
Journal of Algebraic Systems

Vol. 3, No. 1, (2015), pp 11-22

AN INTEGRAL DEPENDENCE IN MODULES OVER
COMMUTATIVE RINGS

S. KARIMZADEH∗ AND R. NEKOOEI

Abstract. In this paper, a generalization of the integral depen-
dence of rings on modules is given. The stability of the integral
closure with respect to various module theoretic constructions is
also studied. Moreover, the notion of integral extension of a mod-
ule is introduced, and the Lying over, Going up and Going down
theorems for modules are proved.

1. Introduction

Throughout this paper, all rings are commutative with identity, and
all modules are unital. In the commutative ring theory, the integral
element is defined, and its properties are discussed. Also the Lying
over, Going up and Going down theorems are stated in many texts
such as [3]. Let R ⊆ R′ be the rings. α ∈ R′ is the integral over R, if
there exists a monic polynomial f(x) ∈ R[x], such that f(α) = 0 [3].
In this paper, we introduce the notion of integral elements in a module
(Definition 2.1). If R ⊆ R′ ⊆ K are the rings, and K is a quotient field
of R, then α ∈ R′ is the integral over a ring R, if and only if α.1R is
the integral over R when R is regarded as an R-module. Let M ′ be an
R-module, and S be the set of regular elements of R. Then

TM ′ = {t ∈ S : tm′ = 0, for some m′ ∈ M ′ implies that m′ = 0}
is a multiplicative closed subset of R. As Naoum and Al-Alwan have
stated [5], we say that yn ∈ M , as long as there exists an element m
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in M such that tm = rn, where y = r/t ∈ T−1
M R, and n ∈ M − {0}.

For any submodule N of an R-module M , we define (N : M) = {r ∈
R|rM ⊆ N}. A submodule P of M is called prime, if P ̸= M ; and for
r ∈ R, m ∈ M and rm ∈ P , we have m ∈ P or r ∈ (P : M). It is
easy to show that if P is a prime submodule of an R-module M , then
(P : M) is a prime ideal of R [4]. The set of all prime submodules is
denoted by Spec(M).
This paper has been organized as follows: In section 2, we discuss the
concept of an integral element over a module, a generalization of the
concept of an integral element over a ring. In Theorem 2.3, we obtain
the equivalent characterizations for the integral elements. We show,
in Lemma 2.5 that if M ⊆ M ′ are R-modules, and y ∈ T−1

M ′R, then

M
y

M ′ is an R-module. Section 3 is devoted to introducing the concept
of integral extension and the integrally closed module. In [1], Alkan
and Tiras have defined the integrally closed module. Here, we define
the notion of integrally closed modules in connection with the integral
elements. Then, in Lemma 3.6, we show that our definition and the
one given in [1] are equivalent. We also prove that the notion of inte-
grally closed is a local property (Theorem 3.7). We apply the notion
of integral extension of a module, and prove the Lying over, Going up
and Going down theorems for modules (Theorems 3.10, 3.11, 3.12).

2. Integral elements of a module

Let M ′ be an R-module, and S be the set of regular elements of R.
Then

TM ′ = {t ∈ S : tm′ = 0, for some m′ ∈ M ′ implies that m′ = 0}

is a multiplicative closed subset of R.

Definition 2.1. Let M ⊆ M ′ be R-modules, y ∈ T−1
M ′R, and m′ ∈ M ′.

We say that an element ym′, is integral over M , if there exist a monic
polynomial f(x) ∈ R[x], and a polynomial g(x) ∈ M [x] such that
deg(g(x)) < deg(f(x)), and

f(y)m′ + g(y) = 0.

