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AN INTEGRAL DEPENDENCE IN MODULES OVER
COMMUTATIVE RINGS

S. KARIMZADEH* AND R. NEKOOEI

ABSTRACT. In this paper, a generalization of the integral depen-
dence of rings on modules is given. The stability of the integral
closure with respect to various module theoretic constructions is
also studied. Moreover, the notion of integral extension of a mod-
ule is introduced, and the Lying over, Going up and Going down
theorems for modules are proved.

1. INTRODUCTION

Throughout this paper, all rings are commutative with identity, and
all modules are unital. In the commutative ring theory, the integral
element is defined, and its properties are discussed. Also the Lying
over, Going up and Going down theorems are stated in many texts
such as [3]. Let R C R’ be the rings. a € R’ is the integral over R, if
there exists a monic polynomial f(x) € R[z|, such that f(a) = 0 [3].
In this paper, we introduce the notion of integral elements in a module
(Definition 2.1). If R C R’ C K are the rings, and K is a quotient field
of R, then o € R’ is the integral over a ring R, if and only if a.1p is
the integral over R when R is regarded as an R-module. Let M’ be an
R-module, and S be the set of regular elements of R. Then

Ty ={t €S :tm' =0, for some m" € M implies that m’ = 0}

is a multiplicative closed subset of R. As Naoum and Al-Alwan have
stated [5], we say that yn € M, as long as there exists an element m
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in M such that tm = rn, where y = r/t € Ty R, and n € M — {0}.
For any submodule N of an R-module M, we define (N : M) = {r €
R|rM C N}. A submodule P of M is called prime, if P # M; and for
r€ R, me& M and rm € P, we have m € Porr € (P : M). It is
easy to show that if P is a prime submodule of an R-module M, then
(P : M) is a prime ideal of R [1]. The set of all prime submodules is
denoted by Spec(M).

This paper has been organized as follows: In section 2, we discuss the
concept of an integral element over a module, a generalization of the
concept of an integral element over a ring. In Theorem 2.3, we obtain
the equivalent characterizations for the integral elements. We show,
in Lemma 2.5 that if M C M’ are R-modules, and y € T} R, then
M, is an R-module. Section 3 is devoted to introducing the concept
of integral extension and the integrally closed module. In [1], Alkan
and Tiras have defined the integrally closed module. Here, we define
the notion of integrally closed modules in connection with the integral
elements. Then, in Lemma 3.6, we show that our definition and the
one given in [1] are equivalent. We also prove that the notion of inte-
grally closed is a local property (Theorem 3.7). We apply the notion
of integral extension of a module, and prove the Lying over, Going up
and Going down theorems for modules (Theorems 3.10, 3.11, 3.12).

2. INTEGRAL ELEMENTS OF A MODULE

Let M’ be an R-module, and S be the set of regular elements of R.
Then

Ty ={t €S :tm' =0, for some m’ € M’ implies that m' = 0}
is a multiplicative closed subset of R.

Definition 2.1. Let M C M’ be R-modules, y € Ty1 R, and m’ € M'.
We say that an element ym/, is integral over M, if there exist a monic
polynomial f(z) € R[z]|, and a polynomial g(z) € M][z] such that
deg(g(x)) < deg(f(x)), and

fly)m' +g(y) = 0.

Example 2.2. Let M = 27, and M’ = {a/2" : a € Z,n € NU{0}}
be Z-modules. Clearly, Ty, = Z — {0}. Consider m’ = 1/2 € M’ and
y = 2/1 € Ty,;Z. Then ym' is the integral over M, but ym’ & M. If
m' =1¢€ M’ and y = 1/2 € T, 7Z, then ym' is not the integral over
M.
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Theorem 2.3. Let M C M’ be R-modules. Ify € Ty,/ R, andm/ € M,
then the following statements are equivalent:
i) ym' is the integral over M;
i1) There exist a finitely generated R-module Ly = X Rx;, and a
submodule K of an R-module Lo = Efzoy]]\/[, where k < n, such that
m' € Ly and yx; € L1+ K, for all 1 <i <mn;
iii) There erists an R-module L', such that (L'/L) = ¥i_, Rx;, where
L = Z;?:Oy]M, and k < n such that m' € L', and yx}, € L'/L for all
1< <n.
Proof. (i) = (4i) Since ym/ is the integral over M, there exist
f(z) = 2" + X' rix" € R[z]
and
g(z) = Bi_gmz’ € Mla]
such that, k < n, and
Fly)m' +g(y) = y"m' + Xgy'rim’ + 55_gy’'m; = 0.
Put
Ly =Rm' + Rym/ +-- -+ Ry"'m/
and
K = Rmgy + Rymy + - - + Ry*my,.
Therefore, y(y'~'m') € Ly, for all 1 <7 <n—1. Since f(y)m’+g(y) =

