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COHEN-MACAULAY HOMOLOGICAL DIMENSIONS
WITH RESPECT TO AMALGAMATED DUPLICATION

A. ESMAEELNEZHAD

Abstract. In this paper we use “ring changed” Gorenstein
homological dimensions to defi ne Cohen-Macaulay injective,
projective and flat dimensions. To do this we use the amalgamated
duplication of the base ring with semi-dualizing ideals. Finiteness
of these new dimensions characterize Cohen-Macaulay rings with
dualizing ideals.

1. Introduction

Let A be a commutative ring with identity and E an A-module. In
1956, Nagata introduced the trivial extension of A along E denoted by
A ⋉ E (cf. [13]). As an A-module, A ⋉ E is just the direct sum of A
and M . The multiplication is defined by (a, x)(b, y) = (ab, ay+ bx) for
all a, b ∈ A and x, y ∈ E. In [10], Holm and Jorgensen introduced the
Cohen-Macaulay injective, projective and flat dimension of a complex.
In fact if A is a ring with a semi-dualizing module C, then one can
consider the trivial extension ring A ⋉ C, and if M is a complex of
A-modules, then we can consider M as a complex of (A⋉C)-modules
and take the Gorenstein homological dimensions ofM over (A ⋉ C).
Then the infima of these over all semi-dualizing modules C define the
Cohen-Macaulay dimensions of M as follows:

Definition 1.1. ([10, Definition 2.3]) Let M and N be complexes of
A-modules such that Hi(M) = 0 for i ≫ 0 and Hi(N) = 0 for ≪ 0.
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The Cohen-Macaulay injective, projective, and flat dimensions of M
and N over A are:

CMidAM = inf{GidA⋉C M | C is a semi-dualizing module},

CMpdAN = inf{GpdA⋉C N | C is a semi-dualizing module},

CMfdAN = inf{GfdA⋉C N | C is a semi-dualizing module}.

The finiteness of these Cohen-Macaulay dimensions are equivalent
that, the ring A is Cohen-Macaulay with a dualizing module. Recall
from [3] that, a finitely generated A-module C is called a semi-dualizing
module for A if A −→ RHomA(C,C) is an isomorphism in the derived
category D(A) of A. Equivalently a finitely generated A-module C
is called a semi-dualizing A-module if ExtiA(C,C) = 0 for all i ⩾ 0
and HomA(C,C) ∼= A. Recall that A has at least one semi-dualizing
module e.g. C = A itself.

Recently D’anna and Fontana have introduced a new construction,
called the amalgamated duplication of a ring A along an ideal I ⊂ A,
denoted by A ▷◁ I. When I2 = 0 the new construction A ▷◁ I coincides
with the notion of trivial extension A⋉ I. The main properties of the
amalgamated duplication A ▷◁ I have discussed more in detail in [6]
and [7].

In this paper we consider A ▷◁ I construction when I is a semi-
dualizing ideal of A and take the ring changed Gorenstein homolog-
ical dimension of a A-complex over A ▷◁ I. Then we define the
Cohen-Macaulay injective, projective, and flat dimensions denoted by
CM▷◁idA, CM▷◁pdA, and CM▷◁fdA respectively (see Definition 2.1). Our
main result is Theorem 2.8 which gives a characterization of Cohen-
Macaulay rings admitting dualizing ideals by finiteness of the new
Cohen-Macaulay dimensions.

Next, we deal with some applications of a general construction, intro-
duced in [7], called amalgamated duplication of a ring along an ideal.

We end this section with a description of the construction of D’Anna
and Fontana’s amalgameted duplication. Let A be a commutative ring
with unit element 1 and let I be an ideal of A. Set

A ▷◁ I = {(a, b)|a, b ∈ A, b− a ∈ I}.

It is easy to check that A ▷◁ I is a subring of A×A with unit element
(1, 1) (with the usual componentwise operations) and that A ▷◁ I =



COHEN-MACAULAY HOMOLOGICAL DIMENSIONS                      127

{(a, a+ i)|a ∈ A, i ∈ I}. There are ring homomorphisms

A −→A ▷◁ I −→ A,

a 7−→(a, a),

(a, c) 7−→ a.