Example 2.2. Let M = 2Z, and M ′ = {a/2n : a ∈ Z, n ∈ N ∪ {0}}
be Z-modules. Clearly, TM ′ = Z − {0}. Consider m′ = 1/2 ∈ M ′ and
y = 2/1 ∈ T−1

M ′Z. Then ym′ is the integral over M , but ym′ ̸∈ M . If
m′ = 1 ∈ M ′, and y = 1/2 ∈ T−1

M ′Z, then ym′ is not the integral over
M .
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Theorem 2.3. Let M ⊆ M ′ be R-modules. If y ∈ T−1
M ′R, and m′ ∈ M ′,

then the following statements are equivalent:
i) ym′ is the integral over M ;
ii) There exist a finitely generated R-module L1 = Σn

i=1Rxi, and a
submodule K of an R-module L2 = Σk

j=0y
jM , where k < n, such that

m′ ∈ L1 and yxi ∈ L1 +K, for all 1 ≤ i ≤ n;
iii) There exists an R-module L′, such that (L′/L) = Σn

i=1Rx′
i, where

L = Σk
j=0y

jM , and k < n such that m′ ∈ L′, and yx′
i ∈ L′/L for all

1 ≤ i ≤ n.

Proof. (i) =⇒ (ii) Since ym′ is the integral over M , there exist

f(x) = xn + Σn−1
i=0 rix

i ∈ R[x]

and

g(x) = Σk
i=0mix

i ∈ M [x]

such that, k < n, and

f(y)m′ + g(y) = ynm′ + Σn−1
i=0 y

irim
′ + Σk

j=0y
jmj = 0.

Put

L1 = Rm′ +Rym′ + · · ·+Ryn−1m′

and

K = Rm0 +Rym1 + · · ·+Rykmk.

Therefore, y(yi−1m′) ∈ L1, for all 1 ≤ i ≤ n−1. Since f(y)m′+g(y) =
0,

y(yn−1m′) = ynm′ = −(Σn−1
i=0 riy

im′ + Σk
j=0y

jmj) ∈ L1 +K.

Hence,

y(yi−1m′) ∈ L1 +K, for all 1 ≤ i ≤ n.

(ii) =⇒ (iii) Put L′ = L1 + L2. It is clear that L′/L2 is generated
by x′

i = xi + L2, and yx′
i ∈ L′/L2, for all 1 ≤ i ≤ n.

(iii) =⇒ (i) By assumption, there exist rij ∈ R, and yx′
i = Σn

j=1rijx
′
j,

for all 1 ≤ i ≤ n. Hence,

Σn
j=1(δijy − rij)x

′
j = 0.

Put A = [δijy − rij] as an n × n matrix. Now, since AadjA = (detA)I
where Aadj, A, and I, are, respectively, the adjoint matrix of A, deter-
minant of A, and identity matrix, We have

ynm′ + · · ·+ r1ym
′ + r0m

′ + ykmk + · · ·+ ym1 +m0 = 0

and so, ym′ is the integral over M . �
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Definition 2.4. Let M ⊆ M ′ be R-modules, and y ∈ T−1
M ′R. We can

define

M
y

M ′ = {ym′ : m′ ∈ M ′ and ym′ is the integral over M}.

Lemma 2.5. Let M ⊆ M ′ be R-modules, y ∈ T−1
M ′R, and m′

1,m
′
2 ∈

M ′. If ym′
1 and ym′

2 are the integrals over M , then y(rm′
1 + sm′

2) =
rym′

1+ sym′
2 for all r, s ∈ R is integral over M . Therefore, M

y

M ′ is an
R-module.

Proof. By Theorem 2.3, there exist R-modules L1 = Σn1
i=1Rxi and L2 =

Σn2
i=1Rzi, and submodules K1 of Σ

k1
i=0y

iM and K2 of Σ
k2
i=0y

iM such that
m′

1 ∈ L1, m
′
2 ∈ L2, yxi ∈ L1 +K1, yzj ∈ L2 +K2, (1 ≤ i ≤ n1, 1 ≤ j ≤

n2), k1 < n1, and k2 < n2.
Put L′ = L1 + L2 + L, where L = Σk

i=0y
iM and k = n1 + n2 − 1.

Therefore, L′/L is generated by the set

{x1 + L, . . . , xn1 + L, z1 + L, . . . , zn2 + L},

and rm′
1 + sm′

2 ∈ L′. However,

y(xi + L) ∈ L′/L, and y(zj + L) ∈ L′/L (1 ≤ i ≤ n1, 1 ≤ j ≤ n2),

Thus by Theorem 2.3, y(rm′
1 + sm′

2) is the integral over M . �

Corollary 2.6. Let N ⊆ M ⊆ M ′ be R-modules, and T = TM ′. If
y ∈ T−1R, then N

y

M ′ ⊆ M
y

M ′ and N
y

M ⊆ N
y

M ′.

Corollary 2.7. Let N ⊆ M be R-modules, and T = TM . If y ∈ T−1R,

then N
y2k

M ⊆ N
yk

M for all k ∈ N.

Corollary 2.8. Let N ⊆ M be R-modules, and T = TM . If y ∈ T−1R,

and y′ = ay, for some a ∈ R, then N
y

M ⊆ N
y′

M .

Theorem 2.9. Let M1 ⊆ M ′
1 and M2 ⊆ M ′

2 be R-modules, and T =

TM ′
1
∩ TM ′

2
. If y ∈ T−1R, then (M1 ⊕M2)

y

M ′
1⊕M ′

2
= (M1)

y

M ′
1
⊕ (M2)

y

M ′
2
.

Proof. Let ym′
1 ∈ (M1)

y

M ′
1
and ym′

2 ∈ (M2)
y

M ′
2
. Since ym′

1 is the inte-

gral over M1, it follows, from Theorem 2.3, that there exists a finitely
generated R-module,

L1 = Σn1
i=1Rsi,

such that, m′
1 ∈ L1, and ysj ∈ L1+Σk1

i=0y
iM1 for all 1 ≤ j ≤ n1, where

k1 < n1. Similarly, since ym′
2 is the integral over M2, there exists a

finitely generated R-module,

L2 = Σn2
i=1Rti,
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such that m′
2 ∈ L2, and ytj ∈ L2 +Σk2

i=0y
iM2, for all 1 ≤ j ≤ n2, where

k2 < n2. Put

n = n1 + n2, k = n− 1, L′
1 = L1 + Σk

i=0y
iM1, L′

2 = L2 + Σk
i=0y

iM2,

and
T = Σk

i=0y
i(M1 ⊕M2).

Suppose that theR-module (L′
1 ⊕ L′

2)/T is generated by the set A1∪A2,
where A1 = {xi : xi = (si, 0) + T, 1 ≤ i ≤ n1}, and A2 = {xi : xi =
(0, ti−n1) + T, n1 + 1 ≤ i ≤ n1 + n2}. Clearly, (m′

1,m
′
2) ∈ L′

1 ⊕ L′
2

and yxi = (ysi, 0) + T ∈ (L′
1 ⊕ L′

2)/T and yxj = (0, ytj−n1) + T ∈
(L′

1 ⊕ L′
2)/T, for all 1 ≤ i ≤ n1, and all n1+1 ≤ j ≤ n1+n2. Therefore,

y(m′
1,m

′
2) is the integral over M1 ⊕M2.

Now, assume that y(m′
1,m

′
2) is the integral over M1 ⊕M2. We must

show that ym′
1 and ym′

2 are the integrals over M1 and M2, respectively.
By definition, there exist a monic polynomial f(x) ∈ R[x], and g(x) ∈
(M1 ⊕M2)[x], such that deg(g(x)) < deg(f(x)), and

f(y)(m′
1,m

′
2) + g(y) = (yn + rn−1y

n−1 + · · ·+ r1y + r0)(m
′
1,m

′
2)+

yk(m1k,m2k) + · · ·+ y(m11,m21) + (m10,m20) = 0.

Hence,

ynm′
1 + rn−1y

n−1m′
1 + · · ·+ r0m

′
1 + ykm1k + · · ·+ ym11 +m10 = 0,

and

ynm′
2 + rn−1y

n−1m′
2 + · · ·+ r0m

′
2 + ykm2k + · · ·+ ym21 +m20 = 0.

We can conclude that ym′
1 is the integral over M1, and ym′

2 is the
integral over M2. �
Theorem 2.10. Let M ⊆ M ′ be R-modules, y ∈ T−1

M ′R, and S1 be a

multiplicative closed subset of R. Then (S1
−1M)

y

S1
−1M ′ = S1

−1(M
y

M ′).

Proof. Let s ∈ S1, and ym′ ∈ M
y

M ′ . Since ym′ is the integral over
M , there exist the positive integers k < n, ri ∈ R, and mj ∈ M
(0 ≤ i ≤ n− 1, 0 ≤ j ≤ k), such that

ynm′ + rn−1y
n−1m′ + · · ·+ r0m

′ + ykmk + · · ·+ ym1 +m0 = 0.

Hence, for s ∈ S1, we have

yn(m′/s) + rn−1y
n−1(m′/s) + · · ·+ r0(m

′/s)+

yk(mk/s) + · · ·+ y(m1/s) + (m0/s) = 0.

We may conclude that y(m′/s) is the integral over S−1
1 M , and, there-

fore,

S1
−1(M

y

M ′) ⊆ (S1
−1M)

y

S1
−1M ′ .
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Now, suppose that m′/s ∈ S−1
1 M ′ and y(m′/s) is the integral over

S1
−1M . Hence, there exist the positive integers k < n, ri ∈ R, and

mj/sj ∈ S−1M (0 ≤ i ≤ n− 1, 0 ≤ j ≤ k), such that

yn(m′/s) + rn−1y
n−1(m′/s) + · · ·+ r0(m

′/s)+

yk(mk/sk) + · · ·+ y(m1/s1) + (m0/s0) = 0.

We have

yn(s0s1 . . . sk)m
′ + · · ·+ yr1(s0s1 . . . sk)m

′ + r0(s0s1 . . . sk)m
′ +

yk(ss0s1 . . . sk−1)mk−1 + · · ·+ y(ss0s2 . . . sk)m1 + (ss1 . . . sk)m0 = 0.

It follows that y(s0s1 . . . sk)m
′ is the integral over M and so, y(m′/s) ∈

S1
−1(M

y

M ′). Therefore, (S1
−1M)

y

S1
−1M ′ ⊆ S1

−1(M
y

M ′). �

Theorem 2.11. Let M ⊆ M ′ be R-modules, and y ∈ T−1
M ′R. Then

(M [x])
y

M ′[x] = (M
y

M ′)[x].

Proof. Let f(x) = Σn
i=0m

′
ix

i ∈ M ′[x], and yf(x) be the integral over
M [x]. There exist h(z) ∈ R[z], and g(z) ∈ (M [x])[z], such that h(z) is
monic, deg(g(z)) < deg(h(z)), and

h(y)f(x) + g(y) =

ykf(x) + rk−1y
k−1f(x) + · · ·+ r0f(x) + yℓfl(x) + · · ·+ f0(x) = 0.

We have

(ykm′
n + · · ·+ r1ym

′
n + r0m

′
n + yℓmℓn + · · ·+ ym1n +m0n)x

n+

· · ·+ (ykm′
0 + · · ·+ r0m

′
0 + yℓmℓ0 + · · ·+m00) = 0

and so,
ykm′

n + · · ·+ r0m
′
n + yℓmℓn + · · ·+m0n = 0.

Therefore, ym′
n is the integral over M . Similarly, ym′

n−1, . . . , ym
′
0 is

the integral over M , and hence, yf(x) ∈ (M
y

M ′)[x].
Now, suppose that

f(x) = ym′
nx

n + · · ·+ ym′
1x+ ym′

0 ∈ (M
y

M ′)[x].

Thus ym′
i (0 ≤ i ≤ n) are the integrals over M , and, by Theorem 2.3,

there exist R-modules Li (0 ≤ i ≤ n), and positive integers ki < ti,
such that Li is generated by {a1i, . . . , atii}, and yaji ∈ Li + Σki

t=0y
tM ,

0 ≤ i ≤ n, and 1 ≤ j ≤ ti. Put

t = Σn
i=0ti, k = t− 1 and L = L0 + L1x+ . . . Lnx

n.

Then,
L = Ra10 + · · ·+Rat00+

R(a11x) + · · ·+R(at11x) + · · ·+R(a1nx
n) + · · ·+R(atnnx

n),
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and f(x) ∈ L. Furthermore

yaijx
j ∈ L+ Σk

t=0y
tM [x], 1 ≤ i ≤ n, 1 ≤ j ≤ ti

and, hence, by Theorem 2.3, yf(x) is the integral over M [x]. �

3. Integral extension of a module

Definition 3.1. Let M ⊆ M ′ be torsion-free R-modules, and TM ′ =
R − {0}. We say that M ′ is an integral extension of M , if ym′ is the
integral over M , for all y ∈ T−1

M ′R, and m′ ∈ M ′.

Example 3.2. Let V ⊆ V ′ be the vector spaces over a field F . Thus
TV ′ = F − {0}, and T−1

V ′ F = F . Suppose that y ∈ T−1
V ′ F , and v′ ∈

V ′. We have f(x) = x − y ∈ F [x], and g(x) = 0 ∈ V [x]. Hence,
f(y)v′ + g(y) = 0. Therefore, V ′ is an integral extension of V .

Proposition 3.3. Let M ⊆ M ′ ⊆ M ′′ be the torsion-free R-modules,
and T = R − {0}. If M ′ is an integral extension of M , and M ′′ is an
integral extension of M ′,. then M ′′ is an integral extension of M .

Proof. Let y ∈ T−1R, and m′′ ∈ M ′′. Since ym′′ is the integral over
M ′, there exist the positive integer k < n, ri ∈ R, and m′

j ∈ M ′, such
that

ynm′′+ rn−1y
n−1m′′+ · · ·+ r1ym

′′+ r0m
′′+ykm′

k+ · · ·+ym′
1+m′

0 = 0.

But ym′
i , 1 ≤ i ≤ k, are the integrals over M , and hence, by Theorem

2.3, there exist the positive integers ki < ni, m0i, . . . ,mkii ∈ M , and
s0i, s1i, . . . , sni−1i ∈ R, such that

ynim′
i + yni−1sini−1m

′
i + · · ·+ si0m

′
i + ykimiki + · · ·+ ymi1 +mi0 = 0.

Define

n′
i =

{
ni if ni ≥ i
i if ni < i

Now, put

L = Rm′′ +R(ym′′) + · · ·+R(yn−1m′′) + L1 + · · ·+ Lk;

t = n+ n′
1 + · · ·+ n′

k − 1,

where Li = Rm′
i +R(ym′

i) + · · ·+R(yn
′
i−1m′

i), 1 ≤ i ≤ k,

K = Σt
i=0y

iM. Then, by Theorem 2.3, ym′′ is the integral over M . �
Note: Let M ⊆ M ′ be R-modules, and y ∈ T−1

M ′R, m′ ∈ M ′. If ym′

is integral over M
y
, then ym′ ∈ M

y
.

Let M be an R-module. In [1], Alkan and Tiras have defined the
integrally closed for M , as follows: if for any y ∈ T−1

M R, m ∈ M , such
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that ynm+ yn−1mn−1+ · · ·+ ym1+m0 = 0; mi ∈ M (0 ≤ i ≤ n), then
ym ∈ M . In what follows, we define the notion of integrally closed
modules with the integral elements, and show that the two definitions
are equivalent.

Definition 3.4. Let M be an R-module. We say that M is integrally
closed, if M = Σy∈T−1

M RM
y
, where

M
y
= {ym : m ∈ M and ym is integral over M}.

Example 3.5. Let R = Z, p be a prime integer, and L = {a/b : a, b ∈
Z, p - b}. Consider M = L/Z. Then T = {pn : n ∈ N ∪ {0}} and so,
T−1R = {z/pn : z ∈ Z, n ∈ N ∪ {0}}. Suppose that z/pk ∈ T−1R,
(z, p) = 1, and a/b ∈ M , such that (z/pk)(a/b) is the integral over M .
Thus there exist a monic polynomial f(x) ∈ R[x], and a polynomial
g(x) ∈ M [x], such that l = deg(g(x)) < deg(f(x)) = n, and

0 = f(y)m′ + g(y) =

(z/pk)na/b+(z/pk)n−1rn−1(a/b)+...+r0(a/b)+(z/pk)l(al/bl)+...+(a0/b0),

where rn−1, ..., r0 ∈ R, ai/bi ∈ M, for all i, 0 ≤ i ≤ l. We can conclude
zna(bl...b0) = pkc for some integer c. Since (p, z) = 1, and (p, bi) = 1,
for all i, 1 ≤ i ≤ l, pk | a. Thus (z/pk)(a/b) ∈ M . Therefore, M is an
integrally closed module.

Lemma 3.6. Let M be an R-module. Then M is integrally closed if
and only if for any y ∈ T−1R, and m ∈ M such that ynm+yn−1mn−1+
· · ·+ym1+m0 = 0, with mi ∈ M (0 ≤ i ≤ n−1), implies that ym ∈ M .

Proof. Let M be integrally closed, y ∈ T−1R, and m ∈ M , such that,

ynm+ yn−1mn + · · ·+ ym1 +m0 = 0,mi ∈ M(0 ≤ i ≤ n).

Since M is integrally closed, M
y ⊆ M . But ym ∈ M

y
, and hence,

ym ∈ M . Conversely, suppose that ym ∈ M
y
. Then there exist f(x) ∈

R[x], and g(x) ∈ M [x], such that f(x) is monic, deg(g(x)) < deg(f(x)),
and

f(y)m+ g(y) =

ynm+ rn−1y
n−1m+ · · ·+ r0m+ ykmk + · · ·+ ym1 +m0 = 0.

By assumption ym ∈ M , and so M
y ⊆ M . Therefore, Σy∈T−1RM

y ⊆
M . Since M

1
= M , it follows that M = Σy∈T−1RM

y
. We can conclude

that M is integrally closed. �
Proposition 3.7. Let M be a torsion free R-module. Then the follow-
ing statements are equivalent:
i) M is integrally closed;



AN INTEGRAL DEPENDENCE IN MODULES OVER COMMUTATIVE ... 19

ii) MP is integrally closed, for each prime ideal P of R;
iii) MQ is integrally closed, for each maximal ideal Q of R.

Proof. (i) =⇒ (ii) Let M be integrally closed and P be a prime ideal
of R. Thus TMP

= RP − {0}. Suppose that (a/t)/(b/t′) ∈ T−1
MP

RP ,
m/s ∈ MP , and ((a/t)/(b/t′))(m/s) is the integral over MP . There
exists a monic polynomial f(x) ∈ RP [x], a polynomial g(x) ∈ MP [x],
and l = deg(g(x)) < deg(f(x)) = k, such that

f((a/t)/(b/t′))(m/s) + g((a/t)/(b/t′)) =

((a/t)/(b/t′))k(m/s)+ ...+((a/t)/(b/t′))(r1/s1)(m/s)+ (r0/s0)(m/s)+

((a/t)/(b/t′))l(ml/s
′
l) + ...+ (m0/s

′
0) = 0,

where mi/s
′
i ∈ MP , for all i, 0 ≤ i ≤ l, and rj/sj ∈ RP , for all j,

0 ≤ j ≤ k − 1. We can conclude

(at′/bt)k(s
′′
m) + (at′/bt)k−1(m′

k−1) + ...+ (at′/bt)m′
1 +m′

0 = 0,

where s
′′
= sk−1...s1s0s

′
l...s

′
1s

′
0, and m′

k−1, ...,m
′
0 ∈ M .

Hence, (at′/bt)(s
′′
m) ∈ M . Thus there exists m′ ∈ M , such that

(a/t)(m/s) = (b/t′)(m′/ss
′′
). Therefore, ((a/t)/(b/t′))(m/s) ∈ MP .

(ii) =⇒ (iii) It is clear.
(iii) =⇒ (i) Since M is a torsion free R-module, T = R−{0}. Suppose
that a/b ∈ T−1R, m ∈ M , and (a/b)m is the integral over M . Thus
there exists a monic polynomial f(x) ∈ R[x], a polynomial g(x) ∈
M [x], and l = deg(g(x)) < deg(f(x)) = k, such that

f(a/b)m+ g(a/b) =

(a/b)km+ ...+ (a/b)r1m+ r0m+ (a/b)lml + ...+ (a/b)m1 +m0 = 0,

where rk−1, ..., r1, r0 ∈ R, and ml, ...,m1,m0 ∈ M . Consider the subset
I = {r ∈ R : ram = bm′, for some m′ ∈ M}. It is clear that I is
an ideal of R. Assume that I is a proper ideal of R. There exists a
maximal ideal Q for R such that, I ⊆ Q. We have

[(a/1)/(b/1)]k(m/1) + ...+ [(a/1)/(b/1)](r1/1)(m/1) + (r0/1)(m/1)+

[(a/1)/(b/1)]l(ml/1) + ...+ [(a/1)/(b/1)](m1/1) + (m0/1) = 0.

Hence ((a/1)/(b/1))(m/1) is integral over MQ. Since MQ is integrally
closed, there exists m′/s ∈ MQ such that ((a/1)/(b/1))(m/1) = m′/s.
Then sam = bm′, and so, s ∈ I ⊆ Q, which is a contradiction. Hence,
I = R so (a/b)m ∈ M . �

Now, we apply the notion of integral extension of a module, and prove
the Lying over, Going up and Going down theorems for modules. We
need the following two lemmas.
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Lemma 3.8. Let M ⊆ M ′ be the torsion-free R-modules, and P ∈
Spec(M). If M ′ is the integral over M , then (P : M) = 0.

Proof. Let 0 ̸= r ∈ (P : M), and m ∈ M\P . Since M ′ is the integral
over M , (1/r)m is the integral over M . Hence there exist f(x) ∈ R[x],
and g(x) ∈ M [x], such that f(x) is monic, deg(g(x)) < deg(f(x)), and

f(1/r)m+ g(1/r) =

(1/r)nm+(1/r)n−1rn−1m+· · ·+r0m+(1/r)kmk+· · ·+(1/r)m1+m0 = 0.

Therefore,

m = −r(rn−1m+· · ·+r1r
n−2m+r0r

n−1m+rn−1−kmk+· · ·+rn−1m1+rnm0),

and since r ∈ (P : M), it follows that m ∈ P , which is a contradiction.
Thus (P : M) = 0. �

Lemma 3.9. Let M ⊆ M ′ be the R-modules, and Q ∈ Spec(M ′). If
Q ∩M = P ̸= M, then P ∈ Spec(M) and (Q : M ′) = (P : M).

Proof. Let r ∈ (P : M), and m ∈ M\P . Since rm ∈ P ⊆ Q and
m ̸∈ Q, r ∈ (Q : M ′), hence (P : M) ⊆ (Q : M ′). Now, suppose that
r ∈ (Q : M ′) and m ∈ M . Then rm ∈ Q∩M = P and so r ∈ (P : M).
Hence (P : M) = (Q : M ′). Now we show that P ∈ Spec(M). Let
m ∈ M , r ∈ R, and rm ∈ P . Since rm ∈ Q, and Q ∈ Spec(M ′), it
follows that m ∈ Q or r ∈ (Q : M ′). Therefore, m ∈ P or r ∈ (P : M)
and so, P ∈ Spec(M). �

Theorem 3.10. (Lying over). Let M ⊆ M ′ be the torsion-free R-
modules and M ′ be integral over M . If P ∈ Spec(M), then there exists
Q ∈ Spec(M ′), such that Q ∩M = P .

Proof. Let P ∈ Spec(M). Put A = {P ′ ≤ M |P ′ ∩ M = P}. Since
P ∈ A, A ̸= ∅, by Zorn’s Lemma, A has a maximal element Q. Now,
we show that Q ∈ Spec(M ′). Since Q∩M = P ̸= M , we have Q ̸= M ′.
Suppose that r ∈ R, m′ ∈ M ′, such that rm′ ∈ Q, and m′ /∈ Q. Since
(Q + Rm′) ∩ (M\P ) ̸= ∅, there exist t ∈ R, and q ∈ Q, such that
q + tm′ = m ̸∈ P . Hence, rq + rtm′ = rm ∈ P . But P ∈ Spec(M),
and therefore, r ∈ (P : M). By Lemma 3.8, r = 0 ∈ (Q : M ′), and we
can conclude that Q ∈ Spec(M ′). �

Theorem 3.11. (Going up). Let M ⊆ M ′ be the torsion-free R-
modules, and M ′ be the integral over M . If P0 ⊆ P1 are the prime
submodules of M , and Q0 ∈ Spec(M ′), such that Q0 ∩ M = P0, then
there exists Q1 ∈ Spec(M ′), such that Q0 ⊆ Q1, and Q1 ∩M = P1.
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Proof. Put A = {L ≤ M ′|Q0 ⊆ L,L ∩M = P1}. Since Q0 ∩M = P0,
it follows that (Q0 + P1) ∈ A. Hence A ̸= ∅. By Zorn’s Lemma,
A has a maximal element Q1. We show that Q1 ∈ Spec(M ′). Since
Q1 ∩M = P1 ̸= M , it follows that Q1 ̸= M ′. Let m′ ∈ M ′, r ∈ R such
that rm′ ∈ Q1. Suppose that m′ ̸∈ Q1. Since Q1 is a maximal element
of A, Q1 + ⟨m′⟩ ̸∈ A. Since Q0 ⊆ Q1 + ⟨m′⟩, P1 ⊂ Q1 + ⟨m′⟩ ∩ M .
Hence, there exist q ∈ Q1, and t ∈ R, such that q+ tm′ ∈ Q1 ∩M , and
q+tm′ ̸∈ P1. We have rq1+rtm′ ∈ Q1∩M = P1. Since P1 ∈ Spec(M),
it follows that r ∈ (P1 : M). By Lemma 3.8, r = 0 ∈ (Q1 : M ′), we
can conclude that Q1 ∈ Spec(M ′). �
Theorem 3.12. (Going down). Let M ⊆ M ′ be the torsion-free R-
modules, and M ′ be the integral over M . If P0 ⊆ P1 are prime submod-
ules of M , and Q1 ∈ Spec(M ′), such that P1 = Q1 ∩ M . Then there
exists Q0 ∈ Spec(M ′), such that Q0 ⊆ Q1, and Q0 ∩M = P .

Proof. Put A = {L ≤ M ′|L ⊆ Q1, L ∩ M = P0}. Since P0 ∈ A,
A ̸= ∅. By Zorn’s Lemma, A has a maximal element Q0. We show that
Q0 ∈ Spec(M ′). Suppose that r ∈ R, m′ ∈ M ′, such that rm′ ∈ Q0.
If Q0 + Rm′ ⊆ Q1, then (Q0 + Rm′) ∩ (M\P0) ̸= ∅, and so, there
exist t ∈ R, and q ∈ Q0, such that m = q + tm′ ̸∈ P0. Since rm =
rq+rtm′ ∈ P0 ∈ Spec(M), r ∈ (P0 : M) = 0. Therefore, r ∈ (Q0 : M

′).
But, if Q0 +Rm′ ̸⊆ Q1, then there exist t ∈ R, and q0 ∈ Q0, such that
q0 + tm′ ̸∈ Q1. Since rq0 + rtm′ ∈ Q1, and Q1 ∈ Spec(M ′), it follows
that, r ∈ (Q1 : M

′). Hence, by Lemmas 3.8, and 3.9, (Q1 : M
′) = (P1 :

M) = 0, and this implies that r ∈ (Q0 : M
′). �
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جابه�جایی حلقه�های روی مدول�های در صحیح وابستگی

نکویی رضا کریم�زاده، سمیه
کرمان باهنر شهید دانشگاه رفسنجان، (عج) ولی�عصر دانشگاه

بستار پایایی می�دهیم. گسترش مدول�ها به را حلقه�ها در صحیح وابسته مفهوم مقاله، این در
مدول صحیح توسیع ادامه، در می�کنیم. مطالعه را مدول متفاوت ساختارهای به نسبت صحیح
می�نماییم. ثابت مدول�ها برای را رفتن پایین و بالارفتن داشتن، قرار رو قضایای و کرده معرفی را
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