, for a, b ∈ R. Prior to Cohn’s work, reversible rings were studied
under the name completely reflexive by Mason in [31] and under the
name zero commutative, or zc, by Habeb in [14]. In his monograph [36]
on distributive lattices arising in ring theory, Tuganbaev investigates
a property called commutative at zero, which is equivalent to the re-
versible condition on rings. Reversible rings are between commutative
rings and semicommutative rings. A stronger condition than reversible
was defined by Lambek in [26]. A ring R is called symmetric if for all
a, b, c ∈ R we have abc = 0⇒ bac = 0.

Theorem 2.19. Let α be an automorphism of a ring R. If R is a
strongly ISP-Armendariz ring, then we have the following statements:

(i) R is symmetric if and only if so is R((x−1;α)).
(ii) R is reversible if and only if so is R((x−1;α)).

Proof. (i) If R((x−1;α)) is symmetric, then clearly so is R. Now let
fgh = 0 with f(x), g(x), h(x) in R((x−1;α)). Thus abc = 0 for each
a ∈ Cf , b ∈ Cg and c ∈ Ch, by Proposition 2.10. Since R is symmetric,
acb = 0. Therefore aαp(c)αq(b) = 0 for each integers p and q, by Lemma
2.5. This implies that fhg = 0 and hence R((x−1;α)) is symmetric.
(ii) It is similar to part (i). □

The concept of zip rings initiated by Zelmanowitz [37]. Zelmanowitz
stated that any ring R satisfying the descending chain condition on
right annihilators satisfies the following condition:

∀ ∅ ̸= X ⊆ R
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if rR(X) = 0, then ∃ Y ⊆ X with rR(Y ) = 0 and Y is finite.

Faith in [13] called a ring R right zip if R satisfies the following con-
dition. Zelmanowitz [37] noted that any ring satisfying the descending
chain condition on right annihilators is right zip, and he also showed
that there exist commutative zip rings which do not satisfy the de-
scending chain condition on (right) annihilators. Beachy and Blair [4]
showed that if R is a commutative zip ring, then the polynomial ring
R[x] is a zip ring. Hong et al. [21, Theorem 11] proved that R is a
right (left) zip ring if and only if R[x] is a right (left) zip ring, when R
is a Armendariz ring.

Now we turn our attention to the relationship between the zip prop-
erty of a ring R and these of the inverse skew Laurent series ring
R((x−1;α)).

Theorem 2.20. Let α be an automorphism of a ring R. Suppose R is
strongly ISP-Armendariz. Then R is a right zip ring if and only if so
is R((x−1;α))

Proof. Let A = R((x−1;α)) is right zip and X a non-empty subset of
R such that rR(X) = 0. We show that rA(X) = 0. To see this, let
f(x) =

∑n
i=−∞ aix

i be an element of rA(X). So ai ∈ rR(X) = 0 and so
f(x) = 0. Hence there exists a finite set Y ⊆ X such that rA(Y ) = 0.
On the other hand, rR(Y ) = rA(Y ) ∩ R. Therefore rR(Y ) = 0 and so
R is right zip ring. Conversely, suppose R is right zip and let U be a
non-empty subset of A such that rA(U) = 0. Suppose U0 = CU be the
set of all coefficients of elements in U . If a ∈ rR(U0), then f(x)a = 0
for any f(x) ∈ U , by Lemma 2.5 and so a ∈ rA(U) = 0. That is,
rR(U0) = 0. Therefore, there exists a finite set V0 ⊆ U0 such that
rR(V0) = 0. For each a ∈ V0, there exists ga(x) ∈ U such that some
of coefficients of ga(x) is a. Let V be a minimal subset of U such that
ga(x) ∈ U , for each a ∈ V0. Then V is a non-empty finite subset of U .
Let W0 be the set of all coefficients of elements in V . Then V0 ⊆ W0

and so rR(W0) = 0. If f(x) =
∑m

i=−∞ aix
i be elements of rA(V ), then

g(x)f(x) = 0, for each g(x) ∈ V and so ai ∈ rR(W0) = 0, for each
i ≤ m. Therefore f(x) = 0 and hence rA(V ) = 0. So R((x−1;α)) is
right zip and the result follows. □
Corollary 2.21. Let R be an α-rigid ring. Then R is right zip if and
only if so is R((x−1;α)).