y(y"tm') =yt m = — (S ry'm + Ej oY mj) e L1+ K.
Hence,
y(y'm') € L1 + K, forall 1 <i <n.

(i1) = (i11) Put L' = Ly + Ly. Tt is clear that L'/L, is generated
by #; = x; + Lo, and ya; € L'/ Ly, for all 1 <i < n.

(#4i) == (i) By assumption, there exist r;; € R, and yx; = ¥j_ i},
for all 1 <7 <n. Hence,

21835y — rij)a; = 0.

Put A = [§;;y — ri;] as an n x n matrix. Now, since A*¥A = (detA)I
where A% A, and I, are, respectively, the adjoint matrix of A, deter-
minant of A, and identity matrix, We have

y'm + -+ rym’ +rom’ + yFmy 4+ ymy +me =0

and so, ym/' is the integral over M. O
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Definition 2.4. Let M C M’ be R-modules, and y € T tR. We can
define

My, = {ym' - m' € M’ and ym’ is the integral over M}.

Lemma 2.5. Let M C M’ be R-modules, y € Ty R, and m/,m}, €
M'. If ym) and yml, are the integrals over M, then y(rm} + smj) =
rym) + syml, for all r,s € R is integral over M. Therefore, WM, 5 an
R-module.

Proof. By Theorem 2.3, there exist R—modules L, = E?:llRmi and Ly =
Y2 Rz, and submodules K, of ¥ 4 M and K5 of $¥2,y" M such that
m’1 € Ll, m'2 € LQ, yr; € L1+K1, Yz; € L2+K2, (1 §Z§n1,1 S] S
ng), k1 < ny, and ke < no. '

Put L' = Ly + Ly + L, where L = Efzoy’M and £k = ny +ny — 1.
Therefore, L'/ L is generated by the set

{es+L,...;xp, +L,z1+L,... 2, + L},

and rm/ + sm), € L. However,

y(z;+ L)€ L'/L, and y(z; + L) € L'/L (1 <i<ny, 1 < j < mo),
Thus by Theorem 2.3, y(rm} + smj) is the integral over M. O
Corollary 2.6._Let N C M C M be R-modules, and T = Tyy. If
y € T~'R, then Ny, € My, and Ny, C Ny
Corollary 2.7. Let N C M be R-modules, and T = Ty;. Ify € T7'R,

2k .k

then Ny, C N4, for all k € N.
Corollary 2.8. Let N C M be R-modules, and T = Ty Ify € TR,
and y' = ay, for some a € R, then Nﬂ - sz/\/[ :

Theorem 2.9. Let My C M| and My C M) be R-modules, and T =
Tayy N Tagy- Ify € T7'R, then (My @ Ma) 0y, = (Mi)yy ® (Ma) -

Proof. Let ym/) € (Ml)M{ and ymi, € @ﬁ% Since ym/ is the inte-
gral over My, it follows, from Theorem 2.3, that there exists a finitely
generated R-module,

L, =3 Rs,,
such that, m} € Ly, and ys; € Ly —i—Zf;OyiMl for all 1 < j < ny, where
ki < my. Similarly, since ym), is the integral over Ms, there exists a
finitely generated R-module,

Ly =372 Rt;,
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such that mj € Lo, and yt; € Ly + E,’fioyiMQ, for all 1 < j < nsy, where
ko < ng. Put
n=ni+ny, k=n—1, L\ = Ly + Sf_y'M;, Ly = Ly + 5§y’ Mo,
and ‘
Suppose that the R-module (L] @& Lg)/T is generated by the set A;UAs,
where Ay = {x; : x; = (5,0) + 17,1 < i < my}, and Ay = {x; : x; =
(0,tin,) +T,ny +1 < i < ny + ng}. Clearly, (m},my) € L) @ Lj
and yx; = (ys;,0) + T € (L1 & Ly)/T and yz; = (0,yt;-,) + T €
(Ly & Ly) /T, for all 1 <4 < nq, and all ny+1 < j < ny+ny. Therefore,
y(m}, m}) is the integral over M; & M.