These homomorphisms allow us to view any A-module as an A ▷◁ I-
module, and any A ▷◁ I-module as an A-module.

Throughout this paper A will denoted for a commutative and Noe-
therian ring with unit element 1.

2. Cohen-Macaulay dimensions

In this section, we define the Cohen-Macaulay dimensions with re-
spect to amalgamated duplication along semi-dualizing ideals, and then
identify when these quantities are finite. The key definition is the fol-
lowing. Recall that a semi-dualizing ideal, is an ideal of A which is a
semi-dualizing A-module. Note that every ideal of A isomorphic to A
is a semi-dualizing ideal. In particular A is a semi-dualizing ideal of A.

Definition 2.1. Let M and N be complexes of A-modules such that
Hi(M) = 0 for i≫ 0 and Hi(N) = 0 for ≪ 0.

The Cohen-Macaulay injective, projective, and flat dimensions with
respect to amalgamated duplication, of M and N over A are:

CM▷◁idAM = inf{GidA▷◁I M | I is a semi-dualizing ideal},

CM▷◁pdAN = inf{GpdA▷◁I N | I is a semi-dualizing ideal},

CM▷◁fdAN = inf{GfdA▷◁I N | I is a semi-dualizing ideal},

where Gid, Gpd, and Gfd denote the Gorenstein injective, projective,
and flat dimensions (see [2]).

The main result of this paper is Theorem 2.8. For the proof of the
theorem we need the following proposition and lemmas. Recall the
definition of the Bass and Auslander classes with respect to the semi-
dualizing ideal I, from [3, Definition. 4.1]. Let I be a semi-dualizing
ideal of A. The I-Bass class of A, BI(A), is the full subcategory of the
derived category of A, defined by specifying their objects as follows: Y
belongs to BI(A) if and only if Y and RHomA(I, Y ) are homologically
bounded, and the canonical map ξIY : I ⊗L

A RHomA(I, Y ) → Y is an
isomorphism. The I-Auslander class of A, AI(A), is the full subcate-
gory of the derived category of A, defined by specifying their objects as
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follows: X belongs to AI(A) if and only if X and I⊗L
AX are homologi-

cally bounded, and the canonical map γIX : X → RHomA(I, I⊗L
AX) is

an isomorphism. By [3, Proposition 4.4] all complexes of finite injective
(resp. flat) dimension is belong to BI(A) (resp. AI(A)).

Proposition 2.2. Let I be a semi-dualizing ideal of A and let M be an
A-module which is Gorenstein injective over A ▷◁ I. Then there exists
a short exact sequence of A-modules,

0 // M ′ // HomA(I, E) // M // 0,

where E is an injective A-module, and M ′ is Gorenstein injective over
A ▷◁ I, which stays exact if one applies to it the functor
HomA(HomA(I, J),−) for any injective A-module J .

Proof. The argument is the same as proof of [10, Lemma 4.1] with some
changes. Since M is a Gorenstein injective A ▷◁ I-module, there exists
a short exact sequence of A ▷◁ I-modules,

0 // N // K // M // 0,

where K is injective, and N is Gorenstein injective A ▷◁ I-modules,
which stays exact if one applies to it the functor HomA▷◁I(L,−) for
any injective A ▷◁ I-module L. By [15, Lemma 3.7(i)], for any injec-
tive A-module J , HomA(A ▷◁ I, J) is injective A ▷◁ I-module. Thus
the short exact sequence stays exact if one applies to it the functor
HomA▷◁I(HomA(A ▷◁ I, J),−). On the other hand by [15, Lemma
3.1(v)] there is the following equivalence of functors:

HomA▷◁I(HomA(A ▷◁ I, J),−) ∼= HomA(HomA(I, J),−).
Therefore the above short exact sequence, stays exact when one applies
to it the functor HomA(HomA(I, J),−). By [15, Lemma 3.7(ii)] the
injective A ▷◁ I-module K is a direct summand in HomA(A ▷◁ I,E)
for some injective A-module E. If K ⊕ K ′ ∼= HomA(A ▷◁ I, E), then
by adding K ′ to both the first and second modules in the above short
exact sequence, we may assume that, the sequence has the form:

0 // N // HomA(A ▷◁ I, E) // M // 0.

