Holistic Farsi handwritten word recognition using gradient features | ||
Journal of AI and Data Mining | ||
مقاله 3، دوره 4، شماره 1، خرداد 2016، صفحه 19-25 اصل مقاله (831.19 K) | ||
نوع مقاله: Original/Review Paper | ||
شناسه دیجیتال (DOI): 10.5829/idosi.JAIDM.2016.04.01.03 | ||
نویسندگان | ||
Z. Imani* 1؛ Z. Ahmadyfard2؛ A. Zohrevand3 | ||
1Electrical Engineering Department, University of Shahrood, Shahrood, Iran. | ||
2Electrical Engineering Department, University of Shahrood, Shahrood, Iran | ||
3Computer Engineering & Information Technology Department, University of Shahrood, Shahrood, Iran. | ||
چکیده | ||
In this paper we address the issue of recognizing Farsi handwritten words. Two types of gradient features are extracted from a sliding vertical stripe which sweeps across a word image. These are directional and intensity gradient features. The feature vector extracted from each stripe is then coded using the Self Organizing Map (SOM). In this method each word is modeled using the discrete Hidden Markov Model (HMM). To evaluate the performance of the proposed method, FARSA dataset has been used. The experimental results show that the proposed system, applying directional gradient features, has achieved the recognition rate of 69.07% and outperformed all other existing methods. | ||
کلیدواژهها | ||
Handwritten word recognition؛ Directional gradient feature؛ Hidden Markov Model؛ Self-organizing feature map؛ FARSA database | ||
آمار تعداد مشاهده مقاله: 2,580 تعداد دریافت فایل اصل مقاله: 3,853 |