Now, assume that y(m}, m}) is the integral over M; ® M. We must
show that ym/ and ym/, are the integrals over M; and M, respectively.

By definition, there exist a monic polynomial f(z) € R[x], and g(z) €
(M @ My)[z], such that deg(g(z)) < deg(f(z)), and

F@)mh,my) + g(y) = (" + 1y -+ + ry + o) (my, mh)+
y* (mag, mag) + -+ + y(mar, mar) + (mag, mag) = 0.
Hence,
yrmh A+ oy mh e rom) + Y mag + - 4 yma +mao = 0,
and
Yl 4 Ty ml -4 roml 4y mog 4 -+ + ymay + magg = 0.

We can conclude that ym/ is the integral over M;, and ym) is the
integral over M,. O

Theorem 2.10. Let M C M’ be R-modules, y € Ty} R, and S; be a
multiplicative closed subset of R. Then (Sy™'M)g -1, = S, (MY,).
Proof. Let s € Sy, and ym' € My,. Since ym’ is the integral over
M, there exist the positive integers £ < n, r; € R, and m; € M
(0<i<n-1,0<j<k), such that
y"m' oy tm 4 rem! 4y 4 - ymy 4+ mg = 0.
Hence, for s € 51, we have
y"(m')s) + 11y Hm')/s) 4+ -+ ro(m! ) s)+

Y (mi/s) + -+ y(ma/s) + (mo/s) = 0.
We may conclude that y(m’/s) is the integral over S;'M, and, there-
fore,
1 T
Sy (M) € (S1 7 M)g,-1ppe
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Now, suppose that m//s € S;'M’ and y(m'/s) is the integral over
Sy 7'M. Hence, there exist the positive integers k < n, r; € R, and
m;/s; € S™TIM (0<i<n—1,0<j<k),such that
Y (m'/s) + rpay" H(m/s) + -+ ro(m! /) +
Y (m/sk) + -+ +y(ma/s1) + (mo/s0) = 0.
We have
y"(s081 .- Sp)m' + - +yri(sesy ... sp)m’ +ro(sosy ... sp)m’ +
Y (55051 - . . Sp_1)Mp—1 + - + y(85082 . .. 55)my + (551 ... 5,)mg = 0.
It follows that y(spsy ... s,)m’ is the integral over M and so, y(m’/s) €
S, Y(M?,). Therefore, (Sl_lM)Zl—lM/ C S, (,). O
Theorem 2.11. Let M C M’ be R-modules, and y € Ty R. Then
R —
(M[2]) g = (M)l
Proof. Let f(x) = S ymiz" € M'[x], and yf(x) be the integral over
M]z]. There exist h(z) € R|z], and g(z) € (M][x])[z], such that h(z) is
monic, deg(g(z)) < deg(h(z)), and
h(y)f(z) +9(y) =

Y f(x) + ey T (@) o f () F Y fi(2) + -+ fo(z) = 0.

We have
(ykm/n +oot rlym;"b + rom; + ygmfn +o A yma, + mOn)xn+

..._|_(ykm6+..._’_romg_’_ygmzo_’_...—'—moo) :O

and so,
y*ml, + -+ roml, + y'me, + -+ 4+ mo, = 0.
Therefore, ym/, is the integral over M. Similarly, ym! _,, ..., ymj is
the integral over M, and hence, yf(x) € (M}y)[x].
Now, suppose that
f(x) =ymla™ + - +ymix +ymj € (My,)[z].