The A ▷◁ I-module structure of HomA(A ▷◁ I, E) comes from the first
variable. For any a ∈ A, i ∈ I and (α, γ) ∈ HomA(A ▷◁ I, E) we have:(

a
i

)
. (α, γ) = (aα+ χγ(i), aγ + χ′

γ(i))

where χγ(i) is the homomorphism A→ E given by a 7→ a.γ(i) and χ′
γ(i)

is the homomorphism I → E given by j 7→ j.γ(i).
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When we view M as an A ▷◁ I-module, it is annihilated by the ideal
p = {(0, i)|i ∈ I} (See [7, Lemma 2.4]). Hence

0 =

(
0
i

)
.η (α, γ) = η(

(
0
i

)
.(α, γ)) = η(χγ(i), χ

′
γ(i)). (∗)

Let α : A → E be a homomorphism. Therefore α(a) = a.α(1) for any
a ∈ A. Note that there exists a surjection F → HomA(I, E) with F
free, and hence a surjection I ⊗A F → I ⊗ HomA(I, E). On the other
hand as E is injective, it belongs to the Bass class, BI(A), and therefore
I⊗HomA(I, E) ∼= E (See [3, Proposion 4.4 and Obseversion 4.10]). So
there is a surjection I⊗AF → E. Since I⊗AF is a direct sum of copies
of I, this means that there exist the homomorphisms γ1, . . . , γt : I → E
and the element i1, . . . , it ∈ I, such that α(1) = γ1(i1) + · · · + γt(it).
Hence α : A → E is equal to χγ1(i1)+···+γt(it) = χγ1(i1) + · · · + χγt(it).
Therefore (∗) implies that η(α, α|I) = 0 for every α : A → I. Now we
have the following short exact sequence

0 // HomA(A,E)
f // HomA(A ▷◁ I, E)

g // HomA(I, E) // 0,

where f(α) = (α, α|I) and g(α, γ) = γ − α|I, for any α ∈ HomA(A,E)
and γ ∈ HomA(I, E). Hence we can construct a commutative diagram
of A ▷◁ I-modules with exact rows:

0 // N //

��

HomA(A ▷◁ I, E)
η //

g

��

M //

=

��

0

0 // M ′ // HomA(I, E) φ
// M // 0.

For this let γ ∈ HomA(I, E) then there exists (α1, γ1) ∈ HomA(A ▷◁
I, E) such that g(α1, γ1) = γ1−α1|I = γ. Hence we can define φ(γ) =
η(α1, γ1). It is clear that φ is well defined. Indeed let γ = γ′ then
there exist (α1, γ1), (α

′
1, γ

′
1) ∈ HomA(A ▷◁ I, E) such that g(α1, γ1) =

g(α′
1, γ

′
1). Therefore γ1 − α1|I = γ′1 − α′

1|I implying η(0, γ1 − α1|I) =
η(0, γ′1 − α′

1|I). So by (∗),
φ(γ) = η(α1, γ1) = η(α′

1, γ
′
1) = φ(γ′).

Also φ is surjective since η and g are. The exact sequence,

0 // M ′ // HomA(I, E) // M // 0,

has the properties claimed in the proposition. To see so, applying
the snake lemma to the above diagram, we find the following exact
sequence:

0 // HomA(A,E) // N // M ′ // 0.
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By [15, Theorem 3.8(ii)], HomA(A,E) is Gorenstein injective over A ▷◁
I, also N is Gorenstein injective over A ▷◁ I by construction. Therefore
M ′ is Gorenstein injective over A ▷◁ I since the class of Gorenstein
injective modules is injectively resolving by [9, Theorem. 2.7]. Finally
by construction, the upper sequence in the diagram stays exact if one
applies to it the functor HomA(HomA(I, J),−) for any injective A-
module J . So the lower sequence in the diagram stays exact when one
applies the functor HomA(HomA(I, J),−) to it. □

As the same method as [10, Lemma 4.2] we can use Proposition 2.2
and [15, Theorem 3.8(ii)] to prove the following lemma, so we omit its
proof. By Σ is denoted suspension of complexes in the derived category.
The injective (resp. flat) dimension of a A-complex N is denoted by
idAN (resp. fdAN).