Proof. It is clear, by Theorem 2.6 □
We finish the article, by considering the quasi Baer and p.q.-Baer

properties of rings R and R((x−1;α)).
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A ring R is called quasi Baer if the left annihilator of every ideal of
R is generated, as a left ideal, by an idempotent of R. Clark [10] intro-
duced the quasi Baer rings and used them to characterize a finite di-
mensional twisted matrix units semigroup algebra over an algebraically
closed field. The definitions of quasi Baer rings is left-right symmetric.
E. Armendariz [3, Theorem B] proved that for a reduced ring R, R[x] is
a quasi Baer ring if and only if so is R. Birkenmeier et al. [7, Theorems
1.2 and 1.5] showed that for many polynomial extensions, a ring R is
quasi Baer if and only if the polynomial extension over R is quasi Baer.
In [30, Theorem 3.1] the authors proved that if R is a quasi Baer ring
with an automorphism α, then R((x−1;α)) is a quasi Baer ring. But,
the following example shows that the converse of this result is not true,
in general.

Example 2.22. Let S be a prime ring which is not simple and assume
that I is a non-trivial ideal of S. Consider the ring

R = {(a, b) ∈ S ⊕ S : b− a ∈ I}

and the automorphism α of R given by α((a, b)) = (b, a), for each
(a, b) ∈ R. In [16, Example 2.9] it is shown that R is not quasi
Baer. But similar to the proof of Example 3.2 of [30], one can see
that R((x−1;α)) is quasi Baer.

The following theorem shows that if R is a strongly ISP-Armendariz
ring, then the converse of [30, Theorem 3.1] is indefeasible.

Theorem 2.23. Let α be an automorphism of a ring R. Suppose R is
strongly ISP-Armendariz. If R((x−1;α)) is quasi Baer, then so is R.

Proof. Assume that I is an ideal of R and A = R((x−1;α)). Since A
is a quasi Baer ring, we have lA(AIA) = Ae(x), for some idempotent
e(x) ∈ A. Note that e(x) = e ∈ R, by Proposition 2.6 of [30]. Thus
Re ⊆ lR(I). Now, let r ∈ lR(I). We show that r ∈ lA(AIA). To see
this, let a ∈ I and f(x) =

∑n
j=−∞ bjx

j ∈ A. Thus we have rf(x)a =∑n
i=−∞ rbjα

j(a)xj. On the other hand ra = 0 implies that rαj(a) = 0
for each j ≤ n, since R is α-compatible by Lemma 2.5. So rbjα

j(a) = 0
for each j ≤ n, since R is semicommutative, by Theorem 2.4. Thus
rf(x)a = 0 and hence r ∈ lA(AIA) = Ae. This implies that r = re.
Therefore lR(I) = Re and so R is quasi Baer. □

In [8] Birkenmeier, Kim and Park, defined a ring to be called left
(resp., right) principally quasi Baer (or simply left (resp., right) p.q.-
Baer) if the left (resp., right) annihilator of every principal left (resp.,
right) ideal of R is generated by an idempotent, as a left (resp., right)
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ideal of R. Equivalently, R is left (resp., right) p.q.-Baer if R modulo
the left (resp., right) annihilator of any principal left (resp., right) ideal
is projective. A ring is called p.q.-Baer if it is both right and left p.q.-
Baer. The class of p.q.-Baer rings includes all biregular rings, all quasi
Baer rings and is closed under direct products and Morita invariance.
Notice that the definition of a p.q.-Baer ring is not symmetric, however,
if R is a semiprime ring, then R is right p.q.-Baer if and only if R is
left p.q.-Baer.

Recall from [6], an idempotent e ∈ R is left (resp., right) semicentral
in R if ere = re (resp., ere = er), for all r ∈ R. Equivalently, an
idempotent e ∈ R is left (resp., right) semicentral if Re (resp., eR)
is an ideal of R. The set of all left semicentral idempotents of R is
denoted by Sl(R).

Definition 2.24. [9] Let E = {e0, e1, . . .} be a non-empty countable
subset of Sl(R). Then E is said to have a generalized countable join e
if for a given a ∈ R, there exists e ∈ Sl(R) such that

(i) eei = ei, for all positive integers i;
(ii) If aei = ei for all positive integers i, then ae = e.

Finally, we state the sufficient condition on a ring R that p.q.-Baer
property of R is also preserved by the inverse skew Laurent series
extension R((x−1;α)).

Theorem 2.25. Let α be an automorphism of a ring R. Suppose R is
strongly ISP-Armendariz. Then R((x−1;α)) is a left p.q.-Baer ring if
and only if R is left p.q.-Baer and every countable subset of Sl(R) has
a generalized countable join in R.

Proof. It is clear by Theorem 3.18 of [30], since R is α-compatible by
Lemma 2.5. □
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