Thus ym] (0 < i < n) are the integrals over M, and, by Theorem 2.3,
there exist R-modules L; (0 < i < n), and positive integers k; < t;,
such that L; is generated by {as;,...,as:}, and ya;; € L; + Ef;oth,
0<i<n,and 1 <5 <. Put

t=%"ot;, k=t—1and L =Ly + Lyx+...L,2".
Then,

L = Rayo + -+ + Rayo+
R(anx) + - + R(ay1x) + - - + R(a,2”) + - - - + R(ay,nx"),
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and f(x) € L. Furthermore
yaia! € L+ S oy M), 1<i<n, 1<5 <t
and, hence, by Theorem 2.3, y f(z) is the integral over M [x]. O

3. INTEGRAL EXTENSION OF A MODULE

Definition 3.1. Let M C M’ be torsion-free R-modules, and Ty; =
R —{0}. We say that M’ is an integral extension of M, if ym' is the
integral over M, for all y € T,' R, and m’ € M'.

Example 3.2. Let V' C V' be the vector spaces over a field F'. Thus
Ty: = F — {0}, and T\, F = F. Suppose that y € T,,!F, and v' €
V. We have f(x) = ¢ —y € Flz], and g(x) = 0 € V|[z]. Hence,
f()v" + g(y) = 0. Therefore, V' is an integral extension of V.

Proposition 3.3. Let M C M’ C M" be the torsion-free R-modules,
and T = R —{0}. If M’ is an integral extension of M, and M" is an
integral extension of M',. then M" is an integral extension of M.

Proof. Let y € T7'R, and m” € M"”. Since ym” is the integral over
M, there exist the positive integer k < n, r; € R, and m}; € M’', such
that
Y m” g i 4 rym” - rem” Ayt m) 4 - ym) +mp = 0.
But ym} , 1 <i <k, are the integrals over M, and hence, by Theorem
2.3, there exist the positive integers k; < n;, mg;,...,my,; € M, and
S0is Sy« -+ »Sny_q1i © R, such that
Y g+ Y i,y + - 4 siomy + Y m, -4 yma + mg = 0.
Define

VR L if n; >

T 0 if m <
Now, put
L=Rm"+Rym")+ -+ R(y"'m")+ L1 + -+ + Ly;
t=n+n)+--+n,—1,

where L; = Rm/ + R(ym}) +--- + R(y™'m}), 1<i<k,

7

K = Y!_,y'M. Then, by Theorem 2.3, ym” is the integral over M. [
Note: Let M C M’ be R-modules, and y € Tyt R, m' € M'. If ym/

is integral over M", then ym' € M’.

Let M be an R-module. In [!], Alkan and Tiras have defined the

integrally closed for M, as follows: if for any y € T,/ R, m € M, such
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that y"m+y" mu_1+--+ymi+mg=0; m; € M (0 <i<n), then
ym € M. In what follows, we define the notion of integrally closed
modules with the integral elements, and show that the two definitions
are equivalent.

Definition 3.4. Let M be an R-module. We say that M is integrally
closed, if M = EyeT;RMy, where

M’ = {ym : m € M and ym is integral over M}.

Example 3.5. Let R =7, p be a prime integer, and L = {a/b: a,b €
Z,p1b}. Consider M = L/Z. Then T = {p" : n € NU{0}} and so,
T'R ={z/p": 2 € Z,n € NU{0}}. Suppose that z/p* € TR,
(z,p) =1, and a/b € M, such that (z/p*)(a/b) is the integral over M.
Thus there exist a monic polynomial f(z) € R[z]|, and a polynomial
g(x) € Mlx], such that | = deg(g(x)) < deg(f(x)) =n, and

0= f(y)m'+g(y) =

(2/P")"a/bt(2/p")" i (a/b)+ .4 ro(a/b) +(2/p") (ar/br)+...+(ao /o),
where 7,_1,...,70 € R, a;/b; € M, for all i, 0 <7 <[. We can conclude
2"a(by...by) = pFc for some integer c. Since (p,2) =1, and (p, b;) = 1,
for all i, 1 < <, p*| a. Thus (z/p")(a/b) € M. Therefore, M is an
integrally closed module.

Lemma 3.6. Let M be an R-module. Then M s integrally closed if
and only if for anyy € T 'R, and m € M such that y"m-+y" ‘m,_, +
coymi+mg = 0, withm; € M (0 <i<n-—1), implies that ym € M.

Proof. Let M be integrally closed, y € T7'R, and m € M, such that,
y"m 4y my, - Fymy +Fme =0,m; € M(0<i <n).

Since M is integrally closed, M’ C M. But ym € M’ and hence,
ym € M. Conversely, suppose that ym € M’. Then there exist f(z) €
Rlz], and g(x) € M[x], such that f(z) is monic, deg(g(z)) < deg(f(z)),
and

fly)m +g(y) =
Ym Ay mA - rom  yEmg - ymy +mg = 0.
By assumption ym € M, and so M’ C M. Therefore, EyeTflRMy C

M. Since M' = M , it follows that M = ¥, cp RM’. We can conclude
that M is integrally closed. 0

Proposition 3.7. Let M be a torsion free R-module. Then the follow-
ing statements are equivalent:
i) M is integrally closed;
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i1) Mp is integrally closed, for each prime ideal P of R;
i11) Mg is integrally closed, for each mazimal ideal Q) of R.

Proof. (1) = (ii) Let M be integrally closed and P be a prime ideal
of R. Thus Ty, = Rp — {0}. Suppose that (a/t)/(b/t') € Ty, Rp,
m/s € Mp, and ((a/t)/(b/t'))(m/s) is the integral over Mp. There
exists a monic polynomial f(z) € Rp[z], a polynomial g(z) € Mp[z],
and | = deg(g(z)) < deg(f(z)) = k, such that

f((a/t)/(b/t))(m/s) + g((a/t)/(b/t)) =
((a/)/(B/t) (M) + .. ((a/)/ (/) (r1/s1)(m /) + (r0/50) (m/5)+
((a/t)/ (/) (mufs) + .. + (mo/s5) =0,

where m;/s; € Mp, for all i, 0 < i < [, and r;/s; € Rp, for all j,
0<j<k—1. We can conclude

(at’ /bt)*(s" m) + (at’ /bt)* L (m)_,) + ... + (at’ Jbt)m/, + m), = 0,

where s = 8j_1...51505,...58), and m},_,,...,ml € M.

Hence, (at'/bt)(s"m) € M. Thus there exists m’ € M, such that
(a/t)(m/s) = (b/t')(m'/ss"). Therefore, ((a/t)/(b/t'"))(m/s) € Mp.
(i1) = (vii) It is clear.

(14i) = (i) Since M is a torsion free R-module, ' = R—{0}. Suppose
that a/b € T"'R, m € M, and (a/b)m is the integral over M. Thus
there exists a monic polynomial f(x) € R|x], a polynomial g(z) €
M|z], and | = deg(g(x)) < deg(f(x)) = k, such that

fla/b)m + g(a/b) =
(a/b)fm + ...+ (a/b)rim + rom + (a/b)'my + ... 4+ (a/b)ymy +mg = 0,
where r_1,...,71,79 € R, and my, ..., mq, mg € M. Consider the subset

I ={r € R:ram = bm/, for somem’ € M}. It is clear that I is

an ideal of R. Assume that [ is a proper ideal of R. There exists a
maximal ideal ) for R such that, I C ). We have

[(a/1)/®/1)]*(m/1) + ... + [(a/1)/(0/D)(r1/1)(m/1) + (ro/1)(m/1)+

[(a/1)/(0/ 1)) (me/1) + ... + [(a/1)/(0/1))(ma /1) + (mo/1) = 0.
Hence ((a/1)/(b/1))(m/1) is integral over M. Since Mg is integrally
closed, there exists m'/s € Mg such that ((a/1)/(b/1))(m/1) = m//s.
Then sam = bm’, and so, s € I C @, which is a contradiction. Hence,
I =Rso (a/b)m € M. O

Now, we apply the notion of integral extension of a module, and prove
the Lying over, Going up and Going down theorems for modules. We
need the following two lemmas.
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Lemma 3.8. Let M C M’ be the torsion-free R-modules, and P €
Spec(M). If M' is the integral over M, then (P : M) = 0.

Proof. Let 0 #£ r € (P : M), and m € M\P. Since M’ is the integral
over M, (1/r)m is the integral over M. Hence there exist f(z) € R[z],
and g(z) € M|z], such that f(x) is monic, deg(g(z)) < deg(f(x)), and

A r)m+g(1/r) =
(1/7) " m~+(1/r)" " ry_ym- - From+(1/r),my+- - 4-(1/r)my+mg = 0.
Therefore,
m = —1(Fpoymt- - 4™ 2 merer™ e g 4™ g 4" my),

and since r € (P : M), it follows that m € P, which is a contradiction.
Thus (P : M) = 0. O]

Lemma 3.9. Let M C M’ be the R-modules, and ) € Spec(M'). If
QNM=P+#M, then P € Spec(M) and (Q : M') = (P : M).