Lemma 2.3. Let I be a semi-dualizing module for A. Let M be
a complex in AI(A) which has non-zero homology and satisfies that
GidA▷◁I M < ∞. Write s = sup{i|Hi(M) ̸= 0}. Then there is a
distinguished triangle in D(A),

ΣsH → Y →M →,

where H is an A-module which is Gorenstein injective over A ▷◁ I and
where idA(I ⊗L

A Y ) ⩽ GidA▷◁I M .

Lemma 2.4. Let I be a semi-dualizing ideal of A. Let M be a complex
in AI(A) with non-zero homology. Set s = sup{i|Hi(M) ̸= 0} and
suppose that M satisfies

Exts+1
A (M,H) = 0

for each A-module H which is Gorenstein injective over A ▷◁ I. Then

idA(I ⊗L
A M) = GidA▷◁I M.

Proof. The proof is similar to the proof of [10, Lemma 4.3]. Just use
Lemma 2.3 instead of [10, Lemma 4.2] and [15, Theorem 3.8(ii)] instead
of [10, Lemma 3.3(ii)]. □

The following Lemma shows that there exist some complexes which
lemma 2.4 applies. The proof is similar to the proof of [10, Lemma
4.4], therefore we omit it.

Lemma 2.5. Let I be a semi-dualizing ideal of A. Let M be a complex
of A-modules which has non-zero homology and satisfies that Hi(M) =
0 for i ≪ 0 and that projective dimension of M as A-module is fi-
nite. Write s = sup{i|Hi(M) ̸= 0}. Let H be an A-module which is
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Gorenstein injective over A ▷◁ I. Then

Exts+1
A (M,H) = 0.

Recall from [2, (A.6.3)] that when A is local with residue class field
k, and M is a complex of A-modules such that Hi(M) = 0 for i ≪ 0,
the width of M is define as

widthAM = inf{i|Hi(M ⊗L
A k) ̸= 0}.

Recall also from [2, (A.6.3)] that when A is local with residue class field
k and M is a complex of A-modules such that Hi(M) = 0 for i ≫ 0,
the depth of a complex of M , is define as

depthAM = − sup{i|Hi(RHomA(k,M)) ̸= 0}.
During results 2.6-2.11 we barrow methods of [10] to establish ana-

logues of trivial extension properties appeared in [10], for amalgameted
duplication.

Lemma 2.6. Assume that A is a local ring with residue class field k
and I is a semi-dualizing ideal of A. Let M be a complex of A-modules
which has non-zero homology and satisfies that Hi(M) = 0 for i ≪ 0
and that fdAM <∞. Then

idA I ≤ GidA▷◁I M + widthAM.

Proof. If widthAM = ∞, then there is nothing to proof. On the
other hand Hi(M) = 0 for i ≪ 0 implies that Hi(M ⊗L

A k) = 0 for
i ≪ 0, whence widthAM > −∞. Thus we may assume that −∞ <
widthAM <∞. The condition fdAM <∞ implies pdAM <∞, since
dimA < ∞ (cf. [12, Proposition 6]). Let s = sup{i|Hi(M) ̸= 0} and
H is any A-module which is Gorenstein injective over A ▷◁ I. Then
Exts+1

A (M, I) = 0, by Lemma 2.5. Note that M ∈ AI(A) hence by
Lemma 2.4, idA(I ⊗L

A M) = GidA▷◁I M . Now we have the following
computations

GidA▷◁I M = idA(I ⊗L
A M)

