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ON THE GROUPS WITH THE PARTICULAR
NON-COMMUTING GRAPHS

N. AHANJIDEH∗ AND H. MOUSAVI

Abstract. Let G be a non-abelian finite group. In this paper,
we prove that Γ(G) is K4-free, if and only if G ∼= A× P , where A
is an abelian group, P is a 2-group and G/Z(G) ∼= Z2 × Z2. Also,
we show that Γ(G) is K1,3-free if and only if G ∼= S3, D8 or Q8.

1. Introduction

For an integer z > 1, we denote by π(z) the set of all prime divisors
of z. If G is a finite group, then π(|G|) is denoted by π(G). Let G be
a non-abelian finite group and Z(G) be its center. For x ∈ G, suppose
that clG(x) denotes the conjugacy class in G containing x and CG(x)
denotes the centralizer of x in G. We will associate a graph Γ(G)
to G which is called the non-commuting graph of G. The vertex set
V (Γ(G)) is G − Z(G) and the edge set E(Γ(G)) consists of (x, y) (we
write x ∼ y), where x and y are distinct non-central elements of G such
that xy ̸= yx. Here, we are considering simple graphs, i.e., graphs with
no loops or directed or repeated edges. The non-commuting graphs
of the non-abelian finite groups have been studied in some literatures.
For example in [1], the authors classified non-abelian finite groups with
Hamiltonian non-commuting graphs, regular non-commuting graphs
and planner non-commuting graphs. Also, it has been shown in [1] that
the non-commuting graph of a non-abelian group is connected. Note
that for a graph H, the H-free graph L is a graph that does not have an
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induced subgraph isomorphic to L. Because of the special properties
of K1,3-free graphs and K4-free graphs, they have been studied in some
papers. In this paper, we are going to study non-abelian finite groups
which their non-commuting graphs are K1,3-free and non-abelian finite
groups which their non-commuting graphs are K4-free. Throughout
this paper, we will use the following notation: let G be a finite non-
abelian group and M(G) denote a set of the orders of maximal abelian
subgroups G. A set of vertices of a graph Γ is called an independent
set, if its elements are pairwise nonadjacent. The independent number
of a graph Γ, which is denoted by α(Γ), is the cardinality of the largest
its independent set.

2. Some Lemmas

In this section, we bring some lemmas which will be used in the proof
of the main theorem:

Lemma 2.1. If G is a finite group and H,K and L are distinct proper
subgroups of G such that G = H ∪ K ∪ L, then [G : H] = [G : K] =
[G : L] = 2 and H ∩ L = H ∩K = K ∩ L = H ∩K ∩ L.

Proof. It follows immediately by considering the order of G. □
Lemma 2.2. [3] If for every x ∈ G−Z(G), |clG(x)| = m, then m is a
power of the prime p and G = P × A, where P is a p-Sylow subgroup
of G and A is abelian.

Lemma 2.3. For every x ∈ G − Z(G), there is a triangular in Γ(G)
containing the vertex x.

Proof. Since x ̸∈ Z(G), there exists y ∈ G− Z(G) such that xy ̸= yx.
Thus x ∼ y in Γ(G). Since CG(x) ∪ CG(y) ̸= G, we deduce that x, y, z
form a triangular, where z ∈ G− (CG(x) ∪ CG(y)). □

It follows from Lemma 2.3 that:

Corollary 2.4. Γ(G) contains a triangular.

Lemma 2.5. Let p, q ∈ π(G).
(i) IfM(G) ⊆ {p, q}, thenM(G) = {p, q} and G is the non-abelian

group of order pq.
(ii) If M(G) ⊆ {p, p2}, then G is a p-group, |Z(G)| = p and

M(G) = {p2}.

Proof. Since every maximal abelian subgroup of a finite non-abelian p-
group has order at least p2, we get that G is not a p-group and hence,
G is a {p, q}-group such that every Sylow subgroup of G has prime
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order and its center is trivial. Thus M(G) = {p, q}, as claimed in (i).
The same reasoning completes the proof of (ii). □
Lemma 2.6. If M(G) ⊆ {2, 4}, then G ∼= D8 or Q8.

Proof. By Lemma 2.5,M(G) = {4}, |Z(G)| = 2 and G is a non-abelian
2-group. Thus there exists x ∈ G−Z(G) such that O(x) = 4. Also, we
can see that G/Z(G) is a 2-elementary abelian group and CG(x) = ⟨x⟩.
So ⟨x⟩/Z(G) is a normal subgroup of G/Z(G) and hence, ⟨x⟩ is normal
in G. Therefore, G/⟨x⟩ = G/CG(x) ↪→ Aut(⟨x⟩) ∼= Z2. This forces
|G| = 8 and hence, lemma follows. □
Lemma 2.7. If α(Γ(G)) ≤ 2, then G ∼= S3, D8 or Q8.