Proof. Let r € (P : M), and m € M\P. Since rm € P C @ and
mé&Q,r e (Q: M), hence (P: M) C (Q: M'). Now, suppose that
re(Q:M)andme M. Thenrm € QNM = P andsor € (P: M).
Hence (P : M) = (Q : M'). Now we show that P € Spec(M). Let
m € M, r € R, and rm € P. Since rm € @, and Q € Spec(M’), it
follows that m € Q or r € (Q : M’). Therefore, m € P orr € (P: M)
and so, P € Spec(M). O

Theorem 3.10. (Lying over). Let M C M’ be the torsion-free R-
modules and M’ be integral over M. If P € Spec(M), then there exists
Q € Spec(M'), such that QN M = P.

Proof. Let P € Spec(M). Put 2 = {P" < M|P'N M = P}. Since
P e, A +# (), by Zorn’s Lemma, 2 has a maximal element (). Now,
we show that @ € Spec(M'). Since QNM = P # M, we have ) # M.
Suppose that r € R, m' € M’, such that rm’ € @, and m’ ¢ Q. Since
(Q + Rm’) N (M\P) # (), there exist t € R, and ¢ € @Q, such that
g+tm’ =m ¢ P. Hence, rq + rtm’ = rm € P. But P € Spec(M),
and therefore, r € (P : M). By Lemma 3.8, r =0 € (Q : M), and we
can conclude that @ € Spec(M’). O

Theorem 3.11. (Going up). Let M C M’ be the torsion-free R-
modules, and M’ be the integral over M. If Py C P, are the prime
submodules of M, and Qo € Spec(M'), such that Qo N M = Py, then
there exists Q1 € Spec(M'), such that Qy C Q1, and Q1 N M = P;.
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Proof. Put A ={L < M'|Qy C L,LNM = P}. Since Qo N M = P,
it follows that (Qo + P1) € 2A. Hence 2 # (). By Zorn’s Lemma,
2 has a maximal element ¢);. We show that Q) € Spec(M'). Since
Q1N M = P, # M, it follows that ), # M'. Let m’ € M', r € R such
that rm’ € Q1. Suppose that m’ € ;. Since (); is a maximal element
of A, Q1 + (m’> g 20. Since Qg € Q + (m’), P C Q)+ (m’> N M.
Hence, there exist ¢ € @1, and t € R, such that g+tm’ € Q1N M, and
q+tm’ & P,. We have rq; +rtm’ € QN M = P;. Since P, € Spec(M),
it follows that » € (P, : M). By Lemma 3.8, r = 0 € (Q; : M'), we
can conclude that Q; € Spec(M’). O

Theorem 3.12. (Going down). Let M C M’ be the torsion-free R-
modules, and M’ be the integral over M. If Py C Py are prime submod-
ules of M, and Q1 € Spec(M"), such that P, = Q1 N M. Then there
exists Qo € Spec(M'), such that Qo C @1, and Qo N M = P.

Proof. Put A = {L < M'|L C Qy,LNM = Fy}. Since Py € ,
A # (. By Zorn’s Lemma, 2 has a maximal element (). We show that
Qo € Spec(M’). Suppose that r € R, m’ € M’, such that rm’ € Qo.
If Qo+ Rm' C @4, then (Qo + Rm') N (M\Py) # 0, and so, there
exist t € R, and ¢ € Qq, such that m = ¢ +tm’ ¢ Fy. Since rm =
rq+rtm’ € Py € Spec(M), r € (Py: M) = 0. Therefore, r € (Qq : M’).
But, if Qo+ Rm’ € Q1, then there exist t € R, and ¢y € Qg, such that
qo +tm’ & Q1. Since rqy + rtm’ € @1, and @y € Spec(M’), it follows
that, r € (@1 : M'). Hence, by Lemmas 3.8, and 3.9, (Q1 : M') = (P :
M) = 0, and this implies that r € (Qo : M’). O
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