⩾− inf{i|Hi(RHomA(k, I ⊗L
A M)) ̸= 0}

=− inf{i|Hi(RHom(k, I)⊗L
A M) ̸= 0}

=− inf{i|Hi(RHom(k, I)) ̸= 0} − inf{i|Hi(M ⊗L
A k) ̸= 0}

= idA I − widthAM,

where the first inequality is from [2, A.5.2], the second equality is by
Tensor-evaluation ([2, A.4.23]), since fdAM <∞, the third equality is
by [2, A.7.9.2] and the last equality is by [2, A.5.7.4] and definition of
width. □
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Lemma 2.7. Assume that A is a local ring with residue class field k
and I is a semi-dualizing ideal of A. Let N be a complex of A-modules
which has non-zero homology and satisfies that Hi(N) = 0 for i ≫ 0
and that idAN <∞. Then

idA I ≤ GfdA▷◁I N + depthAN.

Proof. Let E = E(k) be the injective envelope of k. Then it is well
known that fdAHomA(N,E) = idAN and widthAHomA(N,E) = depthA

N .
On the other hand by [15, Lemma 3.7], HomA(A ▷◁ I, E) is a
faithfully injective A ▷◁ I -module. Hence GidA▷◁I HomA▷◁I (N,
HomA(A ▷◁ I,E)) = GfdA▷◁I N follows from [2, Theorem 6.4.2]. Thus
by associativity, GidA▷◁I HomA(N, E) = GfdA▷◁I N . Now the desired
inequality holds by Lemma 2.6 applying toM = HomA(N, E). □

Now we are ready to prove the main result of this paper. The flat
dimension of a A-module M is denoted by fdAM .

Theorem 2.8. Assume that the ring A is local with residue class field
k. The following are equivalent.

(1) A is a Cohen-Macaulay ring with a dualizing ideal.
(2) CM▷◁idAM < ∞ holds when M is any complex of A-modules

with bounded homology.
(3) There is a complex M of A-modules with bounded homology,

CM▷◁idAM <∞, fdAM <∞ and widthAM <∞.
(4) CM▷◁idA k <∞.
(5) CM▷◁pdAM < ∞ holds when M is any complex of A-modules

with bounded homology.
(6) There is a complex M of A-modules with bounded homology,

CM▷◁pdAM <∞, idAM <∞ and depthAM <∞.
(7) CM▷◁pdA k <∞.
(8) CM▷◁fdAM < ∞ holds when M is any complex of A-modules

with bounded homology.
(9) There is a complex M of A-modules with bounded homology,

CM▷◁fdAM <∞, idAM <∞ and depthAM <∞.
(10) CM▷◁fdA k <∞.

Proof. (1) ⇒ (2) Assume that A is a Cohen-Macaulay ring with a
dualizing ideal I. Therefore by [6, Theorem 11] or [1, Corollary 3.4]
A ▷◁ I is a Gorenstein ring. Thus by [2, Theorem 6.2.7] GidA▷◁I M <∞.
Note that M is a complex with bounded homology as A ▷◁ I-module.
But I is in particular a semi-dualizing ideal, so by Definition 2.1 we
get CM▷◁idAM <∞.

(2)⇒ (3) and (2)⇒ (4) are trivial.
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(3)⇒ (1) Assume that M is a complex of A-modules with bounded
homology such that CM▷◁idAM < ∞, fdAM < ∞, and widthAM <
∞. So that there is a semi-dualizing ideal I of A such that GidA▷◁I M <
∞. Therefore by Lemma 2.6 we have idA I <∞, which implies that A
is a Cohen-Macaulay ring with dualizing ideal I.