Proof. By [1, Remak 2.5], we can see that M is a maximal abelian
subgroup of G if and only if M − Z(G) is a maximal independent set
of Γ(G). Thus “α(Γ(G)) ≤ 2” implies that for every maximal abelian
subgroup M of G, |M | − |Z(G)| ≤ 2. Thus |Z(G)|(|M |/|Z(G)| −
1) ∈ {1, 2}. This forces (|M |, |Z(G)|) ∈ {(2, 1), (3, 1), (4, 2)}. Thus by
Lemmas 2.5 and 2.6, the result follows. □

2.1. Main results.

Theorem 2.8. Let G be a non-abelian finite group.

(i) Γ(G) is K4-free if and only if G ∼= A×P , where A is an abelian
group, P is a 2-group and G/Z(G) ∼= Z2 × Z2.

= S3, D8 or Q8.(ii) Γ(G) is K1,3-free if and only if G ∼

Proof. (i) “=⇒ ” Let x be an arbitrary element of G − Z(G) and
y ∈ G − CG(x). Then for every element z ∈ G − (CG(x) ∪ CG(y)),
G = CG(x) ∪ CG(y) ∪ CG(z). Fix K = CG(x) ∩ CG(y) ∩ CG(z). By
Lemma 2.1, CG(x)∩CG(y) = K is a normal subgroup of G, |G/K| = 4
and G/K contains different elements xK, yK and zK of order 2. Thus
G/K ∼= Z2 × Z2. Now for every a, b ∈ CG(x) − (CG(x) ∩ CG(y)) =
CG(x) − K, we have a, b ∈ G − (CG(y) ∪ CG(z)) and hence, G =
CG(a) ∪ CG(y) ∪ CG(z) = CG(b) ∪ CG(y) ∪ CG(z). Thus CG(a)−K =
CG(b) − K, so a ∈ CG(b). Consequently, CG(x) = ⟨CG(x) − K⟩ is
abelian. Similarly, we can see that CG(y) and CG(z) are abelian and
hence, we get that K ≤ Z(G). Since G is non-abelian and |G/K| = 4,
we get K = Z(G) and G/Z(G) ∼= Z2×Z2. Now Lemma 2.2 completes
the proof.
“ ⇐= ” Let G/Z(G) = ⟨aZ(G)⟩ × ⟨bZ(G)⟩ ∼= Z2 × Z2. Then CG(a),
CG(b) and CG(ab) are abelian and G = CG(a) ∪ CG(b) ∪ CG(ab). For
every subset T of G−Z(G) with four elements, at least one of the sets
T ∩CG(a), T ∩CG(b) and T ∩CG(ab) contains more than two elements.
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This forces T not to form K4, as desired.
= S3, D8 or Q8, then it is obvious that Γ(G) is K1,3-free. Now(ii) If G ∼

let Γ(G) be K1,3-free. Let M = {x1, ..., xt} be a maximal independent
set of Γ(G) such that |M | = α(Γ(G)). We continue the proof in the
following cases:

(a) Let α(Γ(G)) ≥ 3 and xi1 , xi2 , xi3 be three arbitrary elements
of M . Since Γ(G) is K1,3-free, we deduce that for every y ∈
G − Z(G), y ∈ CG(xi1), CG(xi2) or CG(xi3). This shows that
G = CG(xi1) ∪ CG(xi2) ∪ CG(xi2). Thus Lemma 2.1 shows that

∩3j=1 CG(xij) = CG(xi1) ∩ CG(xi2). (2.1)

Now let z ∈ G − (M ∪ Z(G)). If there exists 1 ≤ i, j ≤ t
such that z ̸∼ xi and z ̸∼ xj, then by (2.1), for every u ∈
{1, .., t} − {i, j}, z ̸∼ xu. Thus M ∪ {z} is an independent set,
which is a contradiction. Therefore, there exists at most one
i ∈ {1, ..., t} such that z ̸∼ xi and hence, z is adjacent to every
xj ∈M − {xi}. This means that z has at least t− 1 neighbors
in M . Since Γ(G) is K1,3-free, t − 1 ≤ 2. But α(Γ(G)) ≥
3 and hence, α(Γ(G)) = 3. So [2, Lemma 2.4] shows that
there exists a maximal abelian subgroup M ′ of G such that
|M ′ − Z(G)| = 3 and for every maximal abelian subgroup M ′′

of G, we have |M ′′ − Z(G)| ≤ 3. If |Z(G)| = 3, then |M ′| = 6,
which is an abelian subgroup. Assume that M ′ = ⟨a⟩. Then
a3 ̸∈ Z(G). Consequently for b ∈ G−CG(a

3), {b}∪(M ′−Z(G))
is the vertex set of K1,3, a contradiction. Thus |Z(G)| = 1 and
|M ′| = 4. If G has a maximal abelian subgroup M ′′ of order 3,
then for some x ∈ M ′′ of order 3, CG(x) = M ′′. Consequently
(M ′ − Z(G)) ∪ {x} is the vertex set of K1,3, a contradiction.
ThusM(G) = {2, 4} and hence, by Lemma 2.6, G ∼= D8 or Q8.
So α(G) = 2, which is a contradiction.

(b) If α(Γ(G)) ≤ 2, then Lemma 2.7 completes the proof.

□
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