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GENERALIZED JOINT HIGHER-RANK NUMERICAL
RANGE

H.R. AFSHIN, S. BAGHERI AND M.A. MEHRJOOFARD*

ABSTRACT. The rank-k numerical range has a close connection
to the construction of quantum error correction code for a noisy
quantum channel. For a noisy quantum channel, a quantum error
correcting code of dimension k exists, if and only if the associated
joint rank-k numerical range is non-empty. In this paper, the no-
tion of joint rank-k numerical range is generalized, and some state-
ments of [2011, Generalized numerical ranges and quantum error
correction, J. Operator Theory, 66: 2, 335-351.] are extended.

1. INTRODUCTION

Let M, be the set of n x n complex matrices, and A € M,,. Fur-
thermore, assume that k € {1,....n},a C {1, -+ ,n}. Throughout this
paper, the following notations are fixed:

e = exp (2)
O = {wlngl}ﬁ'” 7wll<€;71} :

Besides, the symbol o (A) stands for the spectrum of the matrix A,
and A« refers to the principal submatrix of A that lies in the rows and
columns of A indexed by a.

Recently, the joint higher rank numerical range [5] has played a key
role in finding quantum error correcting codes|!], and some researchers

MSC(2010): Primary: 15A60; Secondary: 15A33,15A09,15A27.
Keywords: Generalized projector, Joint higher rank numerical range, Joint matrix nu-
merical range, Joint matrix higher rank numerical range, Generalized joint higher rank
numerical range.
Received: 16 January 2015, Revised: 14 July 2015.
xCorresponding author .

31



32 AFSHIN, BAGHERI AND MEHRJOOFARD

have taken this into consideration. The present article mainly con-
centrates on extending the notion of joint rank-k numerical range of
A= (Ay,..,A,) € M™ ie. the set of all (ay, ..., a,,) € C™, such that
there exists the orthogonal projector P of rank k that satisfies

PAjP:ajP \V/]
Definition 1.1. Let A = (Ay,...,A,) € M, B € My, and k < n.
Then the set
By (4) =
{(a1,...,a,,) € C": 3U € My, 5.t.,UU = I}, U*A;U = a;B Vj}

is called the joint matrix higher rank numerical range.

When B = diag(by, ..., by), we abbreviate gAg (A) as 4, p, Ax (A),
and in the case by = k = 1, the joint numerical range of A is defined
as W(A) =,

Definition 1.2. Let A = (A, -+, A,,) € M k < n. The kth joint
matrix numerical range of A is the set

Wy (A) = {(U*AlU, UAU, - -- ,U*AmU) U € Mmk,U*U = ]k}

In [3], The authors have introduced ” k—generalized projector”. They
have said that A € M,, is the k—generalized projector, if A* = A* and
k> 1.

Theorem 1.3. [3] Let A € M, and k € N, k > 1. Then the following
statements are equivalent:
(a) A is a k—generalized projector.

(b) A is a normal matriz, and o (A) C {0} U Qpyq.

Now, it is natural to extend ”joint higher rank numerical range” as
follows:

Definition 1.4. Let A = (Ay,..., A,) € M, and k and k" are positive
integers. Then the set

m 3k — generalized projector of rank k (P),
{(‘“’ erm) €C L PAP = a,P VY

is called the k'—generalized joint rank-k numerical range, and is abbre-
viated as GAp x (A).

Notice that the recent definition is an obvious extension of ”gener-
alized higher rank numerical range,” which has been defined in [1].
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2. MAIN RESULTS

The proof of the following results is elementary and hence, we leave
it to the interested reader.

Proposition 2.1. Let A = (Ay,--- ,An) € Mk <mn, and 1 < K.
The following statements are equivalent:
(i) a = (a1,a2, - ,am) € GAp i (A1, Ag, -+ L Ap).
(ii) There exist by, -+ by € Qi1 and unitary matriz U € M, such
that for any j € {1,--- ,m},

(U AU (1,2, k} = ayding ({bi},)

(iii) There exist by,--- by € Qui1, and X = [3:1 cee T ] €
M, 1, such that X*X = I}, and

Vi€ {1, ,m}, X*A,;X = a;diag <{bi}f:1> .

(iv) There exists by, -+ , by € Quiy1, and orthonormal vectors
uy, -, up € C*, such that

Vr e {]_, cet ,m}Vl,] S {1, ce ,k} 5 <Arui,uj> = arbiéij.

Proof. One can deduce, from Theorem 1.3, the equivalency of (i) and
(ii). Notice that P is a k'—generalized projector of rank k, if and only
if there exists a unitary matrix U, and numbers by, - - - , by € Q41 such
that

P =U"diag | by, -+ ,bg,0,---,0 | U.
——
n—k,0"'s
Equivalence of parts (ii), (iii), and (iv) is obvious. O
Corollary 2.2. Let A= (Ay, -+, An) € M™. Then:
(i) A (A) C GAp i (A);
(11) GAk’,k: (A) C GAk:’,k: ((Al, s aAm—l)) X (C;
(111) GA.k-/7k-+1 (A) C GAk’,k (A) 3

Proof. (i) is trivial, since every orthogonal projector of rank k is a
k' —generalized projector of rank k.

(ii) is obvious.

(iii) Assume that (A1,---,A\p) € GAp i1 (A). Then there exist or-
thonormal vectors uy,--- ,ugy € C?, and by, -+ ,bpr1 € Qpyq, such
that (Ayu;,u;) = Nbidyj, for r e {1,--- ,m}, 1 < i,j < k+ 1L
Therefore, by considering the orthonormal vectors uy,--- ,u; € C" and
bl, cee ,bk c Qk’+17 we see that <A7«UZ‘,UJ'> = /\szézj for r € {1, s ,m},
1 <1i,5 <k, and therefore, (A1, , A\p) € GAp . (4). O
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Corollary 2.3. Let A = (Ay,--- ,An) € M, and k' k > 1. If n >
(k—1) (m+1)%, then GAyp i (A) # 0.

Proof. It suffices to consider [5, Proposition 2.4], and Corollary 2.2(i).
O

Proposition 2.4. Let k' > 1, and A € M". Then:
() GApr(A) = U b e (A);

by, ,bkEQk/+1

(ii) GAk:’,l (A) - U bW (A) .

bEQk/+1 !
Proof. By definition, (i), and (ii) can readily be verified. O

Corollary 2.5. Consider the Pauli matrices:

10 01 0 —i 10
it e I R b R TN

and let Ay, -+ A € {I,X,Y,Z}, and k' > 1. Then:

Gl (I, Ay @ - @ A,) =
U {0} AL ALY =T}

bGQk/+1
U 0{(1,a):a€[-1,1]} :elsewhere

beQr g
Proof. 1t suffices to note that Pauli matrices are normal, and:
o(X)=0)=0(Z)={-1,1}.
OJ

The proofs of the next two results are straightforward, and thus are
omitted.

Corollary 2.6.
GAwa ({diag (ain, -+ am)}y) = | beonv ({(alj, S 7amj)}?:1>

Lemma 2.7. Let A; = diag (a1, ,an;),j=1,---,m. Then:

Gl (A1, An) C U {Cl;clz%:...:%w

by b€

X U {02:022%“-2%}>

by b€y
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Definition 2.8. [2] Let S be a convex set, and R := S# = {zeC:2Fes}.
Then R is called the convex kth root set.

Corollary 2.9. Let A; = diag (a1, -+ ,anj),j € {1,--- ,m}, k' > 1,
and there exists 11,15 € 1,--- ,n, such that Z# e C\ (Rk%ﬂ> ,. Then:
2,7

GAk’,n (Ala U 7Am> - Q)
Now, we extend [5, Proposition 2.5]:

Proposition 2.10. Let A = (Ay,--- ,Ap) € M™, B € My, and 1 <
r<k<mn. Then:

s, (A) C
m . W*T(GBW"aamB)m
ﬂ {(ah'“’am)ec ’ (WZT(AX%*A1X77X*AWLX) ) #Q}

XEMn,n—'ry

X*X=Ip_,
Proof. Let a = (a1, -+ ,am) € A (A), and X € M, ,_, be such that
X*X = I,_,. Then there exists U € M,, j, such that:

UU = ]k,U*AjU:ajB VJ

We can choose the orthonormal vectors xq,---, 25, € (XC" ") N
(U(Ck), and therefore, there exist Y = [y1, - ,yp—r] € My, Z =
(21, 2k—r] € My_yg—p, such that XZ = [z1,--- ,24—,] = UY, and

Y*Y = I,_, = Z*Z. Therefore,
" X"A; X7 = a;Y"BY Vj,
and the proof is completed. O]

The following lemma can directly follow from the definition.
Lemma 2.11. Let A = (Ay,---,A,) € M, C = (Cy,---,Cp) €

ni?
M. B € Mgk < min{ny,n}, and there ewvists the matriz V €
My, 5y, such that V'V = I,,,, and for any 1 < j < m, C; = V*A;V.
Then:

BAk (C) - BAk (A)
Lemma 2.12. Let A = (Ay,--+,A,) € M",.C = (Cy,---,Cp) €

ny?

M, B € My, k <ny <ny, and for any j, A; = C;{1,--- ,ni}. Then:
BAk (A) C BAk (C) .

Proof. Let (a1, ,a,) € Ak (A). Therefore, there exist X € M, ,

such that X*X = [, and X*A;X = a;B, for all j € {1,--- ,m}.

Now, define Y = [ g( } . Then, one can see that Y*Y = [, and
TLQXk‘

Y*C;Y =a;B, forall j € {1,--- ,m}.
]
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Corollary 2.13. Let A = (Ay,--- ,Ay) € M,C = (C1,--- ,Cp) €
Mk < ny < ng, and for any j, A; = C;{1,--- ,ni},1 < k' and
there exists the matriz V- € M,, n,, such that V*V = I,,, and for any

1<j3<m, D; =V*A;V. Then:
GAkf’k (D) C GAk/’k (A) C GAk/,k (C) .
The following theorem is an extension of [5, Theorem 3.1].

Theorem 2.14. Let A = (Ay,---,Ay) € M™ k > (m+2)k, B €
My, (0,---,0) € gA; (A), and (a1, ,am) € gAx (A). Then for any
tel0,1],

t(al,--~ ,ak) € BAk(A)

Proof. Assume that there exist X € M, ;, and V € M, (549, such
that:

XX =1;,V5, X*A; X = a; B,

V*V - [(m+2)k7vj7 V*A]V - O(m+2)k~
By the Lemma 2.11 and Lemma 2.12, it suffices to show that there is
the non-singular matrix Z € M,, (n+2)k, such that:

27 = Iy,

ajB Ok
Vj, Z*A; Z = { 0p O ] (2.1)
* (m+2)kx (m+2)k
Because, in this case, we have:
A alB Ok amB Ok
BiM Ok Ok: ) ) Ok: Ok
C M\ (ZFAZ, -+ [ 2 AT
- BAk (A17 U 7Am)
and
alB Ok amB Ok
Vi [0,1],¢ (an,-- ,ax) € ph ([ B } . { B D
: B Vi
(Note that for any ¢ € [0, 1] there exists U = [ i such that
- ajB Ok . '
for all j,U [ 0. O } U =ta;B.)

Now, we want to select Y € M, ;, and W € M, i, such that their
columns selected from columns of V and Z = [ XY w } satisfy in
2.1. But, 2.1 is equivalent to:

Y*Y = L, WW = Ly, X*Y = 04, X*W = O, YW = Oy,
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Thus, in order to find the Y, it is sufficient to find the k columns of
columns of V, such that they lie in the space H*, such that:

B {columns of X} U {columns of A;X}
H = span ( U--- U {columns of A4,,X} '

But dim (H) < (m + 1) k, while V" has (m + 2) k columns. Therefore,
we can construct Y. Now, span ({columns of X'} U {columns of Y'}) is
a space with dimension 2k and so we can find the mk columns of V,
such that they lie not in this space, and assume W, such that their
columns are constructed by those columns. 0

Also, we can extend [5, proposition 2.1], as follows:

Proposition 2.15. Suppose A = (A1, -, Ay,) € M E<n, 1 <k
and S = (s;;) is an m x n matriz. If B; = ) s;;A;, forj=1,--- n,
i=1
then:
{aT ac GAk/Jg (A)} C GA]C/’]C (B) .

Equality holds, if {Ay, -+, An} is linearly independent and:
span{Ay, -+, Ay} =span{By, -, B,}.
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