(4) ⇒ (1) Assume that CM▷◁idA k < ∞. Then by Definition 2.1, A
has a semi-dualizing ideal I with GidA▷◁I k <∞. Set E := EA▷◁I(k) be
the injective envelope of k asA ▷◁ I-module. ThereforeRHomA▷◁I(E, k)
has bounded homology by [9, Theorem 2.22]. Using the isomorphism
k ∼= HomA▷◁I(k,E) and the adjunction isomorphism, we have:

RHomA▷◁I(E, k) ∼=RHomA▷◁I(E,HomA▷◁I(k,E))

∼=RHomA▷◁I(E ⊗A▷◁I k,E)

=RHomA▷◁I(k,HomA▷◁I(E,E))∼

∼=RHomA▷◁I(k, Â ▷◁ I)

∼=RHomA▷◁I(k,A ▷◁ I)⊗A▷◁I Â ▷◁ I.

Since Â ▷◁ I is faithfully flat overA ▷◁ I, it follows thatRHomA▷◁I(k,A ▷◁
I) has also bounded homology. Thus A ▷◁ I is a Gorenstein ring. Hence
by [6, Theorem 11] A is a Cohen-Macaulay ring with dualizing ideal I.

(1)⇒ (5) the technique is similar to (1)⇒ (2).
(5)⇒ (6) and (5)⇒ (7) are trivial.
(6) ⇒ (1) the technique is similar to (3) ⇒ (1) just note that A

has finite Krull dimension since it is a local ring. Hence by [14] and
[12] every flat module has finite projective dimension. Therefore by [4,
Proposition 3.7] GpdA▷◁I M < ∞ implies that GfdA▷◁I M < ∞. And
use Lemma 2.7 instead of Lemma 2.6.

(7)⇒ (1) Assume that CM▷◁pdA k <∞ then A has a semi-dualizing
ideal I with

GpdA▷◁I k <∞.
Therefore RHomA▷◁I(k,A ▷◁ I) has bounded homology by [9, Theorem
2.20]. So that A ▷◁ I is a Gorenstein ring. Hence by [6, Theorem 11]
A is a Cohen-Macaulay ring with dualizing ideal I.

With similar proofs one can see easily that (1), (8), (9) and (10) are
equivalent. □

In [8], Gerko introduced the notion of Cohen-Macaulay dimension of
finitely generated A-modules M denoted by CM- dimAM . It is known
that a local ring A with residue class field k is Cohen-Macaulay if and
only if CM- dimA k <∞, by [8, Theorem 3.9].
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Proposition 2.9. Assume that the ring A is local and let M be a
finitely generated A-module. Then

CM- dimAM ≤ CM▷◁pdAM,

and if CM▷◁pdAM is finite then equality holds.

Proof. Take a semi-dualizing ideal I such that CM▷◁pdAM = GpdA▷◁I M .
On the other hand combining [8, proof of Theorem 3.7] with [8, Defi-
nition 3.2’] shows that

CM- dimAM ≤ GpdA▷◁I M.

So GpdA▷◁I M <∞ implies that CM- dimAM <∞ and hence

CM- dimAM = depthA− depthAM

by [8, Theorem 3.8]. Now GpdA▷◁I M = G- dimI M by [11, Proposition
3.1], where G- dimI M is the Gorenstein dimension with respect to the
semi-dualizing ideal I introduced in [3, Definition 3.11]. So G- dimI M
is finite and hence

G- dimI M = depthA− depthAM

by [3, Theorem 3.14]. Combining the last four equations shows that
CM- dimAM = CM▷◁pdAM as desired. □

In the proof of the last result we saw that CM▷◁pdAM enjoys the
Auslander-Buchsbaum formula.

Proposition 2.10. Assume that the ring A is local and let M be a
finitely generated A-module. If CM▷◁pdAM <∞, then

CM▷◁pdAM = depthA− depthAM.

Dually we have the Bass formula:

Proposition 2.11. Assume that the ring A is local and let N ̸= 0 be
a finitely generated A-module. If CM▷◁idAM <∞, then

CM▷◁idAM = depthA.

Proof. Take a semi-dualizing ideal I such that CM▷◁idAM = GidA▷◁I M .
By [5, Theorem 2.2] finiteness of GidA▷◁I M implies that

GidA▷◁I M = depthA▷◁I A ▷◁ I.

Finally note that we have

depthA▷◁I A ▷◁ I = depthA.